JPS63206380A - Growing method of single crystal - Google Patents

Growing method of single crystal

Info

Publication number
JPS63206380A
JPS63206380A JP3692187A JP3692187A JPS63206380A JP S63206380 A JPS63206380 A JP S63206380A JP 3692187 A JP3692187 A JP 3692187A JP 3692187 A JP3692187 A JP 3692187A JP S63206380 A JPS63206380 A JP S63206380A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
liquid
solid
molten liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3692187A
Other languages
Japanese (ja)
Inventor
Hideo Kurokawa
英夫 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP3692187A priority Critical patent/JPS63206380A/en
Publication of JPS63206380A publication Critical patent/JPS63206380A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To exactly carry out the temperature control on a single crystal growth solid-liquid interface in a crucible and obtain a single crystal being homogeneous also in fine structure and having high quality, by depositing the single crystal while always keeping the position of the above-mentioned solid- liquid interface in the crucible during pulling up of a seed crystal. CONSTITUTION:In a growing method of a single crystal which is further deposited around a seed crystal by pulling up the seed crystal immersed in a molten liquid from a molten liquid in a crucible, the position of the single crystal growth solid-liquid interface in the crucible is always kept constant. There is a method for forming compensational component with a substance not to react with the molten liquid, gradually immersing the component in the molten liquid and keeping the liquid face in the crucible constant as means for keeping the liquid face constant. A material which is not reacted with the molten liquid and cause no degradation by temperature is required as the compensational component. A material having properties as same as that of crucible is preferably used as the material of the compensational component in order to satisfy the above-mentioned conditions.

Description

【発明の詳細な説明】 [!!業上の利用分野] この発明は、半導体の製造原料であるシリコン、ガリウ
ム・ヒ素、インジウム・リンなどの単結晶、サファイア
等の酸化物単結晶、更には、ニオブ酸リチウム、ガドリ
ウム・ガリウム・ガーネット、イツトリウム・アルミニ
ウム・ガーネット等の複合酸化物等の単結晶を製造する
のに好適な単結晶の育成方法に関する。
[Detailed description of the invention] [! ! Field of Industrial Application] This invention is applicable to semiconductor manufacturing raw materials such as silicon, single crystals of gallium arsenide, indium phosphide, etc., oxide single crystals such as sapphire, and furthermore, lithium niobate, gadolinium, gallium, garnet, etc. , relates to a method for growing a single crystal suitable for producing a single crystal of a composite oxide such as yttrium, aluminum, garnet, etc.

[従来の技術] 第3図及び第4図はいわゆるチョクラルスキー法による
従来の単結晶の育成方法を示すもので、内部の空気の成
分及び圧力を調整可能とした筒状の保護管1の内部に回
転自在な支持台2を設け、この支持台2に原料となる素
材を装入した坩堝3を載置して、高周波誘導コイル4に
より原料に誘導電流を流し、加熱して融解させるか、あ
るいは原料が非導電性の場合は坩堝3を導電性として坩
堝3に誘導電流を流して加熱し、その輻射あるいは伝導
熱により原料を融解する。そしてこの溶融液りに上部か
らホルダ5の先端に取り付けた種結晶(シード)Sを接
触させ、必要に応じ支持台2を回転しつつ加熱炉1の上
部に設けられた昇降装置(図示路)によりホルダ5を回
転させながら徐々に引き上げ、この種結晶Sを核として
溶融液りの単結晶を析出させて種結晶Sを肥大させ、円
柱状の単結晶Cを得るようにしている。結晶の析出過程
において溶融液りの温度を一定に保つために、坩堝3の
底部に熱電対を埋設し、その検出値に基づいて誘導コイ
ルに供給する電流を制御している。
[Prior Art] Figures 3 and 4 show a conventional method for growing single crystals using the so-called Czochralski method, in which a cylindrical protective tube 1 in which the composition and pressure of the air inside can be adjusted is shown. A rotatable support stand 2 is provided inside, a crucible 3 loaded with raw material is placed on this support stand 2, and an induced current is passed through the raw material by a high frequency induction coil 4 to heat and melt it. Alternatively, if the raw material is non-conductive, the crucible 3 is made conductive and an induced current is passed through the crucible 3 to heat it, and the raw material is melted by the radiation or conduction heat. Then, the seed crystal (seed) S attached to the tip of the holder 5 is brought into contact with this molten liquid from above, and the lifting device (the path shown in the figure) provided at the upper part of the heating furnace 1 is rotated as necessary. While rotating the holder 5, the holder 5 is gradually pulled up, a single crystal of the molten liquid is precipitated using the seed crystal S as a nucleus, the seed crystal S is enlarged, and a cylindrical single crystal C is obtained. In order to keep the temperature of the molten liquid constant during the crystal precipitation process, a thermocouple is embedded in the bottom of the crucible 3, and the current supplied to the induction coil is controlled based on the detected value.

そして、引き上げられた単結晶Cに温度差によるクラッ
クが入るのを防ぐために、坩堝3の上部に筒状の発熱体
(アフタヒータ)6を設けて単結晶Cを加熱している。
In order to prevent cracks from occurring in the pulled single crystal C due to temperature differences, a cylindrical heating element (after heater) 6 is provided in the upper part of the crucible 3 to heat the single crystal C.

[発明が解決しようとする問題点] ところで、上記のような単結晶の育成方法においては、
結晶の析出点である固液界面において溶融液りの温度を
厳密に制御することが重要であるが、上記のような誘導
加熱炉においては、溶融液り全体の温度制御を行った場
合でも、液面の局部的な温度変化を防ぐことが難しかっ
た。例えば、材料が非導電性で坩堝3が導電性であるよ
うな場合には、坩堝3内の単結晶成長固液界面が下がる
と坩堝3の上縁部(溶融液に接しない部分)の温度が上
昇し、従って、溶融液の単結晶成長固液界面付近の部分
が高温になる。また、坩堝3が非導電性、材料が導電性
である場合にも、誘導コイル4による磁束の密度が上下
方向において均一の分布ではないので、単結晶成長固液
界面が下がると温度も変化してしまう。従って、溶融液
の液面温度の制御を厳密に行うことが難しく、微細な組
織まで均一な高品位の単結晶の製造が難しいとともに、
単結晶Cの径が変化して歩留りが低下するなどの問題点
があった。また、上記の欠点を改善するために、坩堝3
の単結晶成長固液界面相当位置に熱電対を埋設して、こ
の検知値に基づいて誘導コイル4に供給する電流の量を
制御して液面の温度を一定にする方法が考えられるが、
単結晶成長固液界面位置の変動がある場合には有効な制
御が難しいという不具合があった。
[Problems to be solved by the invention] By the way, in the method for growing a single crystal as described above,
It is important to strictly control the temperature of the molten liquid at the solid-liquid interface, which is the precipitation point of crystals, but in the above-mentioned induction heating furnace, even if the temperature of the entire molten liquid is controlled, It was difficult to prevent local temperature changes at the liquid level. For example, if the material is non-conductive and the crucible 3 is conductive, if the solid-liquid interface for single crystal growth in the crucible 3 decreases, the temperature of the upper edge of the crucible 3 (the part not in contact with the melt) will decrease. increases, and therefore, the portion of the melt near the single crystal growth solid-liquid interface becomes high temperature. Furthermore, even if the crucible 3 is non-conductive and the material is conductive, the density of the magnetic flux generated by the induction coil 4 is not uniformly distributed in the vertical direction, so when the solid-liquid interface for single crystal growth falls, the temperature also changes. It ends up. Therefore, it is difficult to strictly control the surface temperature of the molten liquid, and it is difficult to produce high-quality single crystals with uniform even minute structures.
There were problems such as a change in the diameter of the single crystal C and a decrease in yield. In addition, in order to improve the above drawbacks, crucible 3
One possible method is to bury a thermocouple at a position corresponding to the solid-liquid interface for single crystal growth, and control the amount of current supplied to the induction coil 4 based on this detected value to keep the temperature of the liquid surface constant.
There is a problem in that effective control is difficult when there is variation in the position of the solid-liquid interface during single crystal growth.

この発明は、比較的簡単な手段により、単結晶成長固液
界面の位置を一定に保ち、液面の温度制御を厳密に行わ
せることを目的とするものである。
The object of the present invention is to keep the position of the solid-liquid interface for single crystal growth constant and to strictly control the temperature of the liquid surface by relatively simple means.

[問題点を解決するための手段] 上記のような問題点を解決するために、この発明は、坩
堝内の溶融液から該溶融液中に浸漬した種結晶を引き上
げることにより上記種結晶の周囲にさらに単結晶を析出
させる単結晶の育成方法において、単結晶の引き上げ中
に坩堝内の単結晶成長固液界面の位置を常に一定に保つ
ようにしたもので、これにより結晶の析出点である固液
界面の温度環境を一定に保って安定した高品位の単結晶
を育成するようにしている。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a solution to the surroundings of the seed crystal by pulling up the seed crystal immersed in the melt from the melt in the crucible. In a method for growing single crystals that further precipitates single crystals, the position of the solid-liquid interface for single crystal growth in the crucible is always kept constant during pulling of the single crystals, thereby making it possible to The temperature environment at the solid-liquid interface is kept constant to grow stable, high-quality single crystals.

液面を一定に保つ手段としては、溶融液と反応しない物
質により補償部材を形成し、これを溶融液に徐々に浸漬
させ、坩堝内の液面を一定に保つ方法がある。また、坩
堝が非導電性の場合には、支持台を上昇させて坩堝自体
を加熱炉に対して上昇させる方法もあるが、この方法は
、坩堝が導電性を持つ場合には、坩堝の上縁部(溶融液
に接していない部分)が拡大して液面の温度環境を変化
させてしまうので採用が難しい。
As a means for keeping the liquid level constant, there is a method of forming a compensating member from a substance that does not react with the molten liquid and gradually immersing it in the molten liquid to keep the liquid level in the crucible constant. In addition, if the crucible is non-conductive, there is a method in which the crucible itself is raised relative to the heating furnace by raising the support stand; It is difficult to adopt this method because the edge (the part that is not in contact with the melt) expands and changes the temperature environment of the liquid surface.

補償部材を用いる場合には、坩堝内の対称性を損なわな
いように坩堝の形状に沿った円筒形とし、また、溶融液
中に浸漬する前に充分予熱して液面の所定温度と等しく
しておけば、液面の温度環境を一定に保つ上でより効果
的である。補償部材の材質は、溶融液と反応したり、温
度による劣化などを起こさないものが必要であるが、こ
のような条件を満たすものとしては坩堝と同質の材料が
好適である。
When using a compensating member, it should be cylindrical to follow the shape of the crucible so as not to impair the symmetry within the crucible, and should be sufficiently preheated to equalize the predetermined temperature of the liquid surface before being immersed in the molten liquid. This will be more effective in keeping the temperature environment of the liquid level constant. The material of the compensating member needs to be one that does not react with the molten liquid or deteriorate due to temperature, and a material that satisfies these conditions is preferably the same material as the crucible.

そして、液面位置を制御するための検知手段としては、
種結晶を引き上げる昇降装置にロードセルなどの重量検
知手段を組み込み、この検知値により液面位置を判定す
る方法、あるいは、坩堝の支持機構に重量計を組み込む
方法、あるいは、坩堝の上部に取り付けたレベルセンサ
により直接液面レベルを検知し、フィードバック制御を
行う方法などがある。また、坩堝の単結晶成長固液界面
相当位置に熱電対を埋設して、この検知値に基づいて加
熱量(例えば誘導加熱の場合は誘導コイルに供給する電
流量)を制御する方法を付加すれば一層有効な液面温度
制御が行える。
As a detection means for controlling the liquid level position,
A method is to incorporate weight detection means such as a load cell into the lifting device that pulls up the seed crystal, and use this detection value to determine the liquid level position, or a method is to incorporate a weight scale into the support mechanism of the crucible, or a method is to attach a level to the top of the crucible. There is a method of directly detecting the liquid level using a sensor and performing feedback control. Additionally, a method is added in which a thermocouple is embedded in the crucible at a position corresponding to the solid-liquid interface for single crystal growth, and the amount of heating (for example, the amount of current supplied to the induction coil in the case of induction heating) is controlled based on the detected value. This allows for more effective liquid surface temperature control.

なお、この発明は、原料を融解する機構として誘導加熱
を用いる場合に特に好適であるが、それ以外の場合でも
有効である。
This invention is particularly suitable when induction heating is used as a mechanism for melting raw materials, but is also effective in other cases.

[作用 ] このような単結晶の育成方法においては、単結晶を引き
上げる際に溶融液の液面レベルが一定に保たれるので、
結晶の析出点近傍の温度環境が一定になり、析出条件が
均一になる。従って、温度の制御が容易になるとともに
、結晶構造などの微視的な条件及び筒径などの巨視的な
条件が等しい品質一定の単結晶の製造が可能になる。
[Function] In this single crystal growth method, the liquid level of the melt is kept constant when pulling the single crystal, so
The temperature environment near the crystal precipitation point becomes constant, and the precipitation conditions become uniform. Therefore, it becomes easy to control the temperature, and it becomes possible to produce a single crystal of constant quality in which the microscopic conditions such as the crystal structure and the macroscopic conditions such as the cylinder diameter are the same.

[実施例コ 以下、図面を参照してこの発明の詳細な説明する。[Example code] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図及び第2図において、11は加熱炉であり、非導
電性の材料からなる筒状の保護管12により内部が気密
に保たれているとともに、必要に応じてアルゴンあるい
は窒素などのガスを供給し、内部の雰囲気を不活性に保
つことができるようになっている。保護管12の外周に
は誘導コイル13が設置され、この誘導コイル13に高
周波電流を流して保護管12の内部に交番磁界を生ぜし
め、坩堝14内の素材に誘導電流を発生させて素材を加
熱し、融解させるようになっている。また、素材が強誘
電体のような非導電性のものの場合は坩堝14の材料と
してプラチナやイリジウムなどの貴金属を用いて坩堝1
4自体を加熱する。保護管12の内部には坩堝14を載
置する支持台15が、加熱炉11の下部に設けられた回
転駆動装置(図示略)により支持軸16を中心に回動自
在に設置されている。41.て、坩堝14の上側にこの
坩堝14の上面を覆うように有蓋円筒状の発熱体(アフ
タヒータ)17が固設されている。この発熱体17は、
坩堝14が貴金属製の場合には同じ材質のものが、また
非導電性である場合には金属あるいは黒鉛などの適宜材
質の導電体が採用される。
In FIGS. 1 and 2, 11 is a heating furnace, the inside of which is kept airtight by a cylindrical protection tube 12 made of a non-conductive material, and a gas such as argon or nitrogen is supplied as needed. The internal atmosphere can be kept inert. An induction coil 13 is installed around the outer periphery of the protection tube 12, and a high frequency current is passed through the induction coil 13 to generate an alternating magnetic field inside the protection tube 12, and an induced current is generated in the material in the crucible 14 to cause the material to melt. It is heated and melted. In addition, if the material is non-conductive such as ferroelectric, a noble metal such as platinum or iridium may be used as the material for the crucible 14.
4 Heat itself. A support stand 15 on which the crucible 14 is placed is installed inside the protection tube 12 so as to be rotatable about a support shaft 16 by a rotation drive device (not shown) provided at the bottom of the heating furnace 11 . 41. A closed cylindrical heating element (after heater) 17 is fixed above the crucible 14 so as to cover the upper surface of the crucible 14 . This heating element 17 is
If the crucible 14 is made of a noble metal, a crucible made of the same material is used, and if it is non-conductive, a suitable conductive material such as metal or graphite is used.

この発熱体17は坩堝14と同径に形成され、上部天板
18には、種結晶Sのホルダ19と補償部材20とを挿
通させる開口部21が形成されている。
The heating element 17 is formed to have the same diameter as the crucible 14, and the upper top plate 18 is formed with an opening 21 through which the holder 19 for the seed crystal S and the compensation member 20 are inserted.

このホルダ19は保護管12の上部の昇降機構(図示略
)に連結されており、この昇降機構はホルダ19及び種
結晶Sを微速で回転しつつ引き上げるようになっている
。このホルダ19の一部にはロードセル(図示略)が組
み込まれており、結晶の成長に伴う重量変化を検知でき
るようになっている。上記補償部材20は溶融液りと反
応しない材質のものが選ばれ、通常は坩堝14と同一の
素材でよい。この場合、坩堝14が導電性である場合に
は補償部材20にも誘導電流が流れて加熱され、坩堝1
4と同じ加熱条件を満たすことになる。勿論、坩堝14
が導電性である場合に非導電性の補償部材20を、また
、坩堝14が非導電性の場合に導電性の補償部材20を
採用する場合もある。
This holder 19 is connected to an elevating mechanism (not shown) at the upper part of the protection tube 12, and this elevating mechanism lifts up the holder 19 and the seed crystal S while rotating at a slow speed. A load cell (not shown) is incorporated in a part of the holder 19, so that changes in weight due to crystal growth can be detected. The compensating member 20 is selected from a material that does not react with the molten liquid, and usually may be made of the same material as the crucible 14. In this case, if the crucible 14 is conductive, an induced current also flows through the compensating member 20 and heats the crucible 1.
This satisfies the same heating conditions as in No. 4. Of course, Crucible 14
A non-conductive compensation member 20 may be used when the crucible 14 is conductive, and a conductive compensation member 20 may be used when the crucible 14 is non-conductive.

下表に結晶の素材とそれに対応する材質の実施例を列記
する。
Examples of crystal materials and corresponding materials are listed in the table below.

この補償部材20は、下部の筒状部22と上部の小径の
把持部23とが一体に成形されており、この把持部23
は保護管12の上部に設置された昇降装置(図示略)に
連結されている。また、この加熱炉11には、図示しな
い制御装置が付設され、この制御装置には上記ロードセ
ルの出力が入力され、制御装置においてこの検出値から
結晶析出量が算出され、さらに補償部材20を浸漬すべ
き深さが算出され、この値により上記昇降装置を適宜駆
動する指令信号が出力されるようになっている。
This compensating member 20 has a lower cylindrical portion 22 and an upper small-diameter gripping portion 23 that are integrally molded.
is connected to a lifting device (not shown) installed at the top of the protection tube 12. Further, this heating furnace 11 is equipped with a control device (not shown), into which the output of the load cell is input, the control device calculates the amount of crystal precipitation from this detected value, and furthermore, the compensation member 20 is immersed. The desired depth is calculated, and a command signal for appropriately driving the lifting device is output based on this value.

なお、坩堝14の底部には熱電対(図示路)が埋設され
ており、この検知値が一定になるように、結晶析出に伴
う溶融液りの減量に応じて誘導コイル13の供給する電
流を制御するようにしている。
A thermocouple (shown in the diagram) is embedded in the bottom of the crucible 14, and in order to keep the detected value constant, the current supplied by the induction coil 13 is adjusted according to the decrease in the amount of molten liquid due to crystal precipitation. I try to control it.

このように構成された装置により、シリコンの単結晶を
育成する方法について述べる。まず、育成すべき単結晶
の素材に対応して上記のような適宜の材質(シリコンの
場合は石英)の補償部材20を選択し、昇降装置に装着
する。そして、坩堝14内に原料であるシリコンの多結
晶片及び必要な場合にはドーパントを装入し、保護管1
2内部の気体の組成あるいは気圧を制御しつつ誘導コイ
ル13に通電して原料を融解する。このとき、磁界の一
部が発熱体17に作用し、発熱体17が昇温し、同時に
発熱体17からの輻射熱等により補償部材20が加熱さ
れて昇温する。この補償部材20の温度は、誘導コイル
13が発熱体17にかかる長さを変えることにより制御
することが可能で、この長さを原料の融解の間に補償部
材20が溶融液りとほぼ同じ温度に加熱されるような値
に予め設定しておく。第1図に示すように、融解が完了
すると、回転駆動機構が作動して支持台15が回転し、
昇降機構が作動してホルダ19が支持台15と逆方向に
回転しつつ下降し、種結晶Sの先端を溶融液りに浸漬さ
せた後、回転しつつ上昇する。
A method for growing silicon single crystals using the apparatus configured as described above will be described. First, a compensating member 20 made of an appropriate material (quartz in the case of silicon) as described above is selected in accordance with the material of the single crystal to be grown, and is attached to the lifting device. Then, a polycrystalline silicon piece as a raw material and a dopant if necessary are charged into the crucible 14, and the protective tube 1
2. While controlling the gas composition or atmospheric pressure inside 2, the induction coil 13 is energized to melt the raw material. At this time, a part of the magnetic field acts on the heating element 17, causing the heating element 17 to rise in temperature, and at the same time, the compensation member 20 is heated by radiant heat from the heating element 17, and the temperature rises. The temperature of this compensation member 20 can be controlled by changing the length that the induction coil 13 extends over the heating element 17, and the temperature of the compensation member 20 can be controlled by changing the length that the induction coil 13 extends over the heating element 17. Set the value in advance to a temperature that will cause the device to heat up. As shown in FIG. 1, when the melting is completed, the rotation drive mechanism is activated to rotate the support base 15.
The elevating mechanism operates, and the holder 19 descends while rotating in the opposite direction to the support base 15, and after immersing the tip of the seed crystal S in the molten liquid, rises while rotating.

これにより、種結晶Sの先端に単結晶Cが析出し、この
単結晶Cは上昇するに従い拡径して一定径の円柱状にな
る(第2図参照)。ホルダ19に取り付けられたロード
セルにおいては、種結晶Sの下端に掛かる荷重の変化が
検知されるが、この変化は析出した単結晶C自体の重さ
と、単結晶Cと溶融液面に作用する表面張力によるもの
である。この表面張力の変化量は単結晶Cの径に比例す
ると考えられ、引き上げの過程に沿って予め計算で求め
ることも、実験的に求めることもできるので、この値を
制御装置に入力しておく。制御装置においては、ロード
セルの検知値から上記の因子を差し引き、正味の結晶量
を算出し、さらに比重を勘案して補償部材20の浸漬長
さを算出し、これに基づいて補償部材20の昇降装置に
対して作動信号が出力される。これにより、補償部材2
0がその下端から溶融液りに適当長さだけ浸漬され、溶
融液りの減量分が補われ、液面が加熱炉11に対して常
に一定に”保たれる。誘導コイル13には、坩堝14の
底部に埋設した熱電対の検知値に基づいて高周波電流が
供給されるが、誘導コイル13による磁束の作用の仕方
などが変化せず、結晶析出点である液面の温度が常に一
定に保たれることになる。このときに、補償部材20が
予め溶融液りの温度に昇温されており、補償部材20と
溶融液し、あるいは補償部材20と液面上の雰囲気との
間の熱の移動がないので、浸漬による温度の変化が最小
限に止どめられている。また、誘導加熱であるので、補
償部材20と坩堝14との隙間の部分において溶融液り
が凝固したりするおそれはない。析出して肥大した単結
晶Cは、発熱体17及び補償部材20により徐々に冷却
され、引き上げられて取り出される。
As a result, a single crystal C is precipitated at the tip of the seed crystal S, and as it rises, the single crystal C expands in diameter to become a cylinder with a constant diameter (see FIG. 2). The load cell attached to the holder 19 detects changes in the load applied to the lower end of the seed crystal S, but this change is caused by the weight of the precipitated single crystal C itself and the surface acting on the single crystal C and the melt surface. This is due to tension. The amount of change in surface tension is thought to be proportional to the diameter of the single crystal C, and can be calculated in advance or determined experimentally along the pulling process, so enter this value into the control device. . In the control device, the above-mentioned factor is subtracted from the detected value of the load cell to calculate the net amount of crystals, and the immersion length of the compensation member 20 is calculated by taking the specific gravity into consideration.Based on this, the compensation member 20 is raised and lowered. An activation signal is output to the device. As a result, the compensation member 2
0 is immersed in the molten liquid for an appropriate length from its lower end, the loss of the molten liquid is compensated for, and the liquid level is always kept constant with respect to the heating furnace 11. A high-frequency current is supplied based on the detection value of a thermocouple buried in the bottom of the coil 14, but the way the magnetic flux acts by the induction coil 13 does not change, and the temperature of the liquid surface, which is the point of crystal precipitation, remains constant. At this time, the temperature of the compensating member 20 has been raised to the temperature of the molten liquid in advance, and the temperature between the compensating member 20 and the molten liquid or the atmosphere between the compensating member 20 and the atmosphere above the liquid level increases. Since there is no heat transfer, temperature changes due to immersion are kept to a minimum. Also, since induction heating is used, there is no possibility that the molten liquid will solidify in the gap between the compensating member 20 and the crucible 14. There is no risk that the precipitated and enlarged single crystal C is gradually cooled by the heating element 17 and the compensating member 20, and then pulled up and taken out.

なお、本発明の実施は上記の例に限定されるものでなく
、原料が非導電性、坩堝3が導電性である場合にも有効
である。また、液面を制御するための検知手段としては
、坩堝14の支持機構に重量計を組み込む方法、あるい
は、加熱炉11に取り付けたレベルセンサにより直接液
面レベルを検知し、フィードバック制御を行う方法など
がある。
Note that the implementation of the present invention is not limited to the above example, but is also effective when the raw material is non-conductive and the crucible 3 is conductive. Further, as a detection means for controlling the liquid level, a method of incorporating a weight scale into the support mechanism of the crucible 14, or a method of directly detecting the liquid level with a level sensor attached to the heating furnace 11 and performing feedback control. and so on.

さらに、補償部材20の材質として上記例において石英
でなく、プラチナのような貴金属を用いてもよく、その
場合には誘導コイル13による交番磁界により、この補
償部材20に誘導電流が流されるので独自の温度制御が
行えるという効果がある。また、坩堝3の液面相当位置
に熱電対を埋設して、この検知値に基づいて誘導コイル
13に供給する電流量を制御する方法を付加して、さら
に直接的に制御を行う方法も考えられる。
Furthermore, as the material of the compensation member 20, a noble metal such as platinum may be used instead of quartz in the above example, and in that case, an induced current is caused to flow through the compensation member 20 by the alternating magnetic field of the induction coil 13. This has the advantage of being able to control the temperature. We are also considering adding a method of embedding a thermocouple at a position corresponding to the liquid level of the crucible 3 and controlling the amount of current supplied to the induction coil 13 based on the detected value, to perform more direct control. It will be done.

[発明の効果] 以上詳述したように、この発明は、坩堝内の溶融液から
該溶融液中に浸漬した種結晶を引き上げることにより上
記種結晶の周囲にさらに単結晶を析出させる単結晶の育
成方法において、単結晶の引き上げ中に坩堝内の単結晶
成長固液界面の位置を常に一定に保つようにしたもので
あり、結晶の析出点である固液界面において溶融液の温
度を厳密に制御することができ、微細な組織まで均一な
高品位の単結晶の製造ができ、また、径の変化を小さく
抑えて歩留りを向上させるとともに、そのために複雑な
装置を必要とすることがないなどの優れた効果を奏する
ものである。
[Effects of the Invention] As detailed above, the present invention provides a method for producing a single crystal in which further single crystals are precipitated around the seed crystal by pulling up the seed crystal immersed in the melt from the melt in the crucible. In this growing method, the position of the solid-liquid interface for single crystal growth in the crucible is always kept constant during pulling of the single crystal, and the temperature of the molten liquid is strictly controlled at the solid-liquid interface, which is the point at which the crystal is precipitated. It is possible to manufacture high-quality single crystals with uniform microstructures, and it also suppresses changes in diameter to improve yields, and does not require complicated equipment. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の方法の一工程を示す断面
図、第2図は同実施例の他の工程を示す断面図、第3図
は従来例の方法の一工程を示す断面図、第4図は同従来
例の他の工程を示す断面図である。 14・・・・・・坩堝、20・・・・・・補償部材、し
・・・・・・溶融液、S・・・・・・種結晶、C・・・
・・・単結晶。
FIG. 1 is a sectional view showing one step of a method according to an embodiment of the present invention, FIG. 2 is a sectional view showing another step of the same embodiment, and FIG. 3 is a sectional view showing one step of a conventional method. 4 are sectional views showing other steps in the conventional example. 14... Crucible, 20... Compensation member, S... Melt, S... Seed crystal, C...
...Single crystal.

Claims (5)

【特許請求の範囲】[Claims] (1)坩堝内の溶融液から該溶融液中に浸漬した種結晶
を引き上げることにより上記種結晶の周囲にさらに単結
晶を析出させる単結晶の育成方法において、単結晶の引
き上げ中に坩堝内の単結晶成長固液界面の位置を常に一
定に保つようにしたことを特徴とする単結晶の育成方法
(1) In a method for growing a single crystal in which a seed crystal immersed in the melt is pulled up from a melt in a crucible to further precipitate a single crystal around the seed crystal, the Single crystal growth A method for growing a single crystal, characterized in that the position of the solid-liquid interface is always kept constant.
(2)坩堝内の単結晶固液界面を常に一定に保つための
手段が、上記溶融液に補償部材を浸漬させるものである
ことを特徴とする特許請求の範囲第1項記載の単結晶の
育成方法。
(2) The single crystal according to claim 1, wherein the means for keeping the solid-liquid interface of the single crystal constant in the crucible is immersing a compensating member in the melt. Cultivation method.
(3)析出単結晶の重量を測定し、この測定値に基づい
て上記補償部材の浸漬量を制御することを特徴とする特
許請求の範囲第2項記載の単結晶の育成方法。
(3) The method for growing a single crystal according to claim 2, characterized in that the weight of the precipitated single crystal is measured, and the amount of immersion of the compensating member is controlled based on the measured value.
(4)坩堝内の液面位置を検知する液面検知器を設け、
この液面検知器の検出値に基づいて単結晶成長固液界面
の位置をフィードバック制御することを特徴とする特許
請求の範囲第1項または第2項記載の単結晶の育成方法
(4) Provide a liquid level detector to detect the liquid level position in the crucible,
3. The method for growing a single crystal according to claim 1, wherein the position of the solid-liquid interface for single crystal growth is feedback-controlled based on the detected value of the liquid level detector.
(5)坩堝の単結晶成長固液界面相当位置に温度検知手
段を設け、この検知値に基づいて溶融液の加熱量を制御
することを特徴とする特許請求の範囲第1項記載の単結
晶の育成方法。
(5) A single crystal according to claim 1, characterized in that a temperature detection means is provided at a position corresponding to the solid-liquid interface for single crystal growth in the crucible, and the amount of heating of the melt is controlled based on the detected value. How to cultivate.
JP3692187A 1987-02-20 1987-02-20 Growing method of single crystal Pending JPS63206380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3692187A JPS63206380A (en) 1987-02-20 1987-02-20 Growing method of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3692187A JPS63206380A (en) 1987-02-20 1987-02-20 Growing method of single crystal

Publications (1)

Publication Number Publication Date
JPS63206380A true JPS63206380A (en) 1988-08-25

Family

ID=12483223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3692187A Pending JPS63206380A (en) 1987-02-20 1987-02-20 Growing method of single crystal

Country Status (1)

Country Link
JP (1) JPS63206380A (en)

Similar Documents

Publication Publication Date Title
JP3242292B2 (en) Method and apparatus for manufacturing polycrystalline semiconductor
JP3523986B2 (en) Method and apparatus for manufacturing polycrystalline semiconductor
JP3388664B2 (en) Method and apparatus for manufacturing polycrystalline semiconductor
JPH09286692A (en) Apparatus for producing semiconductor single crystal and production of semiconductor single crystal
EP1734157B1 (en) Production process of silicon single crystal
US9982365B2 (en) Method for producing SiC single crystal
JP3086850B2 (en) Method and apparatus for growing single crystal
JP2014125404A (en) Sapphire single crystal growth apparatus
JPH0971497A (en) Production of polycrystal semiconductor
CN116334744A (en) Crystal preparation method
KR101679071B1 (en) Melt Gap Controlling System, Method of Manufacturing Single Crystal including the Melt Gap Controlling System
JPS63206380A (en) Growing method of single crystal
US3360405A (en) Apparatus and method of producing semiconductor rods by pulling the same from a melt
JP3132412B2 (en) Single crystal pulling method
CN114855284A (en) Method for growing monocrystalline silicon
JPS63252993A (en) Growth of single crystal
JP3528888B2 (en) Apparatus and method for producing silicon single crystal
JPS61286296A (en) Process and device for growing semiconductor single crystal
JP4221797B2 (en) Melting method of polycrystalline silicon before silicon single crystal growth
JP3991400B2 (en) Single crystal growth method and apparatus
JPS61261288A (en) Apparatus for pulling up silicon single crystal
JP3900827B2 (en) Quartz crucible for single crystal pulling, single crystal pulling apparatus and single crystal pulling method
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPH07133187A (en) Method for growing semiconductor single crystal
KR102665191B1 (en) Single crystal growth device and single crystal growth method of using the same