JPS63206200A - Exciting control device of synchronous generator - Google Patents

Exciting control device of synchronous generator

Info

Publication number
JPS63206200A
JPS63206200A JP62035618A JP3561887A JPS63206200A JP S63206200 A JPS63206200 A JP S63206200A JP 62035618 A JP62035618 A JP 62035618A JP 3561887 A JP3561887 A JP 3561887A JP S63206200 A JPS63206200 A JP S63206200A
Authority
JP
Japan
Prior art keywords
field
voltage
synchronization
field current
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62035618A
Other languages
Japanese (ja)
Inventor
Yoshinori Kudo
工藤 義徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62035618A priority Critical patent/JPS63206200A/en
Publication of JPS63206200A publication Critical patent/JPS63206200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To perform the excitation smoothly during a speed increase from the finish of synchronization at a half speed to a rated speed, by controlling a field voltage set point by the output from a field current control circuit after the finish of synchronization in the neighbourhood of a half speed of the first and second synchronous generators. CONSTITUTION:In a biaxial synchronization of a primary machine 1P and a secondary machine 1S, a field circuit breaker 41 and an electromagnetic contactor 31 are closed to give initial excitation to generators. On this occasion, thyristors 2P and 2S are gate-blocked. When the biaxial synchronization is finished, the gate block is cancelled. Thus, the deviation between the field current obtained through an instrument current transformer 12 and a field current setter 6 is inputted into an interrupter 8, with the output of which a voltage setter 4 is operated. By the deviation between the set point set by the voltage setter 4 and the filed voltage obtained through an insulating converter 3, the gate of a thyristor 2 is controlled.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半速同期を行うクロスコンパウンド同期発電機
の励磁制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an excitation control device for a cross compound synchronous generator that performs half-speed synchronization.

(従来の技術) クロスコンパウンド同期発電機の励磁制御装置の従来の
一例を第2図に示す、添字Pはプライマリ搬用、Sはセ
コンダリ機用を表わす。
(Prior Art) An example of a conventional excitation control device for a cross compound synchronous generator is shown in FIG. 2, where the subscript P represents a primary machine and S represents a secondary machine.

第2図において、プライマリ発電機IPとセコンダリ発
電機lSの出力は最初から電気的に接続されており、そ
れぞれ励磁を与えることによって両様が同期状態、すな
わち二軸同期となる。
In FIG. 2, the outputs of the primary generator IP and the secondary generator IS are electrically connected from the beginning, and by applying excitation to each of them, both become in a synchronous state, that is, two-axis synchronization.

励磁電源の確立の問題及び再起動時間の短縮の面から、
二軸同期は定格速度の172程度すなわち半速同期法が
採用されている。
From the viewpoint of establishing the excitation power supply and shortening the restart time,
For two-axis synchronization, a rated speed of about 172, that is, a half-speed synchronization method is adopted.

二軸同期完了後、速度を半速から定格速度まで昇速する
が、この間の発電機の低周波過励磁を防止するためには
V/F比(電圧と周波数の比)を一定値以下に保つ必要
があり、このため励磁制御装置は一般に各発電機の界磁
電圧または界磁電流を一定に制御している。
After the two-axis synchronization is completed, the speed is increased from half speed to the rated speed, but in order to prevent low frequency overexcitation of the generator during this time, the V/F ratio (voltage to frequency ratio) must be kept below a certain value. Therefore, the excitation control device generally controls the field voltage or field current of each generator to be constant.

すなわち各発電機の速度が二軸同期予定速度に達すると
両様の界磁しゃ断器41を閉路し、引きつづき電磁接触
器31を閉路して各発電機に初期励磁を与える。初期励
磁電源としては、所内バッテリ電源や所内交流電源を整
流して得た直流電源が使用される。
That is, when the speed of each generator reaches the two-axis synchronization scheduled speed, both field circuit breakers 41 are closed, and subsequently, the electromagnetic contactor 31 is closed to give initial excitation to each generator. As the initial excitation power source, a DC power source obtained by rectifying an in-house battery power source or an in-house AC power source is used.

二軸同期が完了するとそれぞれのサイリスタ2のゲート
が活かされ、励磁用変圧器11を介した発電機出力が界
磁巻線10に供給される。絶縁変換器3を介して得られ
た磁界電圧と電圧設定器4で設定した設定値とはDC−
AVR(界磁電圧調整回路)5で比較・増幅され、位相
制御回路9を介して昇速中の各発電機の界磁電圧を制御
する。
When the two-axis synchronization is completed, the gates of each thyristor 2 are activated, and the generator output is supplied to the field winding 10 via the excitation transformer 11. The magnetic field voltage obtained through the insulation converter 3 and the setting value set by the voltage setting device 4 are DC-
The voltages are compared and amplified by an AVR (field voltage adjustment circuit) 5, and the field voltages of each generator being sped up are controlled via a phase control circuit 9.

(発明が解決しようとする問題点) しかしながら界磁電圧一定制御では、界磁巻線10の温
度変化によって界磁電流が変化し、発電機のV/F比が
変化するのでV/F比演算回路13および無効電力検出
器14を設け、V/F比や横流の状態に応じて電圧設定
器4を自動調整している。また、V/F比演算回路13
は半速付近から定格速度までの広範囲で周波数を正確に
検出する必要があり、このため回路は複雑になっている
(Problem to be Solved by the Invention) However, in constant field voltage control, the field current changes due to temperature changes in the field winding 10, and the V/F ratio of the generator changes, so the V/F ratio is calculated. A circuit 13 and a reactive power detector 14 are provided to automatically adjust the voltage setting device 4 according to the V/F ratio and the cross current state. In addition, the V/F ratio calculation circuit 13
It is necessary to accurately detect frequencies over a wide range from around half speed to rated speed, which makes the circuit complex.

一方界磁電流一定制御の場合は、界磁巻線温度の変化に
よるV/F比の変化や無効横流の変化がなく、制御も簡
単となるが、昇速中に両機関に入力トルクの不平衡が発
生すると両様の内部発生電圧と位相に差が発生し、同期
は保たれるが過渡的に電機子反作用で界磁電源が変化す
る。
On the other hand, in the case of constant field current control, there is no change in the V/F ratio or change in reactive cross current due to changes in the field winding temperature, and control is simple, but there is no change in the input torque to both engines during speed-up. When equilibrium occurs, a difference occurs between the internally generated voltages and phases, and although synchronization is maintained, the field power source changes transiently due to armature reaction.

このとき界磁電流一定制御を行うと、同期を保つために
発電機自身で変動する界磁電流変化を抑制してしまうの
で、同期化力を弱めるという問題を生ずる。
If constant field current control is performed at this time, the change in the field current that varies by the generator itself is suppressed in order to maintain synchronization, resulting in the problem of weakening the synchronization force.

また、昇速中に使用される界磁電圧−窓制御回路または
界磁電流−窓制御回路は、発電機が主変圧器17および
しゃ断器18を介して電力系統に併入された後も発電機
電圧−窓制御回路(AVR)と切替えて使用されること
があり、このような場合に系統事故が発生すると界a電
流一定制御は系統に非常に好ましくない影響を与える。
In addition, the field voltage-window control circuit or field current-window control circuit used during speed-up continues to generate power even after the generator is connected to the power system via the main transformer 17 and breaker 18. It is sometimes used by switching with the machine voltage-window control circuit (AVR), and in such a case, if a system fault occurs, the constant field a current control will have a very unfavorable effect on the system.

すなわち、系統事故で系統電圧が急に低下すると発電機
電流が急増し電機子反作用で過渡的に界磁電流も急増す
る。
That is, when the system voltage suddenly drops due to a system fault, the generator current increases rapidly, and the field current also increases transiently due to armature reaction.

このような場合、発電機が系統と同期を保つためには更
に励磁を強める必要がある。
In such cases, it is necessary to further strengthen the excitation in order for the generator to remain synchronized with the grid.

AVRでは系統電圧低下により発生する発電機電圧低下
に応動して励磁を強めるのに対して、界磁電圧一定制御
では励磁を弱めも強めもしないが、界磁電流一定制御で
は過渡的に増加した励磁を抑制して一定界磁電流にする
という不具合がある。
In AVR, excitation is strengthened in response to a drop in generator voltage caused by a drop in system voltage, whereas in constant field voltage control, excitation is neither weakened nor strengthened, but in constant field current control, excitation increases transiently. There is a problem in that the excitation is suppressed to a constant field current.

よって本発明は、半速での同期完了から定格速度への昇
速中の励磁を円滑に行うと共に、界磁巻線の温度変化に
よる不具合の発生を防止するクロスコンパウンド同期発
電機の励磁制御装置を提供することを目的としている。
Therefore, the present invention provides an excitation control device for a cross compound synchronous generator that smoothly performs excitation during speed increase from completion of synchronization at half speed to rated speed, and prevents malfunctions due to temperature changes in the field winding. is intended to provide.

(発明の構成) (問題点を解決するための手段) 本発明の同期発電機の励磁制御装置は界磁電流−窓制御
回路および界磁電圧−窓制御回路とを具備し、第1およ
び第2の同期発電機の半速付近での同期完了後に励磁制
御を行う、界磁電流−窓制御回路は、これら同期発電機
の界磁電流をそれぞれ設定値とするため偏差信号を出力
する。界磁電圧−窓制御回路は、これら同期発電機の界
磁電圧をそれぞれ界磁電流−窓制御回路からの偏差信号
に対応する設定値とするため偏差に応じ界磁巻線に供給
する界磁電流を制御する。
(Structure of the Invention) (Means for Solving the Problems) The excitation control device for a synchronous generator of the present invention includes a field current-window control circuit and a field voltage-window control circuit, A field current/window control circuit that performs excitation control after synchronization of the second synchronous generator at around half speed is completed outputs a deviation signal in order to set the field current of each of these synchronous generators to a set value. The field voltage-window control circuit supplies the field voltage to the field winding according to the deviation in order to set the field voltage of these synchronous generators to a set value corresponding to the deviation signal from the field current-window control circuit. Control the current.

(作用) 第1および第2の同期発電機の半速付近での同期完了後
、界磁電流−窓制御回路からの設定値との偏差信号に対
応する設定値に応じ界磁電圧−窓制御回路が界磁巻線に
供給する界磁電流を制御する。
(Function) After the synchronization of the first and second synchronous generators is completed at around half speed, field voltage-window control is performed according to the set value corresponding to the deviation signal from the set value from the field current-window control circuit. A circuit controls the field current supplied to the field winding.

(実施例) 本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.

本発明は、プライマリ発電機とセコンダリ発電機の同期
を半速付近で行い、同期完了後界磁電圧一定制御で昇速
を行うクロスコンパウンド同期発電機の励磁制御装置に
おいて、界磁電流を検出してこれを設定値に制御する応
答時間の遅い界磁電流−窓制御回路を設け、その出力に
より上記界磁電圧−窓制御回路の電圧設定器を操作する
ことによって、界磁巻線の温度変化による抵抗値の変化
にかかわらず界磁電流を一定に制御して発電機のV/F
比を許容値内に保持すると共に、昇速時および電力系統
併入時の過渡状態における界磁電流−定制御による不具
合を防止したものである。
The present invention is an excitation control device for a cross-compound synchronous generator that synchronizes a primary generator and a secondary generator at around half speed, and increases the speed with constant field voltage control after synchronization is completed, by detecting field current. A field current-window control circuit with a slow response time is provided to control the field voltage to a set value, and its output operates the voltage setting device of the field voltage-window control circuit to control the temperature change of the field winding. The generator's V/F is controlled by keeping the field current constant regardless of changes in resistance due to
This maintains the ratio within an allowable value and prevents problems caused by constant field current control in transient states when speeding up and when connecting to a power system.

本発明の一実施例を第1図に示す、添字Pはプライマリ
横用、Sはセコンダリ機用を表わす。
An embodiment of the present invention is shown in FIG. 1, where the suffix P stands for primary horizontal use and S stands for secondary machine use.

第1図において、二軸同期を行うときは、界磁しゃ断器
41を閉路し、引きつづき電磁接触器31を発電機1に
初期励磁を与える。
In FIG. 1, when performing two-axis synchronization, the field breaker 41 is closed, and the electromagnetic contactor 31 subsequently applies initial excitation to the generator 1.

このときサイリスタ2はゲートブロックされ、二軸同期
完了(発電機電圧が規定値以上であり、各発電機は同期
を保って運転中であるため横流がほぼ零である条件を含
む)でゲートブロックを解除する。
At this time, thyristor 2 is gate blocked, and the gate is blocked when the two-axis synchronization is completed (including conditions where the generator voltage is above the specified value and the cross current is almost zero because each generator is operating in synchronization). Release.

計器用電流変成器12を介して得た界磁電流と等価なサ
イリスタアノード電流と界磁電流改定器6との偏差は増
幅器7を介してインタラプタ8に入力され、その出力信
号によって電圧設定器4を操作する。
The deviation between the thyristor anode current equivalent to the field current obtained via the instrument current transformer 12 and the field current modifier 6 is input to the interrupter 8 via the amplifier 7, and the output signal is input to the voltage setting device 4. operate.

電圧設定器4で設定した設定値と絶縁変換器3を介して
得られた界磁電圧はDC−AVR5に入力され、その出
力信号によって位相制御回路9はサイリスタ2のゲート
を制御する。
The set value set by the voltage setter 4 and the field voltage obtained via the insulation converter 3 are input to the DC-AVR 5, and the phase control circuit 9 controls the gate of the thyristor 2 based on the output signal thereof.

これによって界磁電圧一定制御と界磁電流一定制御の両
方が同時に行われることになるが、電圧設定器4はイン
タラプタ8により操作されるので。
As a result, both the constant field voltage control and the constant field current control are performed at the same time, since the voltage setting device 4 is operated by the interrupter 8.

過渡時の速い界磁電流変化には応答せず、界磁電流一定
制御の不都合は生じない。
It does not respond to rapid field current changes during transient periods, and the disadvantages of constant field current control do not occur.

一方界磁巻線10の温度変化による界磁電流変化は、電
機子反作用による界磁電流変化に比較して非常に遅いの
で界磁電流一定制御が効果を現わし。
On the other hand, field current change due to temperature change in the field winding 10 is much slower than field current change due to armature reaction, so field current constant control is effective.

界磁電圧一定制御の不都合も生じない。There is no problem with constant field voltage control.

なお、本実施例は発明の主旨がわかるようにサイリスタ
励磁方式の場合について述べであるが、軸結合された励
磁機を使用する励磁方式の場合にういても本発明が適用
できることはいうまでもない、ただし、励磁機を使用し
た方式の場合には、励磁機出力電流が発電機界磁電流と
して検出され、サイリスタ2出力が接続されるものは励
磁機の界磁である。
Although this embodiment describes the case of a thyristor excitation method so that the gist of the invention can be understood, it goes without saying that the present invention is also applicable to an excitation method using a shaft-coupled exciter. No, however, in the case of a system using an exciter, the exciter output current is detected as a generator field current, and what the thyristor 2 output is connected to is the exciter field.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、クロスコンパウン
ド同期発電機の励磁制御装置に、界磁電圧一定制御ルー
プのほかに応答速度の遅い界磁電流一定制御ループを設
け、その出力を界磁電圧一定制御に対する補正信号とし
て界磁電流をゆるやかに一定制御しているので、定常時
は界磁巻線の温度変化にかかわらず界磁電流が一定とな
ってV/F比が許容値内に制御されると共に、昇速時な
どの過渡状態では界磁電圧一定制御が行われて電機子反
作用に対して適正な応答が行われ、これによってクロス
コンパウンド同期発電機の円滑な制御が可能となる。
As explained above, according to the present invention, in addition to the field voltage constant control loop, a field current constant control loop with a slow response speed is provided in the excitation control device of the cross compound synchronous generator, and the output is set to the field voltage constant control loop. Since the field current is controlled slowly and constant as a correction signal for constant control, the field current remains constant regardless of temperature changes in the field winding during steady state, and the V/F ratio is controlled within the allowable value. At the same time, in a transient state such as during speed increase, field voltage constant control is performed to provide an appropriate response to armature reaction, thereby enabling smooth control of the cross compound synchronous generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すクロスコンパウンド同
期発電機の励磁制御装置のブロック図、第2図は従来の
クロスコンパウンド同期発電機の励磁制御装置のブロッ
ク図である。 1・・・同期発電機    2・・・サイリスタ3・・
・絶縁変換器    4・・・電圧設定器5・・・DC
−AVR6・・・界磁電流設定器7・・・増幅器   
   8・・・インタラプタ9・・・位相制御回路  
 1o・・・界磁巻線11・・・励磁用変圧器   1
2・・・計器用変流器代理人 弁理士 則 近 憲 佑 同  三俣弘文 母線 冊瞭
FIG. 1 is a block diagram of an excitation control device for a cross compound synchronous generator showing an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional excitation control device for a cross compound synchronous generator. 1...Synchronous generator 2...Thyristor 3...
・Isolation converter 4...Voltage setting device 5...DC
-AVR6...Field current setting device 7...Amplifier
8... Interrupter 9... Phase control circuit
1o...Field winding 11...Excitation transformer 1
2...Instrument current transformer agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata Busen Shuro

Claims (1)

【特許請求の範囲】[Claims] 第1および第2の同期発電機の半速付近での同期完了後
、これら同期発電機の界磁電流をそれぞれの設定値とす
るため偏差信号を出力する界磁電流一定制御回路と、こ
れら同期発電機の界磁電圧をそれぞれ前記界磁電流一定
制御回路からの偏差信号に対応する設定値とするため偏
差に応じ界磁巻線に供給する界磁電流を制御する界磁電
圧一定制御回路とを具備することを特徴とする同期発電
機の励磁制御装置。
After the synchronization of the first and second synchronous generators at around half speed is completed, a field current constant control circuit outputs a deviation signal to set the field current of these synchronous generators to their respective set values, and a constant field voltage control circuit that controls the field current supplied to the field winding according to the deviation in order to set the field voltage of the generator to a set value corresponding to the deviation signal from the constant field current control circuit; An excitation control device for a synchronous generator, comprising:
JP62035618A 1987-02-20 1987-02-20 Exciting control device of synchronous generator Pending JPS63206200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62035618A JPS63206200A (en) 1987-02-20 1987-02-20 Exciting control device of synchronous generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035618A JPS63206200A (en) 1987-02-20 1987-02-20 Exciting control device of synchronous generator

Publications (1)

Publication Number Publication Date
JPS63206200A true JPS63206200A (en) 1988-08-25

Family

ID=12446840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035618A Pending JPS63206200A (en) 1987-02-20 1987-02-20 Exciting control device of synchronous generator

Country Status (1)

Country Link
JP (1) JPS63206200A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213498A (en) * 1987-03-02 1988-09-06 Kansai Electric Power Co Inc:The Control system for variable speed transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213498A (en) * 1987-03-02 1988-09-06 Kansai Electric Power Co Inc:The Control system for variable speed transmission

Similar Documents

Publication Publication Date Title
EP0757432B1 (en) Starting of synchronous machine without rotor position of speed measurement
US4714869A (en) Excitation control apparatus for synchronous machine
US4642546A (en) Method and apparatus for operating a load supplied via an intermediate-link converter, especially an asynchronous machine, in the event of a network disturbance
JP2660126B2 (en) Frequency fluctuation suppression device
JPS63206200A (en) Exciting control device of synchronous generator
JPS61157280A (en) Operating apparatus of plural motors
JP6933728B2 (en) Thyristor starter
Drobkin et al. Thyristor starters for ASK-100 asynchronized compensators
JP2804035B2 (en) Induction machine control device
SU636738A1 (en) Method of synchronizing generator with ac source
JPH09163609A (en) System closing method and system closing circuit for induction generator
JP2022043417A (en) System integration device
JP2902826B2 (en) How to stop variable speed induction motor
JPS6248221A (en) Excitation controller for synchronous generator
JP5696381B2 (en) Winding induction machine start control method and start control device
JP3321474B2 (en) Control device for variable speed generator motor
JPS6137868B2 (en)
JPH11220899A (en) Secondary excitation device of ac excitation synchronous machine
JPH03155398A (en) Method and apparatus for exciting variable speed pumping-up generator motor
JPH1014247A (en) Power converter
JPH0515138B2 (en)
JP2000060190A (en) Automatic voltage adjusting device
JPS5944875B2 (en) How to adjust the inverter output voltage phase
JPH09285194A (en) Pumped storage power generating system
JPS5872343A (en) Excitation controller for synchronous machine