JPS63206359A - Highly minute thermally hydrostatic sintering silicon nitride sintered body and manufacture - Google Patents

Highly minute thermally hydrostatic sintering silicon nitride sintered body and manufacture

Info

Publication number
JPS63206359A
JPS63206359A JP62035233A JP3523387A JPS63206359A JP S63206359 A JPS63206359 A JP S63206359A JP 62035233 A JP62035233 A JP 62035233A JP 3523387 A JP3523387 A JP 3523387A JP S63206359 A JPS63206359 A JP S63206359A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
manufacturing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62035233A
Other languages
Japanese (ja)
Other versions
JPH0649612B2 (en
Inventor
松久 忠彰
一精 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62035233A priority Critical patent/JPH0649612B2/en
Priority to US07/129,135 priority patent/US4820665A/en
Priority to EP87310958A priority patent/EP0272066B1/en
Priority to DE87310958T priority patent/DE3786765T2/en
Publication of JPS63206359A publication Critical patent/JPS63206359A/en
Priority to US07/469,727 priority patent/US5017531A/en
Publication of JPH0649612B2 publication Critical patent/JPH0649612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は軸受部材、耐摩耗部材あるいは摺動部材等に有
用な高硬度且つ高緻密な熱間静水圧焼結窒化珪素焼結体
およびその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high hardness and high density hot isostatic pressure sintered silicon nitride sintered body useful for bearing members, wear-resistant members, sliding members, etc. Regarding the manufacturing method.

[従来の技術] 従来、窒化珪素焼結体は次のように製造している。[Conventional technology] Conventionally, silicon nitride sintered bodies have been manufactured as follows.

まず窒化珪素原料と焼結助剤を混合し、粉砕した後、粉
砕時に用いる玉石の破片等の異物除去のため、通常44
ILmの篩を通している。次に、篩通し後の原料混合物
を造粒した後、ねかし或いは水分添加により原料混合物
中の水分量をコントロールして更に篩を通した後、金型
プレス又は冷間静水圧プレスにて成形し所定温度で焼成
することにより焼結体を得ている。
First, the silicon nitride raw material and the sintering aid are mixed, and after pulverizing, the process is usually carried out at
Passed through the sieve of ILm. Next, after granulating the raw material mixture after passing through a sieve, the amount of water in the raw material mixture is controlled by aging or adding water, and after further passing through a sieve, it is molded using a die press or cold isostatic press. A sintered body is obtained by firing at a predetermined temperature.

[発明が解決しようとする問題点] しかしながら、上記した従来の窒化珪素焼結体の製造方
法にあっては、粉砕後の粗大粒子及び原料中に含まれる
異物の排除や造粒粉体中の水分の均一化を積極的には実
施していないため、粗大粒子及び原料中に含まれる異物
の混入や造粒粉体中の水分量のバラツキが生じるという
場合があった。その結果、粗大粒子及び原料中に含まれ
る異物の混入や水分量のバラツキによる不均一な粒子崩
壊により成形体中に気孔が生じて、それが焼結後に残留
し、緻密で高硬度な窒化珪素焼結体を得ることができな
いという欠点があった。
[Problems to be Solved by the Invention] However, in the above-described conventional method for producing a silicon nitride sintered body, it is difficult to remove coarse particles and foreign substances contained in the raw material after pulverization, and to remove foreign substances contained in the granulated powder. Since the water content was not actively made uniform, there were cases where coarse particles and foreign matter contained in the raw materials were mixed in, and the amount of water in the granulated powder varied. As a result, pores are generated in the compact due to uneven particle collapse due to the contamination of coarse particles and foreign substances contained in the raw materials and variations in moisture content, and these pores remain after sintering, resulting in dense and highly hard silicon nitride. There was a drawback that a sintered body could not be obtained.

とりわけ、軸受部材、耐摩耗部材あるいは摺動部材に適
用する場合には、それらの寿命に対して気孔や硬度の値
が大きく影響するため、従来よりも長寿命のものを得る
には気孔径や面積率が小さく、高硬度なものを製造する
必要があった。中でも、軸受材料として使用する場合に
は、材料の転がり疲れ寿命を把握することが重要である
ことか知られており、転がり疲れ寿命向上のため緻密で
高硬度な材料を開発する必要があった。
In particular, when applied to bearing members, wear-resistant members, or sliding members, the pore size and hardness have a large effect on their lifespan, so in order to obtain a longer life than before, the pore diameter and It was necessary to manufacture a product with a small area ratio and high hardness. In particular, it is known that it is important to understand the rolling fatigue life of a material when used as a bearing material, and it was necessary to develop a dense and highly hard material to improve rolling fatigue life. .

[問題点を解決するための手段] 従って本発明の目的は、上記従来の欠点を解消した、緻
密で且つ高硬度な窒化珪素焼結体とその製造方法を提供
することである。そしてその目的は、本発明によれば、
最大気孔径が10 JLm以下、面積率が0.3%以下
であることを特徴とする高緻密熱間静水圧焼結窒化珪素
焼結体、および、窒化珪素原料と焼結助剤を混合、粉砕
、造粒後成形し、次いで該成形体を焼成することにより
窒化珪素焼結体を製造する方法において、好ましくは原
料粉砕後従来より目開きの小さな篩により篩通しをし、
造粒後の粉体を一旦強制的に乾燥した後成形し、次いで
、得られた成形体に予備処理を施し、窒素雰囲気下で熱
間静水圧プレス処理を行うことを特徴とする高緻密熱間
静水圧焼結窒化珪素焼結体の製造方法、により達成され
る。
[Means for Solving the Problems] Accordingly, an object of the present invention is to provide a dense and highly hard silicon nitride sintered body that eliminates the above-mentioned conventional drawbacks, and a method for manufacturing the same. And the purpose is, according to the invention:
A highly dense hot isostatic pressure sintered silicon nitride sintered body characterized by a maximum pore diameter of 10 JLm or less and an area ratio of 0.3% or less, and a mixture of a silicon nitride raw material and a sintering aid, In a method for manufacturing a silicon nitride sintered body by pulverizing, granulating, molding, and then firing the molded body, preferably, after pulverizing the raw material, the raw material is sieved through a sieve with a smaller opening than conventionally,
High-density thermal processing is characterized in that the powder after granulation is once forcibly dried and then molded, and then the obtained molded product is pretreated and subjected to hot isostatic pressing treatment in a nitrogen atmosphere. This is achieved by a method for producing an isostatically sintered silicon nitride sintered body.

本発明における最大気孔径および面積率は、焼結体の表
面を鏡面研磨し、光学顕微鏡を用い、400倍の倍率で
測定した。気孔径はその気孔の最大長さを測定して気孔
径とし、さらに最大気孔径は気孔数を1000個測定し
、その中の最大径を最大気孔径とした。また、面積率は
測定した1000個の気孔の面積を実測することにより
、全気孔面積を求め、その全気孔面積を測定に要した全
視野面積で除した値である。
The maximum pore diameter and area ratio in the present invention were measured by mirror polishing the surface of the sintered body and using an optical microscope at a magnification of 400 times. The pore diameter was determined by measuring the maximum length of the pores, and the maximum pore diameter was determined by measuring the number of 1000 pores, and the maximum diameter among them was determined as the maximum pore diameter. Moreover, the area ratio is a value obtained by calculating the total pore area by actually measuring the area of 1000 measured pores, and dividing the total pore area by the total visual field area required for measurement.

本発明に係る高緻密熱間静水圧焼結窒化珪素焼結体にお
いては、その最大気孔径が104m以下、好ましくは6
Bm以下、更に好ましくは4pm以下である。最大気孔
径が10 p−mを超えると、軸受材料の評価法の一つ
である転がり疲れ寿命が低下し好ましくない。
In the highly dense hot isostatically sintered silicon nitride sintered body according to the present invention, the maximum pore diameter is 104 m or less, preferably 6 m.
Bm or less, more preferably 4 pm or less. If the maximum pore diameter exceeds 10 pm, rolling fatigue life, which is one of the evaluation methods for bearing materials, decreases, which is undesirable.

また、面積率(気孔率)は0.3%以下、好ましくは0
.2%以下、更に好ましくは0.1%以下である0面積
率(気孔率)が0.3%を超えると、転がり疲れ寿命が
低下し好ましくない。
In addition, the area ratio (porosity) is 0.3% or less, preferably 0.
.. When the zero area ratio (porosity), which is 2% or less, more preferably 0.1% or less, exceeds 0.3%, the rolling fatigue life decreases, which is not preferable.

最大気孔径が10#Lm以下、面積率が0.3%以下で
ないと転がり疲れ寿命が低下するのは、これより気孔径
あるいは面積率が大きくなると素地の不均質性が増大し
、転がり疲労試験による破壊が起こりやすくなるためで
ある。このような素地は軸受材料として必要な寿命や特
性を満足せず、好ましくない。
Rolling fatigue life will decrease unless the maximum pore diameter is 10 #Lm or less and the area ratio is 0.3% or less.If the pore diameter or area ratio is larger than this, the heterogeneity of the substrate increases, and rolling fatigue test This is because damage caused by Such a substrate does not satisfy the lifespan and characteristics required as a bearing material, and is therefore undesirable.

さらに本発明の高緻密熱間静水圧焼結窒化珪素焼結体で
は、そのヌープ硬度が15.5Gpa以上であることが
、転がり疲れ寿命および耐摩耗性が向上することから好
ましく、16.0Gpa以上であることが特に好ましい
Further, in the highly dense hot isostatically sintered silicon nitride sintered body of the present invention, it is preferable that the Knoop hardness is 15.5 Gpa or more, since rolling fatigue life and wear resistance are improved, and 16.0 Gpa or more. It is particularly preferable that

以上のような特性を有する高緻密熱間静水圧焼結窒化珪
素焼結体は、好ましくは原料粉砕後、造粒前に32μm
以下の篩通しをし、次に造粒後の粉体な一旦強制的に乾
燥した後必要に応じて水分を添加し篩通しをした後成形
し、次いで、得られた成形体に予備処理を施し、窒素雰
囲気下に熱間静水圧プレス処理を行うことにより製造す
ることができる。すなわち、本発明の高緻密熱間静水圧
焼結窒化珪素焼結体の製造方法において特に重要なポイ
ントは、造粒粉体の強制乾燥である。この強制乾燥を行
なわない場合、後続の成形工程において、成形圧力によ
る造粒粉体の均質な崩壊が起こらないため、均質で気孔
の少ない成形体が得られず、そのため熱間静水圧プレス
処理(HIP)後も粗大な気孔が残留し、面積率(気孔
率)の小さな焼成体が得られない。
The highly dense hot isostatically sintered silicon nitride sintered body having the above-mentioned properties is preferably prepared with a grain size of 32 μm after pulverizing the raw material and before granulating it.
The granulated powder is passed through a sieve as described below, and then the granulated powder is once forcibly dried. Moisture is added as needed, passed through a sieve, and then shaped. It can be manufactured by applying hot isostatic pressing under a nitrogen atmosphere. That is, a particularly important point in the method for producing a highly dense hot isostatically sintered silicon nitride sintered body of the present invention is forced drying of the granulated powder. If this forced drying is not performed, the granulated powder will not collapse homogeneously due to the molding pressure in the subsequent molding process, and a homogeneous molded product with few pores will not be obtained. Coarse pores remain even after HIP), making it impossible to obtain a fired body with a small area ratio (porosity).

また、造粒粉体を強制乾燥した後、必要に応じて水分を
添加しさらに篩通しすることは、造粒粉体間に水分量の
差がなくなりより均一な造粒粉体を得ることができるこ
とから好ましい。
In addition, after force drying the granulated powder, adding moisture as necessary and passing it through a sieve eliminates the difference in moisture content between the granulated powders, resulting in a more uniform granulated powder. This is preferable because it can be done.

さらに、粉砕後の原料な造粒前に32pm以下の篩に通
すと好ましいのは、これ以上の大きさの目開きの篩を使
用すると粉砕後の粗大粒子及び原材料中に含まれる異物
を有効に排除できず、造粒粉体の均一性を保持すること
が難しいためである。
Furthermore, it is preferable to pass the raw material after pulverization through a sieve of 32 pm or less before granulation, but if you use a sieve with a larger opening than this, coarse particles and foreign substances contained in the raw material after pulverization will be effectively removed. This is because it cannot be eliminated and it is difficult to maintain the uniformity of the granulated powder.

また、本発明では前記の強制乾燥後に成形を行ない、次
いで予備処理さらに熱間静水圧プレス処理を行なうが、
このうち予備処理工程は、成形体を一次的に焼成する工
程(−次焼結工程)あるいは、成形体をカプセルに封入
する工程(カプセル処理工程)の2通りに分けることが
できる。予備処理工程のうち、−次焼結工程においては
、成形体を、好ましくは常圧の窒素雰囲気下、1400
〜1600℃で一次的に焼成する。焼成温度が1400
°Cより低いと焼成後も開気孔が消失せず、熱間静水圧
プレス処理後にも緻密な焼結体が得られない。また、焼
成温度が1600℃より高いと、窒化珪素の分解反応が
進行し、熱間静水圧プレス処理後にも緻密で高硬度な焼
結体が得られなくなる。
Further, in the present invention, molding is performed after the above-mentioned forced drying, and then preliminary treatment and hot isostatic pressing treatment are performed.
Among these, the pretreatment process can be divided into two types: a process of primarily firing the molded body (secondary sintering process), and a process of encapsulating the molded body in a capsule (capsule treatment process). In the second sintering step of the pre-treatment step, the compact is heated at 1400° C., preferably under a nitrogen atmosphere at normal pressure.
Primarily fired at ~1600°C. Firing temperature is 1400
If the temperature is lower than °C, open pores will not disappear even after firing, and a dense sintered body will not be obtained even after hot isostatic pressing. Furthermore, if the firing temperature is higher than 1600° C., the decomposition reaction of silicon nitride will proceed, making it impossible to obtain a dense and highly hard sintered body even after hot isostatic pressing.

一方、カプセル処理工程においては、成形体を、好まし
くはSiO□を主成分とするガラス中に、真空脱気した
後封入する。カプセルとしてガラスが好ましいのは、熱
間静水圧プレス時のカプセルとしての変形能力および密
封性に優れているためである。
On the other hand, in the encapsulation process, the molded body is preferably vacuum degassed and then encapsulated in glass containing SiO□ as a main component. Glass is preferable as a capsule because it has excellent deformability and sealability as a capsule during hot isostatic pressing.

これらの予備処理を施した後、熱間静水圧プレス処理を
、好ましくは200〜1500気圧の窒素雰囲気下、1
500〜1900℃で行なう。
After performing these preliminary treatments, hot isostatic pressing treatment is preferably performed for 1 hour under a nitrogen atmosphere of 200 to 1500 atm.
It is carried out at 500-1900°C.

以上のような造粒粉体の強制乾燥工程と、それにより得
られる成形体の予備処理工程および熱間静水圧プレス処
理工程を組合わせ、さらに好ましぐは、原料粉砕後の篩
通し工程を施すことによって、本発明のような特性を有
する高緻密熱間静水圧焼結窒化珪素焼結体を製造するこ
とができたのである。
The forced drying process of the granulated powder as described above is combined with the pretreatment process and hot isostatic pressing process of the molded body obtained thereby, and more preferably, the sieving process after pulverizing the raw material is combined. By applying this method, it was possible to produce a highly dense hot isostatic pressure sintered silicon nitride sintered body having the characteristics of the present invention.

なお、本発明に用いる焼結助剤としては特にその種類を
限定されるものではなく、一般に知られている焼結助剤
を用いることができる。
The type of sintering aid used in the present invention is not particularly limited, and generally known sintering aids can be used.

[実施例] 以下、本発明を実施例に基き詳細に説明するが、本発明
はこれも実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited to the Examples either.

図面は本発明の高緻密熱間静水圧焼結窒化珪素焼結体の
製造方法の一実施例を示すフローチャートである。なお
、図面に示すように各工程をステップlからステップ9
で表わした。
The drawing is a flowchart showing an embodiment of the method for manufacturing a highly dense hot isostatically sintered silicon nitride sintered body of the present invention. In addition, each process is performed from step 1 to step 9 as shown in the drawing.
It was expressed as

まず、窒化珪素原料と焼結助剤を混合し、粉砕した(ス
テップ1)後、好ましくは粉砕時に用いる玉石の破片等
の異物および粗大粒子除去のため、好ましくは32μm
以下の篩通しをして粒子の平均粒径がlJLm以下の原
料を得る(ステップ2)。
First, a silicon nitride raw material and a sintering aid are mixed and pulverized (step 1), and then the particle size is preferably 32 μm in order to remove foreign substances and coarse particles such as fragments of cobblestone used during pulverization.
The material is passed through the following sieve to obtain a raw material having an average particle size of 1JLm or less (Step 2).

次いで造粒(ステップ3)後、その造粒粉体を好ましく
は60〜100°Cの温度で強制乾燥して造粒粉体の水
分量の差を少なくし均質な造粒粉体とする(ステップ4
)。次に、必要に応じて0.5〜5.0重量%の水分な
造粒粉体に加え(ステップ5)水分量の均一な造粒粉体
を得た後、さらに篩通しをして水分添加により凝集した
粗大粒子を除去する(ステップ6)。得られた造粒粉体
を通常の方法で成形(ステ・ンブ7)後、該成形体に予
備処理を施しくステップ8)、次いで熱間静水圧プレス
処理により焼成する(ステップ9)ことにより本発明の
高m″IE熱間静水圧焼結窒化珪素焼結体を製造するこ
とができる。
Next, after granulation (step 3), the granulated powder is forcedly dried preferably at a temperature of 60 to 100°C to reduce the difference in moisture content of the granulated powder and make it a homogeneous granulated powder ( Step 4
). Next, if necessary, add 0.5 to 5.0% by weight of moisture to the granulated powder (Step 5) to obtain a granulated powder with a uniform moisture content, and then pass through a sieve to remove moisture. Coarse particles aggregated by the addition are removed (step 6). After molding the obtained granulated powder in a conventional manner (Step 7), the molded body is subjected to pretreatment (Step 8), and then fired by hot isostatic pressing (Step 9). A high m'' IE hot isostatically sintered silicon nitride sintered body of the present invention can be produced.

以下、さらに具体的な実施例を説明する。More specific examples will be described below.

(実施例1) 平均粒径0.5pmのα型窒化珪素粉末に焼結助剤とし
てM g O,Z r 02 、Yz 03の各粉末を
それぞれ4重量%、2重量%、7重量%の割合で混合し
、それに水分60%を加え、バッチ式粉砕機により混合
粉砕した後、目開き20pmの篩通しをして、平均粒子
径0.7pmのスラリーを得た。このスラリーにポリビ
ニルアルコール(PVA)2重量%を添加し、噴霧乾燥
器を用いて造粒粉体とした。
(Example 1) 4% by weight, 2% by weight, and 7% by weight of MgO, Zr02, and Yz03 powders were added as sintering aids to α-type silicon nitride powder with an average particle size of 0.5 pm. 60% water was added thereto, mixed and pulverized using a batch type pulverizer, and then passed through a sieve with an opening of 20 pm to obtain a slurry with an average particle size of 0.7 pm. 2% by weight of polyvinyl alcohol (PVA) was added to this slurry, and a granulated powder was prepared using a spray dryer.

さらに、恒温乾燥器を用い、第1表の強制乾燥温度に示
す温度で24時間造粒粉体を乾燥および必、要に応じて
水分添加を実施した後、第1表の水分添加後の篩目開き
に示すごとく、JIS  標準篩を用いて篩分けをし、
試料番号1〜9の造粒粉体を得た。この造粒粉体を5ト
ン/ c m ”の圧力で冷間静水圧プレス成形するこ
とにより、65mm(φ)x50mm(長さ)の成形体
を作製した。
Furthermore, after drying the granulated powder for 24 hours at the temperature shown in the forced drying temperature in Table 1 using a constant temperature dryer and adding moisture as necessary, As shown in the mesh size, sieve using a JIS standard sieve,
Granulated powders of sample numbers 1 to 9 were obtained. This granulated powder was subjected to cold isostatic press molding at a pressure of 5 tons/cm'' to produce a molded body of 65 mm (φ) x 50 mm (length).

その後、温度500°Cで3時間脱脂した後、窒素(N
2)雰囲気下、温度1460℃で6時間常圧焼結を行な
った(−次焼結工程)。次いで、この−次焼結体を、N
2雰囲気下、圧力400atm、温度1700℃で熱間
静水圧プレス(HIP)処理することにより、本発明の
焼結体を得た(試料番号1〜9)。また、これとは別に
、本発明の比較例として第1表に示す強制乾燥を実施し
ない製造条件により作製した焼結体(試料番号lO〜1
2)を作製した。
After that, after degreasing at a temperature of 500°C for 3 hours, nitrogen (N
2) Normal pressure sintering was performed in an atmosphere at a temperature of 1460° C. for 6 hours (-next sintering step). Next, this -order sintered body was heated with N
The sintered bodies of the present invention were obtained by hot isostatic pressing (HIP) treatment under 2 atmospheres at a pressure of 400 atm and a temperature of 1700°C (sample numbers 1 to 9). Separately, as a comparative example of the present invention, sintered bodies (sample numbers 10 to 1
2) was produced.

得られた焼結体試料の特性を第1表に示す。Table 1 shows the properties of the obtained sintered body sample.

転がり疲れ寿命は、焼結体試料より50mm(φ)xl
omm(厚さ)の円板を切り出して鏡面研磨した後、6
球式スラスト型軸受試験機によりヘルツ応力500kg
/mm”にて転がり疲労試験を実施して評価した。
The rolling fatigue life is 50mm (φ)xl from the sintered sample.
After cutting out a disk of 0mm (thickness) and polishing it to a mirror surface, 6
Hertzian stress of 500 kg using ball thrust type bearing testing machine
A rolling fatigue test was conducted and evaluated at 1/mm''.

第1表から明らかなように、本発明の強制乾燥後、必要
に応じて水分を添加し、さらに篩通しを実施した調整原
料を用いたHIP焼結体は、比較例に比べて極めて気孔
が少なく、機械的特性の優れた焼結体であることが判明
した。
As is clear from Table 1, the HIP sintered body using the prepared raw material of the present invention, which was subjected to forced drying, water was added as necessary, and passed through a sieve, had significantly fewer pores than the comparative example. It was found that the sintered body has excellent mechanical properties.

(以下、余白) (実施例2) 粉砕後の篩通しおよび粉砕後の平均粒子径の影響を調べ
るため、焼結助剤の種類及び添加量を第2表のように変
えたほかは実施例1と同様の方法で造粒粉体を80°C
で24時間強制乾燥した後、4重量%の水分添加を行な
い、さらに目開き149gmの篩を通過させ、試料番号
13〜17の造粒粉体を得た。
(Hereinafter, blank space) (Example 2) In order to investigate the influence of sieving after crushing and the average particle size after crushing, the type and amount of the sintering aid were changed as shown in Table 2. The granulated powder was heated to 80°C in the same manner as in 1.
After forced drying for 24 hours, 4% by weight of water was added, and the mixture was passed through a sieve with a mesh size of 149 gm to obtain granulated powders of sample numbers 13 to 17.

この造粒粉体を実施例1と同様に成形・脱脂をした後、
シリカガラス製カプセルに真空封入した。次いで、この
カプセルなHIP装置内に装入し、圧力1500atm
、温度1600℃でHIP処理を行ない、試料番号13
〜17の窒化珪素焼結体を得た。
After molding and degreasing this granulated powder in the same manner as in Example 1,
It was vacuum sealed in a silica glass capsule. Next, the capsule is loaded into the HIP device and the pressure is 1500 atm.
, HIP treatment was performed at a temperature of 1600°C, and sample number 13
~17 silicon nitride sintered bodies were obtained.

耐摩耗試験に8いては、試料No、13〜17の焼結体
を15mm(φ)x15mm(長さ)の円柱状に切り出
し、#140のダイヤモンド砥石を用いて研磨した後、
ボールミルを用いて耐摩耗試験を行なった。試験条件と
して、容器は内径120mm(φ)のアルミナ製を用い
、120rpmで回転させた。
For the wear resistance test, the sintered bodies of samples No. 13 to 17 were cut into a cylindrical shape of 15 mm (φ) x 15 mm (length), and polished using a #140 diamond grindstone.
A wear resistance test was conducted using a ball mill. As test conditions, the container was made of alumina and had an inner diameter of 120 mm (φ), and was rotated at 120 rpm.

また、スリラー液は#100の炭化珪素粉末と水を重量
比でl=1に配合し、容器の半分になるまで加えた。そ
の中に前記において作製した15mm(φ)x15mm
(長さ)の焼結体を5個加え、24時間耐摩耗試験を行
なった。
Further, the thriller liquid was prepared by blending #100 silicon carbide powder and water at a weight ratio of 1 = 1, and added the mixture until it filled half of the container. Inside it, the 15mm (φ) x 15mm prepared above
Five sintered bodies of (length) were added and a 24-hour wear resistance test was conducted.

摩耗量は試験前後の重量及び寸法により求めた。結果を
第2表に示す。
The amount of wear was determined from the weight and dimensions before and after the test. The results are shown in Table 2.

第2表から、本発明品の中でも、粉砕後32ルm以下の
篩を通したもの、粉砕後の平均粒子径がlpm以下のも
のがより好ましいことが判明した。
From Table 2, it was found that among the products of the present invention, those that passed through a sieve of 32 lm or less after pulverization and those with an average particle size of 1pm or less after pulverization were more preferable.

(以下、余白) [発明の効果] 以上説明したように、本発明によれば、造粒粉体の強制
乾燥およびそれに引続く予備処理、HIP処理を組合わ
せ、さらに好ましくは原料粉砕後の篩通しを施すことに
よって、最大気孔径および面積率が小さく高硬度な窒化
珪素焼結体を得ることができる。従って、本発明の窒化
珪素焼結体は軸受部材のほか耐摩耗部材、摺動部材等と
して極めて有効に用いることができる。
(Hereinafter, blank space) [Effects of the Invention] As explained above, according to the present invention, forced drying of granulated powder, subsequent preliminary treatment, and HIP treatment are combined, and more preferably, sieving after pulverizing the raw material is performed. By passing through, a silicon nitride sintered body having a small maximum pore diameter and a small area ratio and high hardness can be obtained. Therefore, the silicon nitride sintered body of the present invention can be extremely effectively used as a wear-resistant member, a sliding member, etc. in addition to bearing members.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の製造方法の一実施例を示すフローチャー
トである。
The drawing is a flowchart showing an embodiment of the manufacturing method of the present invention.

Claims (9)

【特許請求の範囲】[Claims] (1)最大気孔径が10μm以下、面積率が0.3%以
下であることを特徴とする高緻密熱間静水圧焼結窒化珪
素焼結体。
(1) A highly dense hot isostatically sintered silicon nitride sintered body characterized by having a maximum pore diameter of 10 μm or less and an area ratio of 0.3% or less.
(2)ヌープ硬度が15.5Gpa以上である特許請求
の範囲第1項記載の窒化珪素焼結体。
(2) The silicon nitride sintered body according to claim 1, which has a Knoop hardness of 15.5 Gpa or more.
(3)該高緻密熱間静水圧焼結窒化珪素焼結体が軸受部
材、耐摩耗部材または摺動部材として用いられる特許請
求の範囲第1項又は第2項記載の高緻密熱間静水圧焼結
窒化珪素焼結体。
(3) The high-density hot isostatic pressure sintered silicon nitride sintered body according to claim 1 or 2, wherein the high-density hot isostatic sintered silicon nitride sintered body is used as a bearing member, a wear-resistant member, or a sliding member. Sintered silicon nitride sintered body.
(4)窒化珪素原料と焼結助剤を混合、粉砕、造粒後成
形し、次いで該成形体を焼成することにより窒化珪素焼
結体を製造する方法において、造粒後の粉体を一旦強制
的に乾燥した後成形し、次いで、得られた成形体に予備
処理を施し、窒素雰囲気下で熱間静水圧プレス処理を行
うことを特徴とする高緻密熱間静水圧焼結窒化珪素焼結
体の製造方法。
(4) In a method of manufacturing a silicon nitride sintered body by mixing, pulverizing, granulating and molding a silicon nitride raw material and a sintering aid, and then firing the molded body, the powder after granulation is High-density hot isostatic sintered silicon nitride sintered material, characterized in that it is forcibly dried and then molded, and then the obtained molded body is pretreated and hot isostatically pressed in a nitrogen atmosphere. Method for producing solids.
(5)造粒後の粉体を一旦強制的に乾燥した後、必要に
応じて水分を添加し、該粉体を篩通しすることにより、
所定の水分量を有する均一な造粒粉体とする特許請求の
範囲第4項記載の製造方法。
(5) Once the granulated powder is forcibly dried, water is added as necessary and the powder is passed through a sieve.
The manufacturing method according to claim 4, wherein a uniform granulated powder having a predetermined moisture content is obtained.
(6)粉砕後の原料を造粒前に32μm以下の篩を通過
させる特許請求の範囲第4項記載の製造方法。
(6) The manufacturing method according to claim 4, wherein the pulverized raw material is passed through a sieve of 32 μm or less before granulation.
(7)粉砕後の平均粒子径が1μm以下である特許請求
の範囲第4項記載の製造方法。
(7) The manufacturing method according to claim 4, wherein the average particle diameter after pulverization is 1 μm or less.
(8)予備処理が、窒素雰囲気下、1400〜1600
℃で一次的に焼成するものである特許請求の範囲第4項
記載の製造方法。
(8) Pre-treatment under nitrogen atmosphere, 1400-1600
5. The manufacturing method according to claim 4, wherein the manufacturing method is primarily fired at .degree.
(9)予備処理が成形体をカプセルに封入するものであ
る特許請求の範囲第4項記載の製造方法。
(9) The manufacturing method according to claim 4, wherein the pretreatment includes encapsulating the molded body in a capsule.
JP62035233A 1986-12-16 1987-02-18 Highly dense hot isostatically sintered silicon nitride sintered body and method for producing the same Expired - Lifetime JPH0649612B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62035233A JPH0649612B2 (en) 1987-02-18 1987-02-18 Highly dense hot isostatically sintered silicon nitride sintered body and method for producing the same
US07/129,135 US4820665A (en) 1986-12-16 1987-12-07 Ceramic sintered bodies and a process for manufacturing the same
EP87310958A EP0272066B1 (en) 1986-12-16 1987-12-14 Ceramic sintered bodies and a process for manufacturing the same
DE87310958T DE3786765T2 (en) 1986-12-16 1987-12-14 Sintered ceramic moldings and process for their production.
US07/469,727 US5017531A (en) 1986-12-16 1990-01-24 Silicon nitride ceramic sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035233A JPH0649612B2 (en) 1987-02-18 1987-02-18 Highly dense hot isostatically sintered silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63206359A true JPS63206359A (en) 1988-08-25
JPH0649612B2 JPH0649612B2 (en) 1994-06-29

Family

ID=12436122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035233A Expired - Lifetime JPH0649612B2 (en) 1986-12-16 1987-02-18 Highly dense hot isostatically sintered silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0649612B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020023A1 (en) * 1992-03-31 1993-10-14 Sumitomo Electric Industries, Ltd. Sliding member and production thereof
JP2006256955A (en) * 2006-03-16 2006-09-28 Toshiba Corp Instrument having wear-resistant member
JP2017030988A (en) * 2015-07-29 2017-02-09 京セラ株式会社 Silicon nitride ceramic and impact wear resistant member using the same
WO2023171510A1 (en) * 2022-03-10 2023-09-14 デンカ株式会社 Ceramic sintered body, method for manufacturing same, and sintering aid powder
WO2023171511A1 (en) * 2022-03-10 2023-09-14 デンカ株式会社 Sintered ceramic object, production method therefor, and sintering-aid powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107914A (en) * 1978-02-10 1979-08-24 Tokyo Shibaura Electric Co Production of high density silicon nitride base sintered body
JPS57106574A (en) * 1980-12-19 1982-07-02 Kobe Steel Ltd Method of sintering silicon nitride
JPS59203761A (en) * 1983-05-07 1984-11-17 住友電気工業株式会社 Treatment of non-oxide ceramics powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107914A (en) * 1978-02-10 1979-08-24 Tokyo Shibaura Electric Co Production of high density silicon nitride base sintered body
JPS57106574A (en) * 1980-12-19 1982-07-02 Kobe Steel Ltd Method of sintering silicon nitride
JPS59203761A (en) * 1983-05-07 1984-11-17 住友電気工業株式会社 Treatment of non-oxide ceramics powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020023A1 (en) * 1992-03-31 1993-10-14 Sumitomo Electric Industries, Ltd. Sliding member and production thereof
JP2006256955A (en) * 2006-03-16 2006-09-28 Toshiba Corp Instrument having wear-resistant member
JP4551878B2 (en) * 2006-03-16 2010-09-29 株式会社東芝 diesel engine
JP2017030988A (en) * 2015-07-29 2017-02-09 京セラ株式会社 Silicon nitride ceramic and impact wear resistant member using the same
WO2023171510A1 (en) * 2022-03-10 2023-09-14 デンカ株式会社 Ceramic sintered body, method for manufacturing same, and sintering aid powder
WO2023171511A1 (en) * 2022-03-10 2023-09-14 デンカ株式会社 Sintered ceramic object, production method therefor, and sintering-aid powder
JP7401718B1 (en) * 2022-03-10 2023-12-19 デンカ株式会社 Silicon nitride sintered body and sintering aid powder

Also Published As

Publication number Publication date
JPH0649612B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
EP0272066B1 (en) Ceramic sintered bodies and a process for manufacturing the same
US2248990A (en) Process of making porous abrasive bodies
JP2512061B2 (en) Homogeneous silicon nitride sintered body and method for producing the same
US5015608A (en) High hardness silicon nitride sintered bodies
JPS6334075A (en) Precision polishing tool for material to be worked consisting of metal, glass, ceramics, etc.
JPS63206359A (en) Highly minute thermally hydrostatic sintering silicon nitride sintered body and manufacture
KR20050086600A (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
Martin et al. Effect of particle size distribution upon specific surface area and ultrasonic velocity in sintered ceramic powders
Hotta et al. Origin of the strength change of silicon nitride ceramics with the alteration of spray drying conditions
CN100430340C (en) Tool insertion device and its manufacturing method
JPS60151205A (en) Improved graphite for nuclear power and manufacture
JPH1095671A (en) Dense sintered compact, its production and substrate composed of the sintered compact for producing hard disk memory
IL44318A (en) Alumina carbide ceramic material
JPS63242970A (en) Manufacture of silicon nitride sintered body
JPS63151680A (en) High-strength normal pressure-sintering silicon nitride sintered body and manufacture
JPS63170254A (en) Manufacture of ceramics
JP3380703B2 (en) Manufacturing method of ceramic ball
Norfauzi et al. Effect Of Pressure On Density, Porosity And Flexural Strength During Cold Isostatic Press Of Alumina-Ysz-Chromia Cutting Tool
JPH01141875A (en) Homogeneous silicon nitride sintered body and its manufacture
JPS63101519A (en) Rolling body made of ceramics
CA1052984A (en) Metal oxide power densification process
KR0137676B1 (en) Process for preparing sintered cubic boron
CN115452529A (en) Batch preparation method of hematite iron isotope composition standard sample and application of hematite iron isotope composition standard sample
JPH08300326A (en) Molding method for ceramic material
JPS633944B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term