JPS63206474A - Photoexcitation cvd device - Google Patents

Photoexcitation cvd device

Info

Publication number
JPS63206474A
JPS63206474A JP3779487A JP3779487A JPS63206474A JP S63206474 A JPS63206474 A JP S63206474A JP 3779487 A JP3779487 A JP 3779487A JP 3779487 A JP3779487 A JP 3779487A JP S63206474 A JPS63206474 A JP S63206474A
Authority
JP
Japan
Prior art keywords
gas
sensitizing
reaction
light
photoreaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3779487A
Other languages
Japanese (ja)
Inventor
Satoshi Fukuyama
聡 福山
Shinichi Tazawa
田澤 進一
Osamu Yoneya
米屋 修
Teiichi Muto
武藤 禎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP3779487A priority Critical patent/JPS63206474A/en
Publication of JPS63206474A publication Critical patent/JPS63206474A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deposition of a reaction product on a light introducing window by providing a means for supplying a reactive gas and a sensitizing gas converted to plasma only to the neighborhood of a material to be treated in a photoreaction chamber. CONSTITUTION:The material 4 to be treated is imposed on a sample base 5 in the photoreaction chamber 1 and a sample base 5 is heated by a heater 10. The reactive gas (SiH4, O2, etc.) and the sensitizing gas (Kr, Hg, etc.) converted to plasma by a plasma generating means 20 are charged to a gas supplying pipe 15 of double construction provided to run through the photoreaction chamber 1 and are supplied in the form of a gaseous mixture onto the material 4. Light is then introduced from a mercury lamp 7 through the light introducing window 8 to dissociate and excite the gaseous mixture and to bring the same into reaction on the material 4, by which a deposited film is formed on the material 4. The unreacted gas and sensitizing gas are discharged through a valve 2 by a vacuum pump. Generation of the reaction near the window 8 is thereby obviated and the adverse influence by the deposition to the window 8 is prevented.

Description

【発明の詳細な説明】 (発明の目的] (産業上の利用分野) 本発明は、ウェハなどの被処理物を収容した光反応室内
に光を照射することにより光反応室内の反応ガスを反応
させ被処理物に気相成長を行なう光励起CVD装置の改
良に関する。
Detailed Description of the Invention] (Objective of the Invention) (Industrial Application Field) The present invention is a method of reacting a reaction gas in a photoreaction chamber by irradiating light into the photoreaction chamber containing a workpiece such as a wafer. The present invention relates to an improvement of a photoexcited CVD apparatus that performs vapor phase growth on a workpiece.

(従来の技術) 従来の光励起CVD装置は第3図に示すような構成とな
っている。
(Prior Art) A conventional optically excited CVD apparatus has a configuration as shown in FIG.

すなわち、図中aは光反応室であり、この光反応室aは
パルプbを通して真空ポンプCに接続している。また、
光反応室aにはたとえばウェハ等の被処理物dが載置さ
れる試料台eが設けられているとともに、光反応室aに
はその一側に接続されたガス供給管fを介して反応ガス
Qが供給されるようになっている。
That is, a in the figure is a photoreaction chamber, and this photoreaction chamber a is connected to a vacuum pump C through a pulp b. Also,
The photoreaction chamber a is provided with a sample stage e on which a workpiece d, such as a wafer, is placed, and the photoreaction chamber a is provided with a sample stage e on which a workpiece d such as a wafer is placed, and a reaction is carried out through a gas supply pipe f connected to one side of the photoreaction chamber a. Gas Q is now supplied.

また、光反応室aの上部には背部を反射板りで囲繞され
た水銀ランプiからの光を導入するための光導入窓jが
設けられている。また、上記試料台eはヒータ電源kに
接続されたヒータmにより加熱されるようになっている
Further, a light introduction window j for introducing light from a mercury lamp i whose back is surrounded by a reflector plate is provided in the upper part of the photoreaction chamber a. Further, the sample stage e is heated by a heater m connected to a heater power source k.

しかして、ガス供給管fを介して光反応室a内に供給さ
れた反応ガスQは、水銀ランプiより直接あるいは反射
板りにより一旦反射されて光導入窓jを通して導入され
た光により解離し、気相中あるいは同様に光照射されて
いる被処理物d上にて反応し、その結果堆積膜が被処理
物上に生成される。
Therefore, the reaction gas Q supplied into the photoreaction chamber a through the gas supply pipe f is dissociated by the light introduced directly from the mercury lamp i or once reflected by the reflector and introduced through the light introduction window j. , reacts in the gas phase or similarly on the workpiece d that is irradiated with light, and as a result, a deposited film is generated on the workpiece.

また、排気はバルブbを通し真空ポンプCにより行なわ
れることになる。
Further, evacuation is performed by a vacuum pump C through a valve b.

(発明が解決しようとする問題点) しかしながら、このような従来の構成であると、光強度
が被処理物dの近傍よりも光導入窓jに近い方が大きい
ために光導入窓jの被処理物dと対向する面にも被処理
物dへの堆積速度よりも速い速度で堆積してしまう。
(Problems to be Solved by the Invention) However, with such a conventional configuration, the light intensity is higher near the light introduction window j than near the object d, so that the light intensity of the light introduction window j is It also deposits on the surface facing the workpiece d at a faster rate than the deposition rate on the workpiece d.

このために、被処理物dの近傍および光反応空a内の反
応ガスQに供給されるべき光の強度は、指数関数的に減
少し、その結果、被処理物d上への堆積速度も指数関数
的に減少することになる。
For this reason, the intensity of light to be supplied to the reactant gas Q in the vicinity of the workpiece d and in the photoreaction space a decreases exponentially, and as a result, the deposition rate on the workpiece d also decreases. It will decrease exponentially.

このことは、処理速度、再現性の向上、およびメインテ
ナンスの容易化に関して非常に大きな問題となっていた
This has been a very big problem in terms of improving processing speed, reproducibility, and ease of maintenance.

本発明は、上記事情に基づきなされたもので、その目的
とするところは、被処理物の近傍でのみで反応を起こさ
せ、光導入窓近傍では反応を起こさず光導入窓への堆積
による悪影響を防止し得るようにした光励起CVD装置
を提供しようとするものである。
The present invention has been made based on the above circumstances, and its purpose is to cause a reaction only in the vicinity of the object to be treated, and not to cause a reaction in the vicinity of the light introduction window, thereby preventing the adverse effects of deposition on the light introduction window. An object of the present invention is to provide a photoexcited CVD apparatus that can prevent the above.

[発明の構成] (問題点を解決するための手段) 本発明は、上記問題点を解決するために、被処理物を収
容した光反応室内に光を照射することにより光反応室内
の反応ガスを反応させ被処理物に気相成長を行なう光励
起CVD装隨において、上記光反応室内に増感ガスが無
くては解離し励起されない反応ガスおよびプラズマ化し
た増感ガスを被処理物近傍に供給するガス供給手段を設
けた構成としたものである。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention aims to reduce the reaction gas in the photoreaction chamber by irradiating light into the photoreaction chamber containing the object to be treated. In a photo-excited CVD system that performs vapor phase growth on the object to be processed by reacting with the sensitizing gas, the reactant gas that would not be dissociated and excited without the sensitizing gas in the photoreaction chamber and the sensitizing gas that has turned into plasma are supplied to the vicinity of the object to be processed. The structure includes a gas supply means for

(作用) すなわち、本発明は堆積のための反応ガスとして光のみ
では反応を起こさず光と増感ガスと光があって始めて反
応し堆積するものを使用し、さらに、増感ガスの反応促
進作用には時間的な寿命があるので被処理物の近傍での
みで反応を起こさせることができ、光導入窓近傍では反
応を起こさず光導入窓への堆積による悪影響を防止する
ことが可能となる。
(Function) That is, the present invention uses a reaction gas for deposition that does not cause a reaction with light alone, but reacts and deposits only when light, a sensitizing gas, and light are present, and furthermore, the reaction of the sensitizing gas is promoted. Since the action has a temporal lifespan, it is possible to cause a reaction only in the vicinity of the object to be treated, and it does not cause a reaction in the vicinity of the light introduction window, making it possible to prevent the adverse effects of deposition on the light introduction window. Become.

(実施例) 以下、本発明の一実施例を第1図および第2図を参照し
て説明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は全体構成を概略的に示すものであり、図中1は
光反応室であり、光反応室1はバルブ2を通して真空ポ
ンプ3に接続している。光反応室1にはウェハ等の被処
理物4がIg、置される試料台5が設けられている。
FIG. 1 schematically shows the overall configuration. In the figure, 1 is a photoreaction chamber, and the photoreaction chamber 1 is connected to a vacuum pump 3 through a valve 2. The photoreaction chamber 1 is provided with a sample stage 5 on which a workpiece 4 such as a wafer is placed.

また、光反応室1の上部には背部を反射板6で囲績され
た水銀ランプ7からの光を導入するための光導入窓8が
設けられ、また、上記試料台5はヒータ電21!9に接
続されたヒータ10により加熱されるようになっている
Further, a light introduction window 8 for introducing light from a mercury lamp 7 whose back is surrounded by a reflector plate 6 is provided at the upper part of the photoreaction chamber 1, and the sample stage 5 is provided with a heater electrode 21! It is heated by a heater 10 connected to 9.

さらに、光反応室1を貫通する状態にガス供給手段とし
ての二重構造のガス供給管15が設けられている。この
ガス供給管15は第2図に詳図するように反応ガス供給
口16a、16aと連通する反応ガス供給路12を形成
する外管16、および増感ガス供給口17a、17aと
連通する増感ガス供給路13を形成する内管17とから
なり、別々に導入した反応ガス18と41gガス19を
混合した状態で光反応室1に供給できるようになってお
り、上記光反応苗1内に位置する部分は環状に形成され
ている。
Further, a double-structured gas supply pipe 15 as a gas supply means is provided to penetrate the photoreaction chamber 1 . As shown in detail in FIG. 2, this gas supply pipe 15 includes an outer pipe 16 forming a reaction gas supply path 12 that communicates with reaction gas supply ports 16a and 16a, and an intensifier that communicates with sensitizing gas supply ports 17a and 17a. It consists of an inner tube 17 that forms a sensitive gas supply path 13, and is configured to be able to supply the separately introduced reaction gas 18 and 41g gas 19 in a mixed state to the photoreaction chamber 1. The part located at is formed in an annular shape.

内管17の環状部には後述するプラズマ発生手段20.
20によりプラズマ化された増感ガス19を外管16内
の反応ガス供給路12内に放出するための多数のガス噴
出孔21・・・が形成されており、また、外管16の内
径部にはプラズマ化された増感ガス19と反応ガス18
との混合ガス22を被処理物4上に供給するガス供給孔
23・・・が形成されている。
The annular portion of the inner tube 17 is provided with a plasma generating means 20, which will be described later.
A large number of gas ejection holes 21 are formed for discharging the sensitizing gas 19 turned into plasma by the sensitizing gas 19 into the reaction gas supply path 12 inside the outer tube 16. sensitizing gas 19 and reaction gas 18 turned into plasma
Gas supply holes 23 . . . for supplying a mixed gas 22 with the above-mentioned gas onto the object 4 to be processed are formed.

上記プラズマ発生手段20.20は、第1図に示すよう
に内管17に取付けられた導波管24およびマイクロ波
発振器25から構成されている。
The plasma generating means 20.20 is composed of a waveguide 24 attached to the inner tube 17 and a microwave oscillator 25, as shown in FIG.

しかして、ガス供給管15を介して堆積のための反応ガ
ス18とプラズマ化された増感ガス19との混合ガス2
2が光反応室1内の被処理物4上に供給される。そして
、光反応室1内に供給された混合ガス22は、水銀ラン
プ7より直接あるいは反射板6によって一旦反射された
後に光導入窓8を通して導入された光により解離し励起
され、気相中あるいは同様に光照射されている被処理物
4上にて反応する。その結果、堆積膜が被処理物4上に
生成されることになる。
Thus, a mixed gas 2 of a reaction gas 18 for deposition and a sensitizing gas 19 turned into plasma is supplied through the gas supply pipe 15.
2 is supplied onto the object to be processed 4 in the photoreaction chamber 1. The mixed gas 22 supplied into the photoreaction chamber 1 is dissociated and excited by the light introduced through the light introduction window 8 either directly from the mercury lamp 7 or once reflected by the reflection plate 6, and then released into the gas phase or Similarly, the reaction occurs on the object to be treated 4 that is irradiated with light. As a result, a deposited film is generated on the object 4 to be processed.

つぎに、具体的な動作について説明する。Next, specific operations will be explained.

まず、モノシラン(S+ H4)や酸素(02)などの
反応ガス18が外管16内の反応ガス供給路12を介し
て供給され、一方、クリプトン(Krや水銀<1−NJ
などの増感作用にある増感ガス19がプラズマ発生手段
20によりプラズマ化され活性化された状態で内管17
内の増感ガス供給路13を介して供給される。そして、
内管17内の増感ガス供給路13を介して供給された増
感ガス19はガス噴出口21・・・を介して外管16内
の反応ガス供給路12内に放出されて反応ガス18と混
合され、外管16に形成されたガス供給孔23・・・を
介して光反応室1内に供給される。
First, a reactive gas 18 such as monosilane (S+H4) or oxygen (02) is supplied through the reactive gas supply path 12 in the outer tube 16, while krypton (Kr or mercury<1-NJ
The sensitizing gas 19 which has a sensitizing effect such as
The sensitizing gas is supplied through the sensitizing gas supply path 13 inside. and,
The sensitizing gas 19 supplied through the sensitizing gas supply path 13 in the inner tube 17 is discharged into the reaction gas supply path 12 in the outer tube 16 through the gas jet ports 21 . and is supplied into the photoreaction chamber 1 through gas supply holes 23 formed in the outer tube 16.

たとえば反応ガス18としてモノシランガスを用いた場
合、通常の水銀ランプ7を用いてもガスが吸収できる波
長がランプの発する紫外光の波長よりも短いため、ガス
が光を吸収せず解離することができない。このようなと
き、クリプトンなどの希ガスや水銀を反応ガス中に混合
するとこれらのガスが光を吸収し活性化して間接的にモ
ノシランガスを解離する作用を持っていることが一般的
に知られている。
For example, when monosilane gas is used as the reaction gas 18, even if a normal mercury lamp 7 is used, the wavelength that the gas can absorb is shorter than the wavelength of the ultraviolet light emitted by the lamp, so the gas does not absorb light and cannot dissociate. . In such cases, it is generally known that when a rare gas such as krypton or mercury is mixed into the reaction gas, these gases absorb light and activate it, indirectly dissociating the monosilane gas. There is.

本実施例では、増感作用のあるガス活性化をプラズマ化
することにより光よりも効率よく行なっている。
In this embodiment, activation of a gas with a sensitizing effect is performed more efficiently than with light by converting it into plasma.

これにより反応ガスは解離し、解離したガスすなわち混
合ガス22・・・はガス供給孔23・・・から被処理物
4上に供給される。このとき、被処理物4は水銀ランプ
7から発せられた光により照射され光気相成長が行なわ
れる。
As a result, the reaction gas is dissociated, and the dissociated gas, that is, the mixed gas 22 . . . is supplied onto the object 4 from the gas supply holes 23 . At this time, the object to be processed 4 is irradiated with light emitted from the mercury lamp 7, and photovapor phase growth is performed.

気相成長に供されなかった未反応ガスや増感ガスはバル
ブ2を通して真空ポンプ3により排気される。
Unreacted gas and sensitizing gas that have not been subjected to vapor phase growth are exhausted by a vacuum pump 3 through a valve 2.

また、増感ガス19として水銀ガスを用いる場合には光
反応室1とバルブ2との間に水銀トラップ(図示しない
)を設置し回収した状態で排気する。
Further, when mercury gas is used as the sensitizing gas 19, a mercury trap (not shown) is installed between the photoreaction chamber 1 and the bulb 2, and the mercury gas is exhausted in a recovered state.

しかして、本発明によれば、モノシランなどの反応ガス
18が解離した反応ガス分布が光強度分布に依存せず、
活性化した増感ガス分布に大きく依存することとなり、
従来のように光導入窓8近辺での著しい堆積作用による
問題は解決することができる。
Therefore, according to the present invention, the distribution of the reaction gas 18 such as monosilane dissociated does not depend on the light intensity distribution,
It greatly depends on the activated sensitizing gas distribution,
The conventional problem caused by significant deposition near the light introduction window 8 can be solved.

また、増感ガス19を光以外のより効率的な手段にて励
起するために増感ガス19として従来使用できなかった
ガスを使用することができることになる。
Furthermore, since the sensitizing gas 19 is excited by a more efficient means other than light, it becomes possible to use a gas that could not be used conventionally as the sensitizing gas 19.

なお、上述の一実施例において、二重構造のガス供給管
15の外管16に反応ガス18を、また、内管17に増
感ガス19を流すようにしたが、本発明はこれに限らず
、この逆でも良い。また、増感ガス19を光反応室1の
外部に設けたプラズマ発生手段20によりプラズマ化し
たが、光反応室1の内部でプラズマ化してもよい。
In the above embodiment, the reactive gas 18 was made to flow through the outer tube 16 of the double-structured gas supply tube 15, and the sensitizing gas 19 was made to flow through the inner tube 17, but the present invention is not limited to this. Well, the opposite is also fine. Moreover, although the sensitizing gas 19 was turned into plasma by the plasma generation means 20 provided outside the photoreaction chamber 1, it may be turned into plasma inside the photoreaction chamber 1.

その他、本発明は、本発明の要旨を変えない範囲で種々
変形実施可能なことは勿論である。
In addition, it goes without saying that the present invention can be modified in various ways without departing from the gist of the present invention.

[発明の効果] 以上説明したように、本発明によれば被処理物の近傍で
のみで反応を起こさせ、光導入窓近傍では反応を起こさ
ず光導入窓への堆積による悪影響を防止し得るようにし
た光励起CVD装置を提供できるといった効果を奏する
[Effects of the Invention] As explained above, according to the present invention, a reaction occurs only in the vicinity of the object to be treated, and no reaction occurs in the vicinity of the light introduction window, making it possible to prevent the adverse effects of deposition on the light introduction window. It is possible to provide an optically excited CVD apparatus having the following structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示すもので、
第1図は装置全体の概略的構成図、第2図はガス供給管
の一部切欠した平面図、第3図は従来装置の概略的構成
図である。 1・・・光反応室、4・・・被処理物(ウェハ)、7・
・・ランプ、8・・・光導入窓、12・・・反応ガス供
給路、13・・・増感ガス供給路、15・・・ガス供給
管、16・・・外管、17・・・内管、18・・・反応
ガス、19・・・増感ガス、20・・・プラズマ発生手
段、22・・・混合ガス、23・・・ガス供給孔。 出願人代理人  弁理士 鈴 江 武 彦第3図
1 and 2 show an embodiment of the present invention,
FIG. 1 is a schematic configuration diagram of the entire device, FIG. 2 is a partially cutaway plan view of a gas supply pipe, and FIG. 3 is a schematic configuration diagram of a conventional device. 1... Photoreaction chamber, 4... Processed object (wafer), 7.
...Lamp, 8...Light introduction window, 12...Reaction gas supply path, 13...Sensitizing gas supply path, 15...Gas supply pipe, 16...Outer tube, 17... Inner tube, 18... Reaction gas, 19... Sensitizing gas, 20... Plasma generation means, 22... Mixed gas, 23... Gas supply hole. Applicant's agent Patent attorney Takehiko Suzue Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)被処理物を収容した光反応室内に光を照射するこ
とにより光反応室内の反応ガスを反応させ被処理物に気
相成長を行なう光励起CVD装置において、上記光反応
室内に増感ガスが無くては解離し励起されない反応ガス
およびプラズマ化した増感ガスを被処理物近傍に供給す
るガス供給手段を設けたことを特徴とする光励起CVD
装置。
(1) In a photo-excited CVD apparatus that performs vapor phase growth on the object to be processed by irradiating light into the photoreaction chamber containing the object to be processed by causing a reaction gas in the photoreaction chamber to react, a sensitizing gas is present in the photoreaction chamber. A photo-excited CVD characterized in that a gas supply means is provided for supplying a reaction gas which would otherwise be dissociated and not excited, and a plasma-formed sensitizing gas to the vicinity of the object to be processed.
Device.
(2)ガス供給手段が、反応ガスを供給する反応ガス供
給路および増感ガスを供給する増感ガス供給路を有した
二重構造のガス供給管からなり、反応ガスと増感ガスを
混合させた状態で光反応室に供給することを特徴とする
特許請求の範囲第1項記載の光励起CVD装置。
(2) The gas supply means consists of a double-structured gas supply pipe having a reaction gas supply path for supplying a reaction gas and a sensitizing gas supply path for supplying a sensitizing gas, and mixes the reaction gas and the sensitizing gas. 2. The photoexcitation CVD apparatus according to claim 1, wherein the photoexcitation CVD apparatus is supplied to the photoreaction chamber in a state of
JP3779487A 1987-02-23 1987-02-23 Photoexcitation cvd device Pending JPS63206474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3779487A JPS63206474A (en) 1987-02-23 1987-02-23 Photoexcitation cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3779487A JPS63206474A (en) 1987-02-23 1987-02-23 Photoexcitation cvd device

Publications (1)

Publication Number Publication Date
JPS63206474A true JPS63206474A (en) 1988-08-25

Family

ID=12507400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3779487A Pending JPS63206474A (en) 1987-02-23 1987-02-23 Photoexcitation cvd device

Country Status (1)

Country Link
JP (1) JPS63206474A (en)

Similar Documents

Publication Publication Date Title
US5229081A (en) Apparatus for semiconductor process including photo-excitation process
US4522674A (en) Surface treatment apparatus
JP2001521293A5 (en)
JPH06199594A (en) Method of attaching diamond material
US5273587A (en) Igniter for microwave energized plasma processing apparatus
JPS6245122A (en) Treater
JPS63206474A (en) Photoexcitation cvd device
US5089289A (en) Method of forming thin films
JPS62136573A (en) Plasma treatment device
JPS60202928A (en) Optical pumping reaction device
JPS6227573A (en) Photochemical reaction device
JPH0429220B2 (en)
JPH02149339A (en) Apparatus for microwave plasma treatment
JPS6227575A (en) Formation of film
RU2068029C1 (en) Method of plasma-chemical application of coating
JPS6468476A (en) Photoexcitation vapor chemical growth device
JPH0128830B2 (en)
JPH04312797A (en) Plasma generating device
JPS62106618A (en) Photochemical vapor growth device
JPS61119028A (en) Photo-chemical vapor deposition equipment
JPS624869A (en) Formation of deposited film by photochemical vapor phase growth method
JPS6396924A (en) Manufacture of semiconductor device
JPS62238364A (en) Thin film forming device
JPH09313919A (en) Vacuum apparatus, exhaust method using the same and apparatus utilizing vacuum apparatus
JPS61263213A (en) Processor