JPS6137868B2 - - Google Patents

Info

Publication number
JPS6137868B2
JPS6137868B2 JP16325080A JP16325080A JPS6137868B2 JP S6137868 B2 JPS6137868 B2 JP S6137868B2 JP 16325080 A JP16325080 A JP 16325080A JP 16325080 A JP16325080 A JP 16325080A JP S6137868 B2 JPS6137868 B2 JP S6137868B2
Authority
JP
Japan
Prior art keywords
synchronous motor
frequency converter
control
current
static frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16325080A
Other languages
Japanese (ja)
Other versions
JPS5788881A (en
Inventor
Toshiaki Sogabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16325080A priority Critical patent/JPS5788881A/en
Publication of JPS5788881A publication Critical patent/JPS5788881A/en
Publication of JPS6137868B2 publication Critical patent/JPS6137868B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • H02P1/52Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor by progressive increase of frequency of supply to motor

Description

【発明の詳細な説明】 本発明は周波数変換装置を備えた同期電動機の
制御装置に係り、特に同期電動機を加速中、電源
切換および界磁電圧調整装置から自動電圧調整装
置への切換を安定に行うに好適な同期電動機の制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a synchronous motor equipped with a frequency conversion device, and in particular, to stably switch the power supply and switch from the field voltage regulator to the automatic voltage regulator while accelerating the synchronous motor. The present invention relates to a control device for a synchronous motor suitable for controlling a synchronous motor.

一般に、同期電動機を起動する方式として、静
止形周波数変換装置を用いた起動方式が従来から
知られている。
Generally, as a method for starting a synchronous motor, a starting method using a static frequency converter is conventionally known.

この起動方式は、起動時における同期電動機の
速度制御域を電流断続起動制御域、定電流加速制
御域、揃速制御域に分けて、順次その制御域にお
いて、以下のように、同期電動機の制御を行うも
のである。
This starting method divides the speed control range of the synchronous motor at startup into an intermittent current start control range, constant current acceleration control range, and constant speed control range, and sequentially controls the synchronous motor in each control range as follows. This is what we do.

即ち、まず、電流断続起動制御域では、初期起
動時に電流を断続に流し、同期電動機の起動を行
う。次に、定電流加速制御域では、同期電動機の
電機子電流を連続的に流し、同期電動機の加速を
行う。そして、揃速制御域では、同期電動機の回
転速度が同期速度近くになると、交流電源と同期
電動機の交流側端子電圧の周波数差、電圧差、位
相差をそれぞれある許容範囲内に制御し、静止形
周波数変換装置から交流電源への同期並入を行う
ものである。
That is, first, in the current intermittent startup control region, a current is passed intermittently during initial startup to start the synchronous motor. Next, in the constant current acceleration control region, the armature current of the synchronous motor is caused to flow continuously to accelerate the synchronous motor. In the constant speed control region, when the rotational speed of the synchronous motor approaches the synchronous speed, the frequency difference, voltage difference, and phase difference between the AC power supply and the AC side terminal voltage of the synchronous motor are controlled within a certain tolerance range, and the motor stops. This is to perform synchronous parallel connection from the frequency converter to the AC power source.

このような制御を行う静止形周波数変換装置を
用いた制御装置を、ここでは一括して同期電動機
の制御装置と称する。
A control device using a static frequency converter that performs such control is herein collectively referred to as a synchronous motor control device.

ところで、同期電動機の加速トルクは、電機子
電流と界磁巻線に流れる励磁電流による界磁磁束
とで発生するトルクと、その回転数における反抗
トルクとの差であり、同期電動機を起動、加速す
るには、同期電動機に界磁電流を与える必要があ
ること、および、界磁電流を変化させると、加速
トルクが変化することは周知の通りである。
By the way, the acceleration torque of a synchronous motor is the difference between the torque generated by the armature current and the field magnetic flux caused by the excitation current flowing through the field winding, and the reaction torque at the rotation speed, and is the difference between the torque generated by the armature current and the field magnetic flux due to the excitation current flowing through the field winding, and the reaction torque at the rotation speed. It is well known that in order to do this, it is necessary to apply a field current to the synchronous motor, and that changing the field current changes the acceleration torque.

また、静止形周波数変換装置にて起動する同期
電動機は、その起動特性と静止形周波数変換装置
の機能の制限により、初期起動時には、界磁電圧
調整装置により一定励磁状態で起動するのが一般
的である。
Furthermore, due to the starting characteristics of a synchronous motor that is started by a static frequency converter and the limitations of the functions of the static frequency converter, it is generally started in a constant excitation state using a field voltage regulator during initial startup. It is.

しかし、同期電動機が交流電源に並入された後
の常時運転では、負荷変動や系統変動に対して同
期電動機の電圧を一定とするために、自動電圧調
整装置にて運転しなければならない。そのために
は、同期電動機の静止形周波数変換装置による加
速期間に、その界磁回路を界磁電圧調整装置によ
る励磁から自動電圧調整装置による励磁にしてお
く必要がある。
However, in continuous operation after the synchronous motor is connected to an AC power source, an automatic voltage regulator must be used to keep the voltage of the synchronous motor constant despite load fluctuations and system fluctuations. For this purpose, it is necessary to switch the field circuit from being excited by the field voltage regulator to being excited by the automatic voltage regulator during the acceleration period by the static frequency converter of the synchronous motor.

更に、起動当初は、同期電動機電圧が低く、そ
の端子電圧を励磁電源として使用できないので、
所内電源等の交流電源を励磁電源として使用し、
並入後は同期電動機の端子から励磁電源をとるよ
うに電源切換を行う必要がある。また、同期電動
機が並入後電源切換を行うと、交流電源の動揺等
が発生し、好ましくないので、この電源切換も静
止形周波数変換装置による加速期間に切換えてお
く必要がある。
Furthermore, at the beginning of startup, the synchronous motor voltage is low and its terminal voltage cannot be used as an excitation power source.
Using an AC power source such as an in-house power source as an excitation power source,
After parallel connection, it is necessary to switch the power supply so that the excitation power is taken from the terminal of the synchronous motor. Furthermore, if the power supply is switched after the synchronous motor is connected in parallel, fluctuations of the AC power supply will occur, which is not desirable, so it is necessary to switch the power supply during the acceleration period by the static frequency converter.

しかし、一定励磁で静止形周波数変換装置によ
る定電流加速制御を行うと、同期電動機の端子電
圧は、同期電動機の回転数に比例した電圧とな
る。従つて、定電流加速制御域で界磁電圧調整装
置による一定励磁から自動電圧調整装置に切換え
ると、自動電圧調整装置の設定値と同期電動機端
子電圧との間に偏差があるため、界磁が変動し
て、同期電動機の端子電圧を変動させる結果、電
機子電流の過渡的変動が発生する。また、電源切
換時にも同様な現象が起り、同期電動機の電機子
電流が大きく変動する。
However, when constant current acceleration control is performed using a static frequency converter with constant excitation, the terminal voltage of the synchronous motor becomes a voltage proportional to the rotation speed of the synchronous motor. Therefore, when switching from constant excitation by the field voltage regulator to the automatic voltage regulator in the constant current acceleration control region, there is a deviation between the set value of the automatic voltage regulator and the synchronous motor terminal voltage, so the field This causes the terminal voltage of the synchronous motor to vary, resulting in transient fluctuations in the armature current. Furthermore, a similar phenomenon occurs when the power source is switched, and the armature current of the synchronous motor fluctuates greatly.

このため、従来の同期電動機の制御装置におい
ては、前記電機子電流の変動が静止形周波数変換
装置の出力電流許容値を超え、これにより、静止
形周波数変換装置の過電流保護回路が作動してシ
ステムトリツプに至る不具合があつた。
For this reason, in conventional synchronous motor control devices, the variation in the armature current exceeds the output current tolerance of the static frequency converter, and as a result, the overcurrent protection circuit of the static frequency converter is activated. There was a problem that led to a system trip.

本発明は、上記不具合を取り除き、同期電動機
を静止形周波数変換装置にて加速中に電源切換お
よび界磁電圧調整装置より自動電圧調整装置への
切換を行つても、静止形周波数変換装置の過渡出
力電流の最大値を抑制して、安定な制御が行える
同期電動機の制御装置を提供することを目的とす
る。
The present invention eliminates the above-mentioned problems, and even if the power supply is switched and the field voltage regulator is switched from the field voltage regulator to the automatic voltage regulator while the synchronous motor is being accelerated by the static frequency converter, the transient of the static frequency converter It is an object of the present invention to provide a control device for a synchronous motor that can perform stable control by suppressing the maximum value of output current.

この目的を達成するため、本発明は、揃速制御
域において一時的に静止形周波数変換装置の出力
電流を制限し、その間に励磁電源切換および界磁
電圧調整装置から自動電圧調整装置への切換を行
うようにしたことを特徴とする。
In order to achieve this objective, the present invention temporarily limits the output current of the static frequency converter in the constant speed control region, and during that time, switches the excitation power supply and switches from the field voltage regulator to the automatic voltage regulator. It is characterized in that it performs the following.

以下、本発明を図面の実施例を参照して説明す
る。
Hereinafter, the present invention will be explained with reference to embodiments of the drawings.

第1図は本発明の一実施例を示す同期電動機の
制御装置の構成図で、1は同期電動機である。
FIG. 1 is a block diagram of a control device for a synchronous motor showing an embodiment of the present invention, and 1 is a synchronous motor.

この同期電動機1には、固定子と回転子との電
気的相対位置を検出する図示せぬ位置検出器およ
び回転数を検出する図示せぬ回転数検出装置が取
り付けられている。
This synchronous motor 1 is equipped with a position detector (not shown) that detects the relative electrical position of the stator and rotor, and a rotational speed detection device (not shown) that detects the rotational speed.

同期電動機1の電機子は、しや断器2を介して
交流電源母線3に接続されている。また、同期電
動機1の電機子と交流電源母線3との間にしや断
器4、静止形周波数変換装置5、しや断器6が直
列に接続されている。上記周波数変換装置として
は、例えば、サイリスタをブリツジ接続した順変
換器と、サイリスタをブリツジ接続した逆変換器
が直列接続されたものが使用される。
The armature of the synchronous motor 1 is connected to an AC power supply bus 3 via a breaker 2 . Furthermore, a blade breaker 4, a static frequency converter 5, and a blade breaker 6 are connected in series between the armature of the synchronous motor 1 and the AC power supply bus 3. As the frequency conversion device, for example, a forward converter having bridge-connected thyristors and an inverse converter having bridge-connected thyristors connected in series is used.

前記同期電動機1の位置検出器および回転数検
出装置からの信号は、制御信号変換器7に加えら
れる。この制御信号変換器7は位置検出器からの
信号および回転数検出装置からの回転数に相当す
る信号を制御信号に変換するものである。
Signals from the position detector and rotation speed detection device of the synchronous motor 1 are applied to a control signal converter 7. The control signal converter 7 converts a signal from the position detector and a signal corresponding to the rotational speed from the rotational speed detection device into control signals.

この制御信号変換器7からの制御信号は速度制
御装置8に加えられる。この速度制御装置8は、
前記静止形周波数変換装置5にサイリスタゲート
制御信号を与えて、前記同期電動機1の電機子に
流れる電機子電流を制御するものである。また、
この速度制御装置8の駆動電源としては、交流電
源母線3よりしや断器6を介して得ている。
The control signal from this control signal converter 7 is applied to a speed control device 8. This speed control device 8 is
A thyristor gate control signal is given to the static frequency converter 5 to control the armature current flowing through the armature of the synchronous motor 1. Also,
The driving power for this speed control device 8 is obtained from the AC power supply bus 3 through a disconnector 6 .

前記同期電動機1の界磁回路は、特殊転流回路
20と特殊転流パルス発生装置21を具備し、界
磁巻線9は、界磁しや断器10、直流変換器11
およびしや断器17を直列に介して所内電源等の
交流電源12に接続され、更に、しや断器18お
よび励磁電源変圧器19を直列に介して同期電動
機1の端子に接続されている。
The field circuit of the synchronous motor 1 includes a special commutation circuit 20 and a special commutation pulse generator 21, and the field winding 9 includes a field shunter, a disconnector 10, and a DC converter 11.
It is connected to an alternating current power source 12 such as an in-house power source through a shield disconnector 17 in series, and is further connected to a terminal of the synchronous motor 1 through a shield disconnector 18 and an excitation power transformer 19 in series. .

上記直流変換器11は、例えば、サイリスタを
ブリツジ結線したもので、そのゲート制御により
界磁巻線9に流れる直流電流を制御するものであ
る。上記界磁巻線9に加えられる界磁電圧は、界
磁電圧調整装置13にも加えられる。この界磁電
圧調整装置13は、定励磁設定器14の設定出力
と界磁電圧とを受けて、前記同期電動機1の制御
形態が電流断続起動制御域および定電流加速制御
域で上記界磁巻線9の電圧が一定になるように直
流変換器11を制御するものである。
The DC converter 11 is, for example, a bridge-connected thyristor, and controls the DC current flowing through the field winding 9 by controlling its gate. The field voltage applied to the field winding 9 is also applied to the field voltage adjustment device 13. This field voltage adjustment device 13 receives the set output and field voltage of the constant excitation setting device 14, and controls the field voltage when the control mode of the synchronous motor 1 is in the current intermittent start control region and the constant current acceleration control region. The DC converter 11 is controlled so that the voltage on the line 9 is constant.

一方、15は同期電動機1の電機子電圧が入力
される自動電圧調整装置である。この自動電圧調
整装置15は、同期電動機1の端子電圧と電圧設
定器16の設定出力とを比較して、その出力によ
り同期電動機1の端子電圧が設定された電圧に等
しくなるように、前記直流変換器11を制御する
ものである。
On the other hand, 15 is an automatic voltage regulator to which the armature voltage of the synchronous motor 1 is input. This automatic voltage regulator 15 compares the terminal voltage of the synchronous motor 1 with the set output of the voltage setter 16, and uses the output to adjust the DC voltage so that the terminal voltage of the synchronous motor 1 becomes equal to the set voltage. It controls the converter 11.

また、しや断器17,18は励磁電源を切換え
るためのもので、励磁電源を切換える時には、励
磁電流を切断しないように、特殊転流パルス発生
装置21よりパルスを発生させ、このパルスで特
殊転流回路20を導通させて、この回路に界磁電
流をバイパスさせてからしや断器17,18の切
換が行われる。
In addition, the shield breakers 17 and 18 are for switching the excitation power source, and when switching the excitation power source, a pulse is generated from the special commutation pulse generator 21 so as not to cut off the excitation current, and this pulse is used to generate a special pulse. The commutation circuit 20 is made conductive and the field current is bypassed through this circuit, and the mustard cutters 17 and 18 are switched.

更に、22は制御形態が揃速制御域になると動
作し、静止形周波数変換器の出力電流値を制限す
るリミツト信号を出す出力電流制限制御装置であ
る。
Furthermore, 22 is an output current limiting control device which operates when the control mode is in the constant speed control region and outputs a limit signal to limit the output current value of the static frequency converter.

第2図は、同期電動機1の運転制御形態と、諸
量の時間変化を示したもので、そのaは回転数N
の時間変化、bは端子電圧Vおよび界磁電圧If
の時間変化、cは静止形周波数変換装置5の出力
電流IMの時間変化を示したものである。また、
dは同期電動機1の運転制御形態を示したもの
で、その記号Aは電流断続起動制御域、Bは定電
流加速制御域、Cは揃速制御域、Dは同期電動機
1を交流電源3に並入した並入制御域である。
Fig. 2 shows the operation control form of the synchronous motor 1 and the time changes of various quantities, where a is the rotational speed N
, b is the terminal voltage V and the field voltage I f
c shows the time change of the output current I M of the static frequency converter 5. Also,
d shows the operation control form of the synchronous motor 1, where A is the current intermittent start control area, B is the constant current acceleration control area, C is the constant speed control area, and D is the synchronous motor 1 connected to the AC power source 3. This is a parallel control area.

同期電動機1の起動に際しては、先ず、しや断
器4,6,17および界磁しや断器10が閉じら
れる。
When starting the synchronous motor 1, first, the shield breakers 4, 6, 17 and the field shield cutter 10 are closed.

これにより、交流電源母線3からしや断器6を
介して、静止形周波数変換装置5に交流電力が供
給される。この交流電力は、静止形周波数変換装
置5により所定の周波数に変換され、その出力側
よりしや断器4を介して、同期電動機1に電力が
供給される。
As a result, AC power is supplied to the static frequency converter 5 via the AC power supply bus 3 and the mustard disconnector 6 . This alternating current power is converted to a predetermined frequency by a static frequency converter 5, and power is supplied to the synchronous motor 1 from the output side thereof via a shingle breaker 4.

一方、直流変換器11は、界磁電圧調整装置1
3により制御され、これにより、界磁巻線9は、
定励磁設定器14に設定された設定値となるよう
に励磁され、一定励磁状態で同期電動機1は起動
する。
On the other hand, the DC converter 11 is connected to the field voltage regulator 1
3, whereby the field winding 9 is controlled by
The synchronous motor 1 is excited to a set value set in the constant excitation setting device 14, and starts in a constant excitation state.

即ち、同期電動機1の電機子には、静止形周波
数変換装置5より第2図cに示す断続した矩形波
の出力電流IMが供給され、第2図aに示すよう
に、同期電動機1は徐々に回転を始める。やが
て、同期電動機1の回転数Nがn1に達すると、電
流断続起動制御域Aから定電流加速制御域Bに切
換えられ、静止形周波数変換装置出力電流IM
一定値の連続出力に制御され、出力電流IMと界
磁電流Ifとで発生するトルクと、その回転数に
おける反抗トルクとの差の加速トルクで回転数N
は上昇する。同期電動機1の回転数Nがn2に達す
ると、揃速制御域Cに切換り、同期電動機1は図
示しない自動同期装置により揃速制御が開始され
る。
That is, the armature of the synchronous motor 1 is supplied with the intermittent rectangular wave output current I M shown in FIG. 2c from the static frequency converter 5, and as shown in FIG. Start rotating gradually. Eventually, when the rotational speed N of the synchronous motor 1 reaches n1 , the current intermittent start control region A is switched to the constant current acceleration control region B, and the output current I M of the static frequency converter is controlled to a continuous output of a constant value. The rotational speed N is the acceleration torque of the difference between the torque generated by the output current I M and the field current I f and the reaction torque at that rotational speed.
will rise. When the rotational speed N of the synchronous motor 1 reaches n2 , it switches to the uniform speed control region C, and uniform speed control of the synchronous motor 1 is started by an automatic synchronizer (not shown).

このとき、出力制限制御装置22が動作して、
静止形周波数変換装置5の出力に制限をかけ、出
力電流IMをある値まで絞り込み、それがある値
になつたことをもつて、切換制御を生かし、同期
電動機1の励磁電源を所内等からの交流電源12
から特殊転流パルス発生装置21を生かし、特殊
転流回路20を導通させ界磁電流Ifを特殊転流
回路に転流させてしや断器17をOFFし、しや
断器18をONさせて同期電動機1の端子電源よ
りの交流電源に電源切換を行う。また同時に、界
磁制御を界磁電圧調整装置13から自動電圧調整
装置15への制御に切換を行う。
At this time, the output limit control device 22 operates,
The output of the static frequency converter 5 is limited, the output current I M is narrowed down to a certain value, and once it reaches a certain value, the excitation power source for the synchronous motor 1 is switched from within the station etc. using switching control. AC power supply 12
By utilizing the special commutation pulse generator 21, the special commutation circuit 20 is made conductive and the field current I f is commutated to the special commutation circuit, turning off the shield breaker 17 and turning on the shield breaker 18. Then, the power source is switched to the AC power source from the terminal power source of the synchronous motor 1. At the same time, the field control is switched from the field voltage regulator 13 to the automatic voltage regulator 15.

即ち、揃速制御域Cにおいて、上記2つの切換
制御を行うと、界磁電流Ifが増減することによ
り、同期電動機1と静止形周波数変換装置5との
電力平衡状態が1時的に失われるため、静止形周
波数変換装置出力電流IMが第2図cのように変
動する。従つて、もしこのとき、静止形周波数変
換装置5の出力に制限をかけることなく上記2つ
の切換制御を行うと、第2図cの破線で示すよう
に、静止形周波数変換装置5の出力電流IMが出
力電流IMLを越え、静止形周波数変換装置5の図
示せぬ過電流保護回路が動作してシステムトリツ
プに至つてしまうことになる。
That is, when the above two switching controls are performed in the constant speed control region C, the field current If increases or decreases, and the power balance state between the synchronous motor 1 and the static frequency converter 5 is temporarily lost. As a result, the output current I M of the static frequency converter fluctuates as shown in FIG. 2c. Therefore, if the above two switching controls are performed without limiting the output of the static frequency converter 5, the output current of the static frequency converter 5 will change as shown by the broken line in FIG. 2c. When I M exceeds the output current I ML , the overcurrent protection circuit (not shown) of the static frequency converter 5 operates, resulting in a system trip.

しかし、本実施例の場合には、出力制限制御装
置22より、静止形周波数変換装置5の出力を制
限して、出力電流IMがある値まで下げられてい
るため、第2図cの実線で示すように電機子電流
Mが変動しても静止形周波数変換装置5の出力
電流許容値IMLを越えることがない。しかも、こ
のように静止形周波数変換装置5の出力電流IM
を制限する期間は、第2図では説明を分り易くす
るためにその制限時間を長くして示しているが、
実際には数百ミリセコンド単位の時間に過ぎない
ため、揃速制御に与える影響は殆んどない。
However, in the case of this embodiment, the output of the static frequency converter 5 is limited by the output limit control device 22 to reduce the output current I M to a certain value, so the solid line in FIG. As shown, even if the armature current I M fluctuates, it does not exceed the allowable output current value I ML of the static frequency converter 5. Moreover, the output current I M of the static frequency converter 5 is
In Figure 2, the period for limiting is shown as being longer to make the explanation easier to understand.
In reality, the time is only several hundred milliseconds, so it has almost no effect on uniform speed control.

次に、電源切換および界磁電圧調整装置13か
ら自動電圧調整装置15への切換が終つたことを
もつて、出力制限制御装置22がOFFされ、静
止形周波数変換装置5の出力制限がはずされ、出
力電流IMの変化が自由になる。その後は、揃速
制御域Cにて生きている図示しない自動同期装置
と速度制御装置8とにより、同期電動機1の静止
形周波数変換装置出力電流IMが制御され、周波
数、位相の制御が行われる。また、電圧制御は図
示しない自動同期装置からの信号により自動電圧
調整装置15にて、同期電動機1の界磁電流If
を制御して行われる。これにより、周波数、電
圧、位相差が許容範囲内になると、しや断器2が
投入され、同時にしや断器4,6が引き外され
る。この結果、同期電動機1にはしや断器2を介
して電力が供給されて起動は完了し、その後は交
流電源母線3の電力により運転される。
Next, when the power supply switching and the switching from the field voltage regulator 13 to the automatic voltage regulator 15 are completed, the output limit control device 22 is turned off, and the output limit of the static frequency converter 5 is removed. , the output current I M can be changed freely. Thereafter, the static frequency converter output current I M of the synchronous motor 1 is controlled by the automatic synchronizer (not shown) and the speed control device 8 operating in the constant speed control region C, and the frequency and phase are controlled. be exposed. Further, voltage control is performed by an automatic voltage regulator 15 using a signal from an automatic synchronizer (not shown) to control the field current I f of the synchronous motor 1.
This is done under the control of As a result, when the frequency, voltage, and phase difference fall within allowable ranges, the shield breaker 2 is turned on, and at the same time the shield circuit breakers 4 and 6 are tripped. As a result, power is supplied to the synchronous motor 1 via the shield and disconnector 2 to complete the startup, and thereafter the motor is operated using the power from the AC power supply bus 3.

このように、同期電動機1を起動する際、その
揃速制御域Cにおいて、一時的に、静止形周波数
変換装置5の出力電流を出力電流制限制御装置2
2によつて、積極的に制限制御し、その間に励磁
電源切換、界磁電圧調整装置13より自動電圧調
整装置15による制御に切換えを行い、その後に
制限制御を解放し、通常の揃速制御を行うことに
より、制御装置や電源の切換で発生する過渡電流
の最大値を小さくし、同期電動機1をシステムト
リツプすることなしに、また、並入後の交流電源
母線3の動揺無しにスムーズに起動できるように
なる。更に、このとき、静止形周波数変換装置5
の出力電流許容値は、電機子電流の一般的な変動
分だけで決められるようになり、余分な出力電流
値を見込む必要がなく、安い静止形周波数変換装
置5を造ることができるようになる。
In this way, when starting the synchronous motor 1, the output current of the static frequency converter 5 is temporarily changed to the output current limiting control device 2 in the uniform speed control region C.
2, active limit control is performed, during which the excitation power source is switched and control is switched from the field voltage regulator 13 to the automatic voltage regulator 15, after which the limit control is released and normal speed control is performed. By doing this, the maximum value of the transient current that occurs when switching the control device or power supply is reduced, and the synchronous motor 1 is smoothly operated without system tripping and without fluctuation of the AC power supply bus 3 after switching on. You will be able to start it. Furthermore, at this time, the static frequency converter 5
The allowable output current value can be determined only by the general variation of the armature current, and there is no need to take into account an extra output current value, making it possible to manufacture an inexpensive static frequency converter 5. .

尚、上記実施例においては、静止形周波数変換
装置5の出力電流IMを一時的に制限するため、
出力電流制限制御装置22なるものを設けたが、
この代りに、同様な制御ができるような回路を制
御信号変換器7や速度制御装置8や静止形周波数
変換装置5や自動同期装置等の他の物に設けても
同様な結果が得られることは言う迄もない。
In the above embodiment, in order to temporarily limit the output current I M of the static frequency converter 5,
Although an output current limiting control device 22 was provided,
Instead, similar results can be obtained by providing a circuit capable of similar control in other devices such as the control signal converter 7, speed control device 8, static frequency converter 5, automatic synchronization device, etc. Needless to say.

以上のように、本発明によれば、静止形周波数
変換装置の出力を一時的に制限し得る装置を設
け、揃速制御時、静止周波数変換装置出力を制限
した上で、電源切換および界磁電圧調整装置より
自動電圧調整装置への換えを行うようにしたの
で、システムトリツプすることなしに、スムーズ
に起動することのできる同期電動機の制御装置が
得られる。
As described above, according to the present invention, a device that can temporarily limit the output of a static frequency converter is provided, and during speed equalization control, after limiting the output of the static frequency converter, power supply switching and field Since the voltage regulator is replaced with an automatic voltage regulator, a synchronous motor control device that can be started smoothly without system tripping can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す同期電動機の
制御装置の構成図、第2図はその動作を説明する
ため、同期電動機の運転制御形態と諸量の時間変
化を示した図で、そのaは同期電動機の回転数N
と時間tとの関係図、そのbは同期電動機の端子
電圧Vおよび界磁電流Ifと時間tとの関係図、
そのcは静止形周波数変換装置出力電流IMと時
間tとの関係図、そのdは運転制御形態説明図で
ある。 1……同期電動機、2,4,6,17,18…
…しや断器、3……交流電源母線、5……静止形
周波数変換装置、7……制御信号変換器、8……
速度制御装置、9……界磁巻線、10……界磁し
や断器、11……直流変換器、12……交流電
源、13……界磁電圧調整装置、14……定励磁
設定器、15……自動電圧調整装置、16……電
圧設定器、19……励磁電源変圧器、20……特
殊転流回路、21……特殊転流パルス発生装置、
22……出力電流制限制御装置、N,n1,n2,…
…同期電動機回転数、V……同期電動機端子電
圧、If……界磁電流、IM……静止形周波数変換
装置出力電流、IML……静止形周波数変換装置出
力電流許容限界、t……時間。
FIG. 1 is a configuration diagram of a control device for a synchronous motor showing an embodiment of the present invention, and FIG. 2 is a diagram showing the operational control form of the synchronous motor and changes in various quantities over time to explain its operation. The a is the rotational speed N of the synchronous motor
and time t, part b is a relationship diagram between the terminal voltage V and field current I f of the synchronous motor and time t,
Part c is a diagram of the relationship between the output current I M of the static frequency converter and time t, and part d is a diagram illustrating the mode of operation control. 1...Synchronous motor, 2, 4, 6, 17, 18...
...Shield disconnector, 3...AC power supply bus, 5...Static frequency converter, 7...Control signal converter, 8...
Speed control device, 9...Field winding, 10...Field shield and disconnector, 11...DC converter, 12...AC power supply, 13...Field voltage adjustment device, 14...Constant excitation setting equipment, 15... automatic voltage regulator, 16... voltage setting device, 19... excitation power supply transformer, 20... special commutation circuit, 21... special commutation pulse generator,
22... Output current limit control device, N, n 1 , n 2 ,...
...Synchronous motor rotation speed, V...Synchronous motor terminal voltage, I f ...Field current, I M ...Static frequency converter output current, I ML ...Static frequency converter output current permissible limit, t... …time.

Claims (1)

【特許請求の範囲】[Claims] 1 同期電動機を周波数変換装置を用いて加速
中、揃速制御域で同期電動機の励磁電源の電源切
換および界磁電圧調整装置による励磁制御から自
動電圧調整装置による励磁制御への励磁制御の切
換を行う同期電動機の制御装置において、上記揃
速制御域で上記周波数変換装置の出力を一時的に
制限する装置を設け、上記周波数変換装置の出力
を制限している間に上記電源切換および上記励磁
制御の切換を行うことを特徴とする同期電動機の
制御装置。
1. While accelerating the synchronous motor using a frequency converter, switch the excitation power source of the synchronous motor in the uniform speed control region and switch the excitation control from excitation control by the field voltage regulator to excitation control by the automatic voltage regulator. In the control device for the synchronous motor, a device is provided to temporarily limit the output of the frequency converter in the uniform speed control region, and the power supply switching and the excitation control are performed while the output of the frequency converter is limited. A control device for a synchronous motor, characterized in that it performs switching.
JP16325080A 1980-11-21 1980-11-21 Control device for synchrnous motor Granted JPS5788881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16325080A JPS5788881A (en) 1980-11-21 1980-11-21 Control device for synchrnous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16325080A JPS5788881A (en) 1980-11-21 1980-11-21 Control device for synchrnous motor

Publications (2)

Publication Number Publication Date
JPS5788881A JPS5788881A (en) 1982-06-02
JPS6137868B2 true JPS6137868B2 (en) 1986-08-26

Family

ID=15770205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16325080A Granted JPS5788881A (en) 1980-11-21 1980-11-21 Control device for synchrnous motor

Country Status (1)

Country Link
JP (1) JPS5788881A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235595A1 (en) 2018-06-07 2019-12-12 日立三菱水力株式会社 Variable-speed power generation electric device
EP3823158A4 (en) 2018-07-09 2022-03-30 Hitachi Mitsubishi Hydro Corporation Variable-speed generator-motor device

Also Published As

Publication number Publication date
JPS5788881A (en) 1982-06-02

Similar Documents

Publication Publication Date Title
EP0275953B1 (en) Variable-speed power generating system
US4654572A (en) Load-commutated inverter for operating synchronous motor
US3969659A (en) Alternating current motor system
US5148093A (en) System for controlling AC excited synchronous machine
JPS6137868B2 (en)
JPS6158432A (en) Method of switching ac generator and stationary inverter power source
JPS6159064B2 (en)
JP6933728B2 (en) Thyristor starter
GB1562340A (en) Starting arragnement for at least one single-phase or polyphase motor
SU1092691A1 (en) Method of controlling synchronous generator when energizing and device for effecting same
JP3256578B2 (en) Multiplexed voltage source inverter
SU817951A1 (en) Adjustable dc drive
SU1516579A1 (en) System for control vibratory pile driver
SU764087A1 (en) Method for controlling maximum current of rotor in synchronous alternator
JPH0161037B2 (en)
SU1001309A1 (en) Device for ensuring parallel operation of synchronous generators
GB1570435A (en) Circuit arrangements for dynamic braking of a synchronous three-phase motors
JP2519687B2 (en) Power control method for wire wound induction machine
JPS6143960B2 (en)
JPS5872343A (en) Excitation controller for synchronous machine
JPH01198296A (en) Controller for ac variable speed motor
JPS601832B2 (en) Control device for power converter
JPS6315684A (en) Pumped storage generator system
JPH0347071B2 (en)
JPS627795B2 (en)