JPS63206471A - Method and device for forming carbon film - Google Patents

Method and device for forming carbon film

Info

Publication number
JPS63206471A
JPS63206471A JP3980087A JP3980087A JPS63206471A JP S63206471 A JPS63206471 A JP S63206471A JP 3980087 A JP3980087 A JP 3980087A JP 3980087 A JP3980087 A JP 3980087A JP S63206471 A JPS63206471 A JP S63206471A
Authority
JP
Japan
Prior art keywords
disk
area
counter electrode
carbon film
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3980087A
Other languages
Japanese (ja)
Other versions
JPH0674505B2 (en
Inventor
Makoto Kito
鬼頭 諒
Yoshinori Honda
好範 本田
Yuichi Kokado
雄一 小角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62039800A priority Critical patent/JPH0674505B2/en
Publication of JPS63206471A publication Critical patent/JPS63206471A/en
Publication of JPH0674505B2 publication Critical patent/JPH0674505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To easily form a hard carbon film on a disk by disposing a disk and counter electrode having an area larger than the area of the part to be treated of the disk into a vacuum vessel and allowing high-energy ions to flow onto the surface to be treated. CONSTITUTION:A plasma treatment chamber 3 is formed of the disk 9 held by a disk carrier 10 and the counter electrode 7 having the area sufficiently larger than the area of the part to be treated of the disk 9 in the vacuum vessel 1. The disk carrier 10 is grounded. A reactive gas is then introduced from a gas introducing port 6 into the plasma treatment chamber 3 through small holes 8 and a high-frequency voltage is supplied to the counter electrode 7 from a high-frequency impressing mechanism 4. The condition for admitting the high-energy ions into the surface of the part to be treated is thereby created and the hard carbon film is easily formed on the disk 9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電算機用磁気ディスク装置に用いられる磁気
ディスク、特に薄膜磁気ディスクに好適な硬質炭素保護
膜を形成する方法と装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for forming a hard carbon protective film suitable for magnetic disks used in magnetic disk drives for computers, particularly thin film magnetic disks.

[従来の技術] メタンなどの炭化水素気体をグロー放電のエネルギによ
り分解すると、条件によっては、ダイヤモンド状カーボ
ンや、iカーボンと呼ばれる硬質な炭素皮膜が堆積する
ことは公知である。この硬質炭素膜は、磁気ディスクの
保護膜として有用であり、各種の考案i1<されている
。硬質炭素皮膜の形成には、高エネルギのイオンを基板
表面に照射しつつ膜形成するか、あるいは、基板を60
0℃以上に熱しつつ膜形成する方法がとられている。
[Prior Art] It is known that when a hydrocarbon gas such as methane is decomposed by the energy of glow discharge, a hard carbon film called diamond-like carbon or i-carbon is deposited depending on the conditions. This hard carbon film is useful as a protective film for magnetic disks, and various ideas have been developed. To form a hard carbon film, it is necessary to form the film while irradiating the substrate surface with high-energy ions, or to form the film while irradiating the substrate surface with high energy ions.
A method is used in which the film is formed while being heated to 0° C. or higher.

[発明が解決しようとする問題点] しかしながら、上記従来の方法には、次のような欠点が
あった。
[Problems to be Solved by the Invention] However, the above conventional method has the following drawbacks.

先ず、後者の方法では、磁気ディスクの場合、基板とし
てアルミニウムなどの融点の低い材料を使用するため、
基板を600°C以上に熱することができず、膜形成が
困難となる欠点があった。
First, in the latter method, in the case of magnetic disks, a material with a low melting point such as aluminum is used as the substrate.
There was a drawback that the substrate could not be heated above 600°C, making it difficult to form a film.

一方、前者の方法は、300°C以下の低温で皮膜形成
が可能である。その例としては、■高エネルギイオンを
基板表面に照射する方法、■直流バイアスを基板に印加
してイオンを加速して基板表面に当てる方法、■高周波
二極放電によって炭化水素ガスを分解し高周波印加側電
極にイオンを当てる方法がある。
On the other hand, the former method allows film formation at a low temperature of 300°C or lower. Examples include: ■ irradiating the substrate surface with high-energy ions, ■ applying a DC bias to the substrate to accelerate the ions and hitting the substrate surface, and ■ decomposing hydrocarbon gas using high-frequency bipolar discharge. There is a method of applying ions to the electrode on the application side.

この場合、■の高エネルギイオンを基板表面に照射する
方法は、成膜速度が遅く、磁気ディスクのような大面積
に均一に成膜するには高価なイオン源を使用する必要が
あるという問題がある。また、■の直流バイアスを印加
する方法や、■の高周波二極放電によって高周波印加側
電極にイオンを当てる方法は、ディスクおよびディスク
を保持しているキャリアを高電圧にする必要があり、不
要な放電を防止するための絶縁方式が非常に複雑になる
という問題がある。
In this case, the method (2) of irradiating the substrate surface with high-energy ions has the problem that the film formation rate is slow and that an expensive ion source must be used to uniformly form a film over a large area such as a magnetic disk. There is. In addition, the method (2) of applying a DC bias and the method (2) of applying ions to the high-frequency application side electrode by high-frequency bipolar discharge require that the disk and the carrier holding the disk be brought to a high voltage. There is a problem in that the insulation method for preventing discharge becomes very complicated.

本発明は、上記問題点を解決した高周波プラズマを用い
ディスク上に硬質炭素皮膜を形成する方法および装置を
提供せんとするものである。
The present invention aims to provide a method and apparatus for forming a hard carbon film on a disk using high-frequency plasma, which solves the above-mentioned problems.

[問題点を解決するための手段] 本発明にかかる皮膜形成方法は、ディスクおよびディス
クを保持するディスクキャリアを接地し、ディスクの被
処理部に対向して設けた対向電極に高周波電圧を印加す
ることによってプラズマを保持し、この対向電極の面積
を被処理部の面積より十分大きくすることにより、被処
理部分の表面電位の平均値をプラズマ電位の平均値に対
して大きな負の電位となし、これにより高エネルギのイ
オンを被処理表面に流出させて皮膜を形成させるもので
あ−る。
[Means for Solving the Problems] In the film forming method according to the present invention, a disk and a disk carrier holding the disk are grounded, and a high frequency voltage is applied to a counter electrode provided opposite to a portion of the disk to be processed. By holding the plasma, and by making the area of this counter electrode sufficiently larger than the area of the part to be treated, the average value of the surface potential of the part to be treated is made to be a large negative potential with respect to the average value of the plasma potential, This causes high-energy ions to flow out onto the surface to be treated to form a film.

この方法を実施するための装置として、ディスクおよび
ディスクを保持するディスクキャリアを接地した接地電
極を設ける。この接地電極に対向して対向電極が設けら
れる。この対向電極は、接地電極にプラズマが当る面積
よりも十分に大きな面積を有する電極である。
As an apparatus for carrying out this method, a ground electrode is provided which grounds the disk and the disk carrier holding the disk. A counter electrode is provided opposite this ground electrode. This counter electrode is an electrode having a sufficiently larger area than the area where the plasma hits the ground electrode.

なお、好ましくは、対向電極をディスクの両面に設けて
、両面同時に炭素皮膜を形成する構成とする。
Preferably, counter electrodes are provided on both sides of the disk, and carbon films are formed on both sides at the same time.

ここで、「被処理面積より十分大きな面積を有する対向
電極」という概念をより定量的に示す。
Here, the concept of "a counter electrode having a sufficiently larger area than the area to be processed" will be explained more quantitatively.

磁気ディスクにプラズマが接する部分の面積を81、対
向電極にプラズマが接する部分の面積を82として、S
、/ S□の値が1の場合は、それぞれの部分とプラズ
マの間に等しい電位差が生じるようになっている。しか
しながら、s*/ s、 > 1の場合には、処理部分
とプラズマ間の電位差の方が大きくなる。上記の効果は
St/Stが1よりわずかでも大きければ実現されるが
、S2/S、が大きい程処理部分とプラズマ間の電位差
が大きくなり、処理効率が向上されるので、十分な効果
を得るにはSz/S+が1.5より大きいことが望まし
く、スパッタエツチングなどのように更に大きなエネル
ギのイオンが必要な場合にはsz/stが3より大きい
ことが望ましい。
Assuming that the area of the part where the plasma contacts the magnetic disk is 81 and the area of the part where the plasma contacts the counter electrode is 82, S
, /S□ is 1, an equal potential difference is generated between each part and the plasma. However, if s*/s, > 1, the potential difference between the treated part and the plasma will be larger. The above effect can be achieved if St/St is even slightly larger than 1, but the larger S2/S is, the larger the potential difference between the processing area and the plasma becomes, and the processing efficiency is improved, so a sufficient effect can be obtained. It is desirable for Sz/S+ to be greater than 1.5, and when ions with even higher energy are required, such as in sputter etching, it is desirable that sz/st be greater than 3.

本発明におけるプラズマを形成するための反応性ガスど
しては、メタン、エタン、プロパン、エチレン、アセチ
レン、ベンゼン、トルエン等の炭化水素がある。これら
の炭化水素は、気体のものはガス状態で、また、液体の
ものは蒸気として使用する。また、炭化水素と水素の混
合ガスを使用することもできる。
Reactive gases for forming plasma in the present invention include hydrocarbons such as methane, ethane, propane, ethylene, acetylene, benzene, and toluene. These hydrocarbons are used in the gas state if they are gaseous, and in the form of vapor if they are liquid. It is also possible to use a mixed gas of hydrocarbon and hydrogen.

[作用] 本発明は、皮膜を形成すべきディスクを接地側とし、そ
れに対向する対向電極に100KHz〜100MH。
[Function] In the present invention, the disk on which the film is to be formed is set as the ground side, and the counter electrode facing the disk is set at 100 KHz to 100 MHZ.

の高周波電圧を印加することにより炭化水素または炭化
水素と水素の混合ガスのプラズマを保持し、接地側電極
(ディスク)表面に炭素皮膜を形成する。
By applying a high frequency voltage of , a plasma of hydrocarbon or a mixed gas of hydrocarbon and hydrogen is maintained, and a carbon film is formed on the surface of the ground side electrode (disk).

本発明の特徴は、対向電極の面積をディスク(接地側電
極)の被処理部の面積より十分大きくしたことである。
A feature of the present invention is that the area of the counter electrode is made sufficiently larger than the area of the processed portion of the disk (ground side electrode).

上記周波数範囲の高周波放電においては電子の移動速度
が正イオンの移動速度に比べ著しく大きいために生ずる
シース電圧降下が、二つの電極の有効面積比によって変
化し、面積の小さい電極の電圧降下が大きくなる。ただ
し、上記の有効面積とはプラズマが触れている部分の面
積である。したがって、ディスクの被処理部の面積に対
し対向電極のプラズマに触れている面積を十分大きくす
ることにより、プラズマ電位か被処理部表面の電位に対
して高電位となり、高エネルギのイオンが被処理部表面
に流入する状況を作り出すことができ、硬質炭素皮膜が
形成される。
In high-frequency discharge in the above frequency range, the sheath voltage drop that occurs because the moving speed of electrons is significantly higher than the moving speed of positive ions changes depending on the effective area ratio of the two electrodes, and the voltage drop of the electrode with a small area is large. Become. However, the effective area mentioned above is the area of the part that the plasma is in contact with. Therefore, by making the area of the opposing electrode in contact with the plasma sufficiently large compared to the area of the disk to be processed, the plasma potential will be higher than the potential of the surface of the processed area, and high-energy ions will be This creates a situation in which carbon flows into the surface of the part, forming a hard carbon film.

上記したように、ディスクの被処理部(接地側電極)と
対向電極の有効面積比は、少なくとも1:3、好ましく
は1:5以上とする。また、高周波電圧の振幅はIKV
以上であることが好ましい。
As described above, the effective area ratio between the processed portion of the disk (ground side electrode) and the counter electrode is at least 1:3, preferably 1:5 or more. Also, the amplitude of the high frequency voltage is IKV
It is preferable that it is above.

本発明により形成される硬質炭素皮膜は、アモルファス
構造の炭素膜であり、ビッカース硬度1000以上の硬
質かつ摩耗しにくい膜である。
The hard carbon film formed by the present invention is a carbon film with an amorphous structure, and is a hard film with a Vickers hardness of 1000 or more and is hard to wear.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

先ず図面を参照して、装置について説明する。First, the apparatus will be described with reference to the drawings.

第1図において、本装置は、真空槽1に設けられ、真空
排気ポンプ(図示せず)に連結される排気口2と、プラ
ズマ処理室3と、高周波印加機構4と、ディスクキャリ
ア保持機構5と、反応性ガス供給機構(図示せず)に連
結されるガス導入口6とからなる。
In FIG. 1, this apparatus includes an exhaust port 2 provided in a vacuum chamber 1 and connected to a vacuum pump (not shown), a plasma processing chamber 3, a high frequency application mechanism 4, and a disk carrier holding mechanism 5. and a gas inlet 6 connected to a reactive gas supply mechanism (not shown).

上記プラズマ処理室3は、真空槽l内に配置された対向
電極7と、接地電極であるディスク9とに囲まれた空間
として形成される。このプラズマ処理室3内に反応性ガ
スを導入して、高周波電圧を印加することにより、プラ
ズマを形成する。
The plasma processing chamber 3 is formed as a space surrounded by a counter electrode 7 arranged in a vacuum chamber 1 and a disk 9 serving as a ground electrode. A reactive gas is introduced into the plasma processing chamber 3 and a high frequency voltage is applied to form plasma.

図示しない反応性ガス供給機構からのプラズマ処理室3
への反応性ガスの導入は、ガス導入口6から行なわれる
。゛この場合、対向電極7に小孔8を多数設けておくこ
とにより、ガスをプラズマ処理室3内に均等に導入する
ことができる。
Plasma processing chamber 3 from a reactive gas supply mechanism (not shown)
The reactive gas is introduced through the gas inlet 6. In this case, by providing a large number of small holes 8 in the counter electrode 7, the gas can be evenly introduced into the plasma processing chamber 3.

上記ディスク9は、ディスクキャリア10により、対向
電極7と対向する状態で保持される。
The disk 9 is held by a disk carrier 10 in a state facing the counter electrode 7.

ディスクキャリア10は、ディスクキャリア保持機構5
によって保持され、真空槽1とともに接地される。
The disk carrier 10 has a disk carrier holding mechanism 5
and is grounded together with the vacuum chamber 1.

対向電極7の面積は、接地電極(ディスク)に当るプラ
ズマの面積よりも十分大きな面積になっている。本実施
例においては、ディスク9を接地側電極とし、それに対
向する対向電極7に100KH。
The area of the counter electrode 7 is sufficiently larger than the area of the plasma hitting the ground electrode (disk). In this embodiment, the disk 9 is used as the ground side electrode, and the counter electrode 7 facing it is applied with a voltage of 100 KH.

ないし100MI(、の高周波電圧を高周波印加機構4
から供給する。
The high frequency voltage applying mechanism 4
Supplied from.

次に、本発明による硬質炭素皮膜形成方法を実際に適用
した場合を例にとって更に説明する。
Next, a case in which the method for forming a hard carbon film according to the present invention is actually applied will be further explained using an example.

第1図に示した装置に、8インチのアルミ基板(膜厚2
m層上にN−Pメッキ層(下地層) 、 Co −Ni
 −Cr系スパッタ層(磁性層)を形成した磁気ディス
ク9を、ディスクキャリア10に取り付けてセットした
。ついで、真空槽1を予備排気した後、メタンガスを導
入し、0.05mtorrに保持し、対向電極7 ニ1
3.56MHz、電圧振@2 KV(7)高周波電圧を
印加し、プラズマを発生させた。
An 8-inch aluminum substrate (film thickness 2
N-P plating layer (base layer) on the m layer, Co-Ni
A magnetic disk 9 on which a -Cr-based sputtered layer (magnetic layer) was formed was attached and set on a disk carrier 10. Next, after preliminary evacuation of the vacuum chamber 1, methane gas was introduced and maintained at 0.05 mtorr, and the counter electrode 7
A high frequency voltage of 3.56 MHz and a voltage amplitude of 2 KV (7) was applied to generate plasma.

5分間の処理の結果、500人の硬質炭素膜が形成され
た。処理中、異常放電の発生は見られなかった。上記処
理を行なったディスクは、処理前に此べ耐摺動寿命が大
幅に向上した。
As a result of the 5 minute treatment, a 500 hard carbon film was formed. No abnormal discharge was observed during the treatment. The sliding life of the disks subjected to the above treatment was significantly improved before the treatment.

[発明の効果] 以上説明したように、本発明によれば、回転電極を接地
し対向電極に高周波電圧を印加してプラズマを保持する
ようにし、高電圧部を電極部に限定したため、ディスク
に高周波電圧を印加した場合の機構上の問題、不要な放
電の発生、および絶縁の問題をまったくなくすことがで
きる。
[Effects of the Invention] As explained above, according to the present invention, the rotating electrode is grounded and a high frequency voltage is applied to the opposing electrode to maintain plasma, and the high voltage part is limited to the electrode part. Mechanical problems, unnecessary discharges, and insulation problems that occur when high-frequency voltages are applied can be completely eliminated.

更には、対向電極の面積をディスクの処理部(接地側電
極)の面積より十分大きな面積にしたので、高エネルギ
のイオンが被処理部表面に流入する状況を作り出すこと
ができ、硬質の炭素皮膜の形成を容易に行なうことがで
きる。
Furthermore, since the area of the counter electrode is made sufficiently larger than the area of the processing section (ground side electrode) of the disk, it is possible to create a situation in which high-energy ions flow into the surface of the processing section, creating a hard carbon film. can be easily formed.

本方法は、ディスクをキャリアで保持しつつ移動させ、
連続に多層膜を形成する方法および装置において特に効
果を発揮する。また不要な放電の発生を防止できるため
欠陥の少ない皮膜を再現性よく得ることかできる。
This method involves moving the disc while holding it in a carrier,
It is particularly effective in methods and devices for continuously forming multilayer films. Furthermore, since unnecessary discharge can be prevented from occurring, a film with few defects can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例であり、炭素皮膜形成装置
の全体構成図である。 1・・・真空槽、2・・・排気口、3・・・プラズマ処
理室、4・・・高周波印加機構、5−・・ディスクキャ
リア保持機構、6・・・ガス導入口、7−・・対向電極
、8・・・小孔、9・・・ディスク。
FIG. 1 is an embodiment of the present invention, and is an overall configuration diagram of a carbon film forming apparatus. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 2... Exhaust port, 3... Plasma processing chamber, 4... High frequency application mechanism, 5-... Disk carrier holding mechanism, 6... Gas inlet, 7-... - Counter electrode, 8... small hole, 9... disk.

Claims (1)

【特許請求の範囲】 1、ディスクと、該ディスクの被処理部の面積より十分
大きい面積を持つ対向電極とを真空槽中に配置した後、
該真空槽中に、炭素を含む反応性ガスを導入し、ディス
クを接地し、対向電極に高周波電圧を印加してプラズマ
を形成し、該プラズマを、ディスクの平面電位の平均値
がプラズマ電位の平均値に対して負の大きな値となるよ
う保持して、高エネルギのイオンを被処理表面に流出さ
せて皮膜を形成することを特徴とする炭素皮膜形成方法
。 2、対向電極をディスクの両面に配置して、プラズマを
ディスクの両面側に各々形成して、両面同時に皮膜を形
成することを特徴とする特許請求の範囲第1項記載の炭
素皮膜形成方法。 3、ディスクを保持すると共に接地するディスク保持機
構と、該ディスクの被処理部に対向して配置される対向
電極とを真空槽中に備え、 かつ、上記対向電極を、上記ディスクの被処理部の面積
より十分大きく設定して構成することを特徴とする炭素
皮膜形成装置。 4、上記対向電極をディスクの両面に配置した特許請求
の範囲第3項記載の炭素皮膜形成装置。
[Claims] 1. After placing a disk and a counter electrode having an area sufficiently larger than the area of the processed portion of the disk in a vacuum chamber,
A reactive gas containing carbon is introduced into the vacuum chamber, the disk is grounded, and a high frequency voltage is applied to the counter electrode to form plasma. A carbon film forming method characterized by forming a film by maintaining high-energy ions to a surface to be treated so as to have a large negative value with respect to an average value. 2. The method for forming a carbon film according to claim 1, characterized in that counter electrodes are arranged on both sides of the disk, plasma is formed on both sides of the disk, and a film is formed on both sides at the same time. 3. A vacuum chamber is provided with a disk holding mechanism that holds the disk and is grounded, and a counter electrode placed opposite the processed portion of the disk, and the counter electrode is placed opposite the processed portion of the disk. 1. A carbon film forming apparatus characterized in that the device is configured to have an area sufficiently larger than the area of the carbon film forming apparatus. 4. The carbon film forming apparatus according to claim 3, wherein the counter electrodes are arranged on both sides of the disk.
JP62039800A 1987-02-23 1987-02-23 Carbon film forming method and apparatus Expired - Lifetime JPH0674505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039800A JPH0674505B2 (en) 1987-02-23 1987-02-23 Carbon film forming method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039800A JPH0674505B2 (en) 1987-02-23 1987-02-23 Carbon film forming method and apparatus

Publications (2)

Publication Number Publication Date
JPS63206471A true JPS63206471A (en) 1988-08-25
JPH0674505B2 JPH0674505B2 (en) 1994-09-21

Family

ID=12563030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039800A Expired - Lifetime JPH0674505B2 (en) 1987-02-23 1987-02-23 Carbon film forming method and apparatus

Country Status (1)

Country Link
JP (1) JPH0674505B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421276A2 (en) * 1989-09-30 1991-04-10 Nukem GmbH Process and apparatus for coating parts with cubic bornitride or diamond
EP0730266A2 (en) * 1995-02-06 1996-09-04 Hitachi, Ltd. Apparatus for plasma-processing a disk substrate and method of manufacturing a magnetic disk
US6468617B1 (en) 1993-07-20 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
JP2013072132A (en) * 2011-09-29 2013-04-22 Ulvac Japan Ltd Film-forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114576A (en) * 1983-11-28 1985-06-21 Canon Inc Manufacture of deposited film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114576A (en) * 1983-11-28 1985-06-21 Canon Inc Manufacture of deposited film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421276A2 (en) * 1989-09-30 1991-04-10 Nukem GmbH Process and apparatus for coating parts with cubic bornitride or diamond
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
US6468617B1 (en) 1993-07-20 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
EP0730266A2 (en) * 1995-02-06 1996-09-04 Hitachi, Ltd. Apparatus for plasma-processing a disk substrate and method of manufacturing a magnetic disk
EP0730266A3 (en) * 1995-02-06 1998-07-01 Hitachi, Ltd. Apparatus for plasma-processing a disk substrate and method of manufacturing a magnetic disk
JP2013072132A (en) * 2011-09-29 2013-04-22 Ulvac Japan Ltd Film-forming apparatus

Also Published As

Publication number Publication date
JPH0674505B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
US6001431A (en) Process for fabricating a magnetic recording medium
US6183816B1 (en) Method of fabricating the coating
US5300189A (en) Plasma surface treatment method and apparatus
US6835523B1 (en) Apparatus for fabricating coating and method of fabricating the coating
JP2002541604A (en) Method and apparatus for depositing a diamond-like carbon coating from a Hall current ion source
EP0327406A3 (en) Plasma processing method and apparatus for the deposition of thin films
JPS6283471A (en) Method and apparatus for forming carbon film
JPS6350478A (en) Formation of thin film
JPS63206471A (en) Method and device for forming carbon film
JPH08209352A (en) Plasma treatment and device therefor
US7264850B1 (en) Process for treating a substrate with a plasma
JP4567867B2 (en) Film forming apparatus for magnetic recording disk and method for manufacturing magnetic recording disk
JPH07258840A (en) Formation of carbon thin film
JPH09228054A (en) Magnetic recording medium, its manufacture and manufacturing device therefor
JPH06248458A (en) Plasma treatment device and production of magnetic disk by using this device
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
JP3172384B2 (en) Hard carbon film forming apparatus and film forming method using the same
JPH062944B2 (en) Diamond-like carbon film deposition system
JP3453337B2 (en) Method for cleaning a reaction chamber for forming a coating containing carbon or carbon as a main component
JPH06158331A (en) Coating film forming device
JPH06103573A (en) Production of magnetic recording medium
JPH02115379A (en) Device for forming thin film
JPH06128747A (en) Method and device for forming hard carbonaceous thin film by chemical vapor phase synthesis
JP3416382B2 (en) Hard coating and method for forming the coating
JP2002038268A (en) Carbon coating and manufacturing method