JPS6320563B2 - - Google Patents

Info

Publication number
JPS6320563B2
JPS6320563B2 JP54170780A JP17078079A JPS6320563B2 JP S6320563 B2 JPS6320563 B2 JP S6320563B2 JP 54170780 A JP54170780 A JP 54170780A JP 17078079 A JP17078079 A JP 17078079A JP S6320563 B2 JPS6320563 B2 JP S6320563B2
Authority
JP
Japan
Prior art keywords
carbon
acid
chemical species
dissociated
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54170780A
Other languages
Japanese (ja)
Other versions
JPS5691826A (en
Inventor
Tetsuya Myake
Kunihiko Takeda
Heiichiro Kohanawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17078079A priority Critical patent/JPS5691826A/en
Priority to US06/293,220 priority patent/US4406870A/en
Priority to PCT/JP1980/000326 priority patent/WO1981001802A1/en
Priority to DE8181900082T priority patent/DE3069848D1/en
Priority to EP81900082A priority patent/EP0042877B1/en
Publication of JPS5691826A publication Critical patent/JPS5691826A/en
Publication of JPS6320563B2 publication Critical patent/JPS6320563B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、炭玠同䜍䜓の新芏分離法に関する。 倩然に存圚する炭玠は、質量数12の炭玠
12C玄98.89重量ず質量数13の炭玠 13C玄
1.11重量の混合物である。 13Cは、その非攟射性の故に、臚床医孊、薬
孊、生化孊、蟲孊等の各分野で化合物の暙識ずし
お奜適に甚いられるため、最近の質量分析蚈に進
歩による定量法の容易化ず盞埅぀お、 13Cの需芁
は非垞に増加しおいる。埓぀お、 13Cを高濃床状
態に分離取埗する技術の開発が重芁にな぀おき
た。 珟圚行なわれおいる 13C分離法の䞻なものは冷
华蒞溜法であり、その他に熱拡散法、化孊亀換
法、レヌザヌ法も知られおいる。 このうち化孊亀換法は、異皮の含炭玠化孊皮間
の炭玠の同䜍䜓亀換反応を利甚するものである。
即ち、異皮含炭玠化孊皮CX及びCYの間に䞋蚘の
匏(1)で瀺す炭玠の同䜍䜓亀換反応が生じ、その平
衡定数がからずれる時は、䞡化孊皮を接觊さ
せるず、䞀方の化孊皮に 13Cを濃瞮させるこずが
できる。 これたで、このような同䜍䜓効果を起こす化孊
皮の組合せは皮々知られおいる。しかし、これた
でのそれはすべお気−液間、又は液−液間の亀換
反応に限られおいる。 本発明は、埓来法に比べおより高い分離効率で
13Cを濃瞮可胜な化孊亀換法を提䟛するものであ
る。本発明者らは、前蚘匏(1)においおCX及びCY
のむオン亀換暹脂ぞの吞着特性が異なる堎合は、
䞋蚘匏(2)においおK′がからずれ、 䜆し、は溶液䞭の炭玠の濃床、は暹脂盞
䞭の炭玠の濃床 その結果、暹脂盞又は溶液盞に 13Cが効率的に
濃瞮されるこずを芋いだし、本発明をなすに至぀
た。 即ち、本発明は炭玠を含む酞の酞解離型化孊皮
ず非解離型化孊皮の炭玠の同䜍䜓亀換反応による
炭玠同䜍䜓の分離法であ぀お、炭玠を含む酞の酞
解離型化孊皮ず非解離型化孊皮を含有する氎溶液
を固盞ずしおの陰むオン暹脂ず接觊させるこずに
より、酞解離型化孊皮ず非解離型化孊皮間の炭玠
の同䜍䜓亀換反応を行わせるず共に、該酞解離型
化孊皮を陰むオン亀換暹脂に吞着せしめ、 12C、
及び 13Cを溶液盞及び固盞、又は固盞及び溶液盞
にそれぞれ分離し、 13Cが分離される盞に 13Cを
濃瞮するこずを特城ずする炭玠同䜍䜓の分離法に
関するものである。 以䞋に本発明を具䜓的に説明する。 本発明における前蚘皮類の含炭玠化合物ずし
おは、皮々の化合物があるが、䟋えば、有機酞又
は無機酞の酞解離型ず非解離型が挙げられ、具䜓
的な酞ずしおは、H2CO3、HOCN、HSCN、
HCOOH等が挙げられる。 本発明におけるむオン亀換暹脂ずしおは、䞊蚘
有機酞又は無機酞の酞解離型ず非解離型を利甚す
る堎合には、陰むオン亀換暹脂が甚いられる。 本発明に甚い埗る陰むオン亀換暹脂は、その構
成成分ずしお、以䞋のものを含むこずができる。 即ち、非架橋重合性単量䜓ずしおは、スチレ
ン、メチルスチレン、ゞメチルスチレン、
−トリメチルスチレン、メトキシスチレ
ン、プロムスチレン、シアノスチレン、フルオロ
スチレン、ゞクロロスチレン、−ゞメチル
アミノスチレン、ニトロスチレン、クロルメチル
スチレン、トリフルオロスチレン、トリフルオロ
メチルスチレン、アミノスチレン等のスチレン誘
導䜓、メチルビニルスルフむド、プニルビニル
スルフむド等のビニルスルフむド誘導䜓、アクリ
ロニトリル、メタクリロニトリル、α−アセトキ
シアクリロニトリル等のアクリロニトリル誘導
䜓、メチルビニルケトン、゚チルむ゜プロピルケ
トン等のビニルケトン類、塩化ビニリデン、臭化
ビニリデン、シアン化ビニリデン等のビニリデン
化合物、アクリルアミド、メタクリルアミド、
−ブトキシメチルアクリルアミド、−プニル
アクリルアミド、ゞアセトンアクリルアミド、
−ゞメチルアミノ゚チルアクリルアミド等
のアクリルアミド誘導䜓、−ビニルスクシンむ
ミド、−ビニルピロリドン、−ビニルフタル
むミド、−ビニルカルバゟヌル、ビニルフラ
ン、−ビニルベンゟフラン、ビニルチオプノ
ン、ビニルむミダゟヌル、メチルビニルむミダゟ
ヌル、ビニルピラゟヌル、ビニルオキサゟリド
ン、ビニルチアゟヌル、ビニルテトラゟヌル、ビ
ニルピリゞン、メチルビニルピリゞン、−
ゞメチル−−ビニルトリアゞン、ビニルキノリ
ン、゚ポキシブタゞ゚ン等である。 架橋重合性単量䜓ずしおは、ゞビニルベンれ
ン、ゞビニルトル゚ン、ゞビニルキシレン、ゞビ
ニルナフタリン、ゞビニル゚チルベンれン、ゞビ
ニルプナントレン、トリビニルベンれン、ゞビ
ニルゞプニル、ゞビニルゞプニルメタン、ゞ
ビニルベンゞル、ゞビニルプニル゚ヌテル、ゞ
ビニルゞプニルスルフむド、ゞビニルゞプル
アミン、ゞビニルスルホン、ゞビニルケトン、ゞ
ビニルフラン、ゞビニルピリゞン、ゞビニルキノ
リン、フタル酞ゞアリル、マレむン酞ゞアリル、
フマル酞ゞアリル、コハク酞ゞアリル、シナり酞
ゞアリル、アゞピン酞ゞアリル、ゞアリルアミ
ン、トリアリルアミン、N′−゚チレンゞア
クリルアミド、N′−メチレンゞアクリルア
ミド、N′−メチレンゞメタクリルアミド、
゚チレングリコヌルゞメタクリレヌト、トリ゚チ
レングリコヌルゞメタクリレヌト、ポリ゚チレン
グリコヌルゞメタクリレヌト等がある。 本発明に甚い埗る奜たしい暹脂の構成ずしお
は、スチレン、ビニルトル゚ン、゚チルビニルベ
ンれン等のゞビニルベンれンを䞻芁成分ずしお付
加共重合で合成した高分子架橋物をクロロメチル
化し、アミノ化したもの、クロロメチルスチレ
ン、゚ポキシブタゞ゚ン、アクリルアミド等の掻
性基を有する単量䜓ず、ゞビニルベンれン、トリ
アリルむ゜シアヌレヌト等の架橋単量䜓を䞻成分
ずする付加共重合物をアミノ化したもの、−ビ
ニルフタルむミド、ビニルむミダゟヌル、ビニル
ピリゞン、ビニルテトラゟヌル、ビニルキノリ
ン、ゞビニルピリゞン等の亀換基になり埗る窒玠
を有する単量䜓を䞻成分ずし、必芁に応じ架橋重
合性単量䜓ず共重合したもの等が挙げられる。 アミノ化に甚い埗るアミンずしおは、トリ゚タ
ノヌルアミン、トリ゚チルアミン、トリメチルア
ミン、トリアリルアミン、ゞ゚タノヌルアミン、
ゞアリルアミン、ゞ゚チルアミン、ゞメチルアミ
ン、−アミノ゚タノヌル、゚チルアミン、メチ
ルアミン、゚タノヌルアミン等の脂肪族アミン、
アニリン、−アミノプノヌル、−ゞメ
チルアニリン、−メチルアニリン、−トルむ
ゞン、−トルむゞン、−アミノプノヌル、
ゞプニルアミン等の芳銙族アミン、ピリゞン、
−ピコリン、ピペリゞン、ピラゞン、ピペラゞ
ン、むンドリン、むンドヌル、むミダゟヌル、
−メチルむミダゟヌル、キノリン、−ルチ
ゞン、−テトラヒドロキノリン、
−メチルピロリゞン、ベンゟトリアゟヌル等の
耇玠環匏アミン等である。 以䞊述べた各成分から本発明の方法に甚いる陰
むオン亀換暹脂を補造するためには、通垞行われ
おいる方法が採甚できるが、曎に具䜓的に説明す
れば、次の通りである。 非架橋重合性単量䜓ず架橋重合性単量䜓の総重
量に察し、非架橋重合性単量䜓を〜98、奜た
しくは10〜90重量、曎に奜たしくは20〜80重量
含有させ、架橋重合性単量䜓〜94重量含有
させたものに重合開始剀を添加しお重合反応を行
う。 重合開始剀ずしおは、ベンゟむルパヌオキサむ
ド、メチル゚チルケトンパヌオキサむド等のパヌ
オキサむド、アゟビスむ゜ブチロニトリル、−
シアノ−−プロピルアゟフオルミアミド等のア
ゟ化合物等を含む。重合開始剀の添加量ずしお
は、単量䜓総重量の0.01〜12重量であり、奜た
しくは0.1〜重量、曎に奜たしくは0.2〜重
量である。 重合枩床は通垞℃〜200℃の範囲であり、奜
たしくは15℃〜160℃の範囲、曎に奜たしくは30
℃〜130℃の範囲である。 重合時間は通垞30分〜50時間、奜たしくは時
間〜30時間、曎に奜たしくは時間〜20時間の範
囲である。 重合埌冷华しおメタノヌルず倧過剰の氎で掗浄
し、也燥埌クロロメチル゚ヌテル䞭に投入し、ク
ロロメチル化を行う。クロロメチル化の反応枩床
は通垞℃〜10℃、反応時間は時間〜80時間、
奜たしくは10時間から60時間である。 アミノ化をする堎合には、䞊蚘のようにしお調
補した重合䜓を、アミノ化に甚いるアミンの
〜40゚タノヌル溶液䞭でアミノ化反応を行う。
アミノ化反応の枩床は通垞20℃〜80℃で、反応時
間は通垞10分〜10時間である。 有機酞又は無機酞の酞解離型及び非解離型ず陰
むオン亀換暹脂ずの組合せを甚いる本発明法のう
ち、最も有利な炭玠同䜍䜓分離法は、䞊蚘有機酞
又は無機酞を含む溶液のPHを倉化させるこずによ
り、䞡型の間に互倉が行われるこずを利甚し、陰
むオン亀換暹脂充填搭の暹脂をOH-吞着型にし
おおいお搭䞊郚より含炭玠酞を䟛絊し、酞解離型
ずしお吞着させお含炭玠酞の吞着垯を圢成させ、
次いで搭䞊郚よりH+を䟛絊しお、含炭玠数を再
び非解離型ずしお脱離せしめ、吞着垯郚で暹脂に
吞着した酞解離型化孊皮ず溶液盞に存圚する非解
離型化孊皮を連続的に接觊させるこずにより、同
䜍䜓亀換反応を重畳せしめる方法である。 䞊蚘クロマトグラフむヌ操䜜をCO2、HCO- 3に
甚いる堎合は、吞着垯埌郚に、HSCN、HOCN
を利甚す堎合は、吞着垯前郚に、 13Cを濃瞮する
こずができる。 陰むオン亀換暹脂ず含炭玠有機胜又は無機酞ず
の接觊亀換反応は䞀般的に℃〜150℃の枩床範
囲で行わせるのが奜たしい。 尚、甚いる含炭玠酞の電離指数pKaずむオン亀
換暹脂のpKaを皮々倉化させお怜蚎した結果、陰
むオン亀換暹脂のpKaをpKaR、甚いる含炭玠酞
のpKaをpKa′ずするず、pKaRpKa′−なる
関係の組合せの堎合、特には぀きりした界面が圢
成され、奜たしい成積の埗られるこずが分か぀
た。 次に、本発明の具䜓的事䟋ずしおH2CO3に぀
き、即ち、CO2ずHCO- 3ずの間の炭玠同䜍䜓亀換
反応に぀いお説明する。 (3)匏においお平衡定数がより僅かに倧きい
こずは、既に゚むチ・シヌ・ナヌレむH.C・
Ureyらによ぀お明らかにされ、陰むオン亀換
暹脂に吞着したHCO- 3ずそれに接觊する溶液盞に
存圚する溶存CO2の間に同䜍䜓倉換反応を行わせ
るず、暹脂盞に 13Cを濃瞮させるこずができる。 又、OH-吞着型ずした陰むオン亀換暹脂にCO2
溶存液を䟛絊しおHCO- 3を吞着せしめ、次いで搭
頂よりH+を展開しおCO2ずしお再脱着せしめお
暹脂盞のHCO- 3ず溶液盞のCO2を連続的に接觊せ
しめ、暹脂盞ず溶液盞の同䜍䜓亀換反応を重畳さ
せお高濃床のH13CO- 3を取埗するこずができるこ
ずは、蚀うたでもない。 この同䜍䜓亀換反応は固液法であり、暹脂盞を
甚いない気液法に比べお空間効率が高く有利であ
るのは蚀うたでもないが、この系党䜓をKgcm2
以䞊に加圧するこずにより溶存CO2量を増倧さ
せれば、分離効率は曎に向䞊する。 この系の奜適な反応枩床は〜120℃、曎に奜
たしくは20〜90℃である。 又、前述のpKaRpKa′−の関係は、この系
においおも成立する。 以䞋に実斜䟋を瀺す。 実斜䟋  10の四぀口フラスコに、撹拌機、枩床蚈を぀
け、これに氎3000、懞濁剀ずしおポリアクリル
酞゜ヌダ20及び食塩82、スチレン900、゚
チルビニルベンれン35、ゞビニルベンれン65
、重合溶媒ずしお安息銙酞メチル380、む゜
アミルアルコヌル320、ノルマルヘプタン1100
、アゟビスむ゜ブチロニトリル14を投入しお
よく撹拌し、油滎を分散せしめた。これを70℃で
28時間かけお重合し、重合埌冷华しお暹脂をフむ
ルタヌ付掗浄搭に移し、10のメタノヌルず倧過
剰の氎でよく掗浄した。 掗浄埌、mmHg、40℃で72時間也燥し、也燥
埌の暹脂300を℃に保぀たのクロロメチ
ルメチル゚ヌテル䞭に投入し、450の塩化亜鉛
を觊媒ずしお48時間反応させおクロロメチル化を
行い、匕続き20トリメチルアミンの゚タノヌル
溶液䞭にお40℃で時間アミノ化を行぀お、匷塩
基性陰むオン亀換暹脂pKaR14を埗た。 HCO- 3むオンを含む氎溶液ず匷塩基性陰むオン
亀換暹脂を重量比暹脂は也燥重量でに
混合し、十分撹拌する290゜K。 HCO- 3を吞着平衡に達せしめた埌H2SO4を滎䞋
しおPHに調敎する。同䜍䜓亀換平衡に達せしめ
た埌、暹脂盞ず溶液盞を分離し、溶液䞭のCO2及
び暹脂䞭のHCO- 3䞭の炭玠同䜍䜓比を電子衝撃型
質量分析蚈で枬定し、次の倀を埗た。
The present invention relates to a novel method for separating carbon isotopes. Naturally occurring carbon has a mass number of 12 (carbon
12C ) approximately 98.89% by weight and carbon with mass number 13 ( 13C ) approx.
It is a 1.11% by weight mixture. Because 13 C is non-radioactive, it is suitable for use as a label for compounds in various fields such as clinical medicine, pharmacy, biochemistry, and agriculture, so it is expected that recent advances in mass spectrometers will make quantitative methods easier. Therefore, the demand for 13C is increasing significantly. Therefore, it has become important to develop a technology to separate and obtain 13 C in a highly concentrated state. The main 13C separation method currently in use is the cold distillation method, and other known methods include the thermal diffusion method, the chemical exchange method, and the laser method. Among these, the chemical exchange method utilizes a carbon isotope exchange reaction between different carbon-containing chemical species.
That is, when the carbon isotope exchange reaction shown in the following formula (1) occurs between different carbon-containing chemical species CX and CY, and the equilibrium constant K deviates from 1, when both chemical species are brought into contact, one side 13C can be concentrated into the following chemical species: Until now, various combinations of chemical species that cause such isotopic effects have been known. However, all previous reactions have been limited to gas-liquid or liquid-liquid exchange reactions. The present invention has higher separation efficiency than conventional methods.
This provides a chemical exchange method that can concentrate 13C . The present inventors have discovered that in the above formula (1), CX and CY
If the adsorption characteristics of the ion exchange resins are different,
In the following formula (2), K′ deviates from 1, (However, C is the concentration of carbon in the solution, and is the concentration of carbon in the resin phase.) As a result, it was discovered that 13 C was efficiently concentrated in the resin phase or solution phase, and this led to the present invention. . That is, the present invention is a method for separating carbon isotopes by an isotope exchange reaction between an acid-dissociable chemical species of a carbon-containing acid and a non-dissociable chemical species, the method comprising: By bringing an aqueous solution containing a non-dissociated chemical species into contact with an anionic resin as a solid phase, a carbon isotope exchange reaction between the acid-dissociated chemical species and the non-dissociated chemical species is carried out, and the acid dissociates. type chemical species is adsorbed on an anion exchange resin, 12 C,
and 13 C into a solution phase and a solid phase, or a solid phase and a solution phase, respectively, and 13 C is concentrated in the phase from which 13 C is separated. The present invention will be specifically explained below. The two types of carbon-containing compounds in the present invention include various compounds, such as acid-dissociated type and non-dissociated type of organic acid or inorganic acid, and specific acids include H 2 CO 3 , HOCN, HSCN,
Examples include HCOOH. As the ion exchange resin in the present invention, an anion exchange resin is used when the acid dissociated type and non-dissociated type of the organic acid or inorganic acid are used. The anion exchange resin that can be used in the present invention can include the following as its constituent components. That is, the non-crosslinked polymerizable monomers include styrene, methylstyrene, dimethylstyrene, 3,
4,6-trimethylstyrene, methoxystyrene, promustyrene, cyanostyrene, fluorostyrene, dichlorostyrene, N,N-dimethylaminostyrene, nitrostyrene, chloromethylstyrene, trifluorostyrene, trifluoromethylstyrene, aminostyrene, etc. Styrene derivatives, vinyl sulfide derivatives such as methyl vinyl sulfide and phenyl vinyl sulfide, acrylonitrile derivatives such as acrylonitrile, methacrylonitrile, and α-acetoxyacrylonitrile, vinyl ketones such as methyl vinyl ketone and ethyl isopropyl ketone, vinylidene chloride, Vinylidene compounds such as vinylidene bromide and vinylidene cyanide, acrylamide, methacrylamide, N
-butoxymethylacrylamide, N-phenylacrylamide, diacetone acrylamide,
Acrylamide derivatives such as N,N-dimethylaminoethyl acrylamide, N-vinylsuccinimide, N-vinylpyrrolidone, N-vinylphthalimide, N-vinylcarbazole, vinylfuran, 2-vinylbenzofuran, vinylthiophenone, vinylimidazole, methyl Vinylimidazole, vinylpyrazole, vinyloxazolidone, vinylthiazole, vinyltetrazole, vinylpyridine, methylvinylpyridine, 2,4-
These include dimethyl-6-vinyltriazine, vinylquinoline, and epoxybutadiene. Examples of crosslinking polymerizable monomers include divinylbenzene, divinyltoluene, divinylxylene, divinylnaphthalene, divinylethylbenzene, divinylphenanthrene, trivinylbenzene, divinyldiphenyl, divinyldiphenylmethane, divinylbenzyl, divinyl phenyl ether, Divinyldiphenyl sulfide, divinyldiphenylamine, divinylsulfone, divinylketone, divinylfuran, divinylpyridine, divinylquinoline, diallyl phthalate, diallyl maleate,
Diallyl fumarate, diallyl succinate, diallyl oxalate, diallyl adipate, diallylamine, triallylamine, N,N'-ethylene diacrylamide, N,N'-methylene diacrylamide, N,N'-methylene dimethacrylamide,
Examples include ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and polyethylene glycol dimethacrylate. Preferred compositions of the resin that can be used in the present invention include chloromethylated and aminated polymer crosslinked products synthesized by addition copolymerization using divinylbenzene such as styrene, vinyltoluene, and ethylvinylbenzene as the main component; Aminated addition copolymers mainly composed of monomers with active groups such as styrene, epoxybutadiene, acrylamide, and crosslinking monomers such as divinylbenzene and triallyl isocyanurate, N-vinylphthalimide, Examples include those whose main component is a monomer having nitrogen that can be used as an exchange group, such as vinyl imidazole, vinyl pyridine, vinyl tetrazole, vinyl quinoline, divinyl pyridine, etc., and which are copolymerized with a crosslinkable monomer as necessary. . Amines that can be used for amination include triethanolamine, triethylamine, trimethylamine, triallylamine, diethanolamine,
Aliphatic amines such as diallylamine, diethylamine, dimethylamine, 2-aminoethanol, ethylamine, methylamine, ethanolamine,
Aniline, o-aminophenol, N,N-dimethylaniline, N-methylaniline, m-toluidine, p-toluidine, p-aminophenol,
Aromatic amines such as diphenylamine, pyridine,
r-picoline, piperidine, pyrazine, piperazine, indoline, indole, imidazole, 2
-methylimidazole, quinoline, 2,6-lutidine, 1,2,3,4-tetrahydroquinoline,
These include heterocyclic amines such as N-methylpyrrolidine and benzotriazole. In order to produce the anion exchange resin used in the method of the present invention from each of the above-mentioned components, a commonly used method can be adopted, but a more specific explanation will be as follows. Contains 6 to 98%, preferably 10 to 90% by weight, more preferably 20 to 80% by weight of non-crosslinked polymerizable monomer, based on the total weight of non-crosslinked polymerizable monomer and crosslinked polymerizable monomer. A polymerization initiator is added to the mixture containing 2 to 94% by weight of a crosslinkable monomer to carry out a polymerization reaction. As a polymerization initiator, peroxides such as benzoyl peroxide and methyl ethyl ketone peroxide, azobisisobutyronitrile, 2-
Contains azo compounds such as cyano-2-propylazoformamide. The amount of the polymerization initiator added is 0.01 to 12% by weight, preferably 0.1 to 5% by weight, and more preferably 0.2 to 3% by weight based on the total weight of the monomers. The polymerization temperature is usually in the range of 0°C to 200°C, preferably in the range of 15°C to 160°C, more preferably 30°C.
It ranges from ℃ to 130℃. The polymerization time is generally 30 minutes to 50 hours, preferably 1 hour to 30 hours, and more preferably 2 hours to 20 hours. After polymerization, it is cooled, washed with methanol and a large excess of water, dried, and then poured into chloromethyl ether to perform chloromethylation. The reaction temperature for chloromethylation is usually 2°C to 10°C, and the reaction time is 1 hour to 80 hours.
Preferably it is from 10 hours to 60 hours. When carrying out amination, the polymer prepared as described above is mixed with 5% of the amine used in the amination.
Perform the amination reaction in ~40% ethanol solution.
The temperature of the amination reaction is usually 20°C to 80°C, and the reaction time is usually 10 minutes to 10 hours. Among the methods of the present invention using a combination of an acid-dissociated type and a non-dissociated type of an organic acid or an inorganic acid and an anion exchange resin, the most advantageous carbon isotope separation method is to Taking advantage of the fact that tautomism occurs between the two types by changing the Adsorb it as a mold to form an adsorption zone of carbon-containing acid,
Next, H + is supplied from the top of the tower to desorb the carbon-containing number as a non-dissociated type again, and in the adsorption zone, the acid-dissociated chemical species adsorbed to the resin and the non-dissociated chemical species present in the solution phase are continuously separated. This is a method in which isotope exchange reactions are superimposed by bringing the two molecules into contact with each other. When using the above chromatography operation for CO 2 and HCO - 3 , HSCN and HOCN are added at the rear of the adsorption zone.
When using 13C, 13C can be concentrated at the front of the adsorption zone. The catalytic exchange reaction between the anion exchange resin and the carbon-containing organic functional or inorganic acid is generally preferably carried out at a temperature range of 0°C to 150°C. Furthermore, as a result of various studies on the ionization index pKa of the carbon-containing acid used and the pKa of the ion exchange resin, it was found that pKaR>pKa′, where the pKa of the anion exchange resin is pKaR and the pKa of the carbon-containing acid used is pKa′. It has been found that in the case of the combination with the relationship -2, a particularly sharp interface is formed and a preferable structure can be obtained. Next, as a specific example of the present invention, H 2 CO 3 , that is, a carbon isotope exchange reaction between CO 2 and HCO - 3 will be explained. The fact that the equilibrium constant K in equation (3) is slightly larger than 1 has already been shown by H.C.
Urey et al. revealed that when an isotope conversion reaction is carried out between HCO - 3 adsorbed on an anion exchange resin and dissolved CO 2 present in the solution phase in contact with it, 13 C is transferred to the resin phase. Can be concentrated. In addition, CO 2 is added to the anion exchange resin made of OH - adsorption type.
A dissolved liquid is supplied to adsorb HCO - 3 , and then H + is released from the top of the column to be re-desorbed as CO 2. HCO - 3 in the resin phase and CO 2 in the solution phase are brought into continuous contact, and the resin Needless to say, it is possible to obtain a high concentration of H 13 CO - 3 by superimposing phase and solution phase isotope exchange reactions. This isotope exchange reaction is a solid-liquid method, and it goes without saying that it has a higher spatial efficiency and is more advantageous than a gas-liquid method that does not use a resin phase .
If the amount of dissolved CO 2 is increased by increasing the pressure above G, the separation efficiency will be further improved. The preferred reaction temperature for this system is 0 to 120°C, more preferably 20 to 90°C. Further, the above-mentioned relationship pKaR>pKa'-2 also holds true in this system. Examples are shown below. Example 1 A 10-inch four-necked flask was equipped with a stirrer and a thermometer, and 3000 g of water, 20 g of sodium polyacrylate and 82 g of salt as suspending agents, 900 g of styrene, 35 g of ethylvinylbenzene, and 65 g of divinylbenzene were added.
g, methyl benzoate 380g, isoamyl alcohol 320g, normal heptane 1100g as polymerization solvent
g, and 14 g of azobisisobutyronitrile were added and stirred thoroughly to disperse the oil droplets. This at 70℃
Polymerization was carried out for 28 hours, and after the polymerization was cooled, the resin was transferred to a washing tower with a filter and thoroughly washed with 10 parts of methanol and a large excess of water. After washing, it was dried at 2 mmHg and 40°C for 72 hours, and 300 g of the dried resin was poured into chloromethyl methyl ether kept at 5°C, and reacted with 450 g of zinc chloride as a catalyst for 48 hours to undergo chloromethylation. This was followed by amination in a 20% trimethylamine ethanol solution at 40° C. for 5 hours to obtain a strongly basic anion exchange resin (pKaR>14). Mix an aqueous solution containing HCO - 3 ions and a strongly basic anion exchange resin at a weight ratio of 2:1 (resin is dry weight) and stir thoroughly (290°K). After HCO - 3 reaches adsorption equilibrium, H 2 SO 4 is added dropwise to adjust the pH to 4. After reaching isotope exchange equilibrium, the resin phase and solution phase were separated, and the carbon isotope ratios in CO 2 in the solution and HCO - 3 in the resin were measured using an electron impact mass spectrometer. Got the value.

【衚】 これにより固液間のHCO- 3、CO2の同䜍䜓亀換
反応平衡定数K′䞋匏は1.012ず求められた。 実斜䟋  mmφ円筒状カラムに実斜䟋により合成され
た匷塩基性むオン亀換暹脂を充填しお高さ900mm
の暹脂床を䜜り、25℃においおアルカリでコンデ
むシペニングし、OH-型にする。CO2をKgcm2
の圧で飜和溶存させた氎溶液を䟛絊し、HCO- 3
吞着垯を圢成した埌、0.03MH2SO4でCO2ずしお
脱離させながら、吞着垯を進行させ、溶出された
CO2を捕集し、 13CO2 12CO2同䜍䜓比を電子衝
撃型質量分析蚈で枬定した。 展開時間min 13C 12C 205.0 1.163 210.0 1.167 215.0 1.183 220.0 1.199 225.0 1.256 230.0 1.298 実斜䟋  mmφ円筒状カラムに実斜䟋により合成され
た匷塩基性むオン亀換暹脂を充填しお高さ900mm
の暹脂床を䜜り、25℃においおアルカリでコンデ
むシペニングし、OH-型にする。CO2の10Kgcm2
加圧溶存氎溶液を䟛絊し、HCO- 3吞着垯を圢成し
た埌、0.2MH2SO4でCO2ずしお脱離させながら、
吞着垯を進行させ、溶出されたCO2を捕集し、
13CO2 12CO2同䜍䜓比を電子衝撃型質量分析蚈
で枬定した。 埌端濃瞮郚の枬定結果を瀺す。 展開時間min 13C 12C 42.5 1.165 43.5 1.183 44.5 1.226 45.5 1.274 46.5 1.361 47.5 1.382
[Table] As a result, the equilibrium constant K' (formula below) of isotope exchange reaction between solid and liquid between HCO - 3 and CO 2 was determined to be 1.012. Example 2 An 8 mmφ cylindrical column was filled with the strong basic ion exchange resin synthesized according to Example 1 to a height of 900 mm.
A resin bed is prepared and conditioned with alkali at 25°C to form the OH - form. CO 2 1Kg/cm 2
Supply a saturated aqueous solution at a pressure of G, and HCO - 3
After forming an adsorption zone, the adsorption zone is advanced while being desorbed as CO 2 with 0.03MH 2 SO 4 and the eluted
CO 2 was collected and the 13 CO 2 / 12 CO 2 isotope ratio was measured using an electron impact mass spectrometer. Developing time (min) 13 C/ 12 C 205.0 1.163 210.0 1.167 215.0 1.183 220.0 1.199 225.0 1.256 230.0 1.298 Example 3 An 8 mmφ cylindrical column was filled with the strong basic ion exchange resin synthesized in Example 1 to a height of 900 mm.
A resin bed is prepared and conditioned with alkali at 25°C to form the OH - form. 10Kg/ cm2 of CO2
After supplying a pressurized dissolved aqueous solution and forming an HCO - 3 adsorption zone, while desorbing it as CO2 with 0.2MH2SO4 ,
Advancing the adsorption zone and collecting the eluted CO2 ,
The 13 CO 2 / 12 CO 2 isotope ratio was measured using an electron impact mass spectrometer. The measurement results of the rear end concentration section are shown. Deployment time (min) 13 C/ 12 C 42.5 1.165 43.5 1.183 44.5 1.226 45.5 1.274 46.5 1.361 47.5 1.382

Claims (1)

【特蚱請求の範囲】  炭玠を含む酞の酞解離型化孊皮ず非解離型化
孊皮の炭玠の同䜍䜓亀換反応による炭玠同䜍䜓の
分離法であ぀お、炭玠を含む酞の酞解離型化孊皮
ず非解離型化孊皮を含有する氎溶液を、固盞ずし
おの陰むオン亀換暹脂ず接觊させるこずにより、
酞解離型化孊皮ず非解離型化孊皮間の炭玠の同䜍
䜓亀換反応を行わせるず共に、該酞解離型化孊皮
を陰むオン亀換暹脂に吞着せしめ、 12C及び 13C
を溶液盞及び固盞、又は固盞及び溶液盞にそれぞ
れ分離し、 13Cが分離される盞に 13Cを濃瞮する
こずを特城ずする炭玠同䜍䜓分離法。  炭玠を含む有機酞又は無機酞の酞解離型化孊
皮ず非解離型化孊皮が溶液のPHを倉化させるこず
により互倉するこずを利甚し、酞及びアルカリで
䞡型化孊皮を還流させるクロマトグラフむヌ操䜜
により質量数13の炭玠の濃瞮を図る特蚱請求の範
囲第項蚘茉の炭玠同䜍䜓分離法。  匏pKaRpKa′− 〔䜆し、pKaRは陰むオン亀換暹脂の電離指数
pKa、pKa′は含炭玠有機酞又は無機酞の
pKa、〕 を満足する陰むオン亀換暹脂を甚いる特蚱請求の
範囲第項又は第項蚘茉の炭玠同䜍䜓分離法。  炭玠を含む無機酞ずしお炭酞を遞び、非解離
型化孊皮ずしおの溶存二酞化炭玠ず酞解離型化孊
皮ずしおの重炭酞むオンHCO- 3ずの間の炭玠
の同䜍䜓亀換反応を利甚する特蚱請求の範囲第
項、第項又は第項蚘茉の炭玠同䜍䜓分離法。  暹脂盞ず溶液盞ずの反応系をKgcm2以䞊
の圧力に加圧するこずにより溶液盞䞭の溶存二酞
化炭玠の量を増倧させる特蚱請求の範囲第項蚘
茉の炭玠同䜍䜓分離法。  反応枩床を20〜90℃ずする特蚱請求の範囲第
項又は第項蚘茉の炭玠同䜍䜓分離法。
[Scope of Claims] 1. A method for separating carbon isotopes by an isotope exchange reaction between an acid-dissociated chemical species of a carbon-containing acid and a non-dissociable chemical species, the method comprising an acid-dissociated chemistry of a carbon-containing acid. By contacting an aqueous solution containing a species and an undissociated chemical species with an anion exchange resin as a solid phase,
A carbon isotope exchange reaction between an acid-dissociated chemical species and a non-dissociated chemical species is performed, and the acid-dissociated chemical species is adsorbed on an anion exchange resin, and 12 C and 13 C
A carbon isotope separation method characterized by separating 13 C into a solution phase and a solid phase, or a solid phase and a solution phase, respectively, and concentrating 13 C in the phase from which 13 C is separated. 2 Chromatography that utilizes the fact that acid-dissociated chemical species and non-dissociated chemical species of carbon-containing organic acids or inorganic acids are tautomic by changing the pH of the solution, and refluxes both types of chemical species with acid and alkali. 2. The carbon isotope separation method according to claim 1, wherein carbon having a mass number of 13 is enriched by graphite operation. 3 Formula pKaRpKa'-2 [However, pKaR is the ionization index (pKa) of the anion exchange resin, and pKa' is the ionization index (pKa) of the carbon-containing organic acid or inorganic acid.
The carbon isotope separation method according to claim 1 or 2, which uses an anion exchange resin that satisfies pKa. 4. Select carbonic acid as an inorganic acid containing carbon, and utilize the carbon isotope exchange reaction between dissolved carbon dioxide as a non-dissociable chemical species and bicarbonate ion (HCO - 3 ) as an acid-dissociable chemical species. Claim 1
The carbon isotope separation method according to item 2, item 3, or item 3. 5. The carbon isotope separation method according to claim 4, which increases the amount of carbon dioxide dissolved in the solution phase by pressurizing the reaction system of the resin phase and the solution phase to a pressure of 1 Kg/cm 2 G or more. . 6. The carbon isotope separation method according to claim 4 or 5, wherein the reaction temperature is 20 to 90°C.
JP17078079A 1979-12-27 1979-12-27 Separation of carbon isotope by chemical exchange method Granted JPS5691826A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17078079A JPS5691826A (en) 1979-12-27 1979-12-27 Separation of carbon isotope by chemical exchange method
US06/293,220 US4406870A (en) 1979-12-27 1980-12-02 Method for the separation of carbon isotopes by chemical exchange method
PCT/JP1980/000326 WO1981001802A1 (en) 1979-12-27 1980-12-25 Process for separating carbon isotopes by chemical exchange
DE8181900082T DE3069848D1 (en) 1979-12-27 1980-12-25 A method for the separation of carbon isotopes by chemical exchange method
EP81900082A EP0042877B1 (en) 1979-12-27 1980-12-25 A method for the separation of carbon isotopes by chemical exchange method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17078079A JPS5691826A (en) 1979-12-27 1979-12-27 Separation of carbon isotope by chemical exchange method

Publications (2)

Publication Number Publication Date
JPS5691826A JPS5691826A (en) 1981-07-25
JPS6320563B2 true JPS6320563B2 (en) 1988-04-28

Family

ID=15911229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17078079A Granted JPS5691826A (en) 1979-12-27 1979-12-27 Separation of carbon isotope by chemical exchange method

Country Status (1)

Country Link
JP (1) JPS5691826A (en)

Also Published As

Publication number Publication date
JPS5691826A (en) 1981-07-25

Similar Documents

Publication Publication Date Title
CN104292383A (en) Gallium-adsorbing chelating resin and preparation method thereof
CN112341633B (en) MOFs material with high gas adsorbability and preparation method and application thereof
CN110227418A (en) It is a kind of for being enriched with the magnetic COF-TbTpa and its preparation method and application of Fipronil and its metabolin
CN106984137B (en) CO absorption device capable of realizing rapid phase separation2Preparation and use method of polyamino acid ionic liquid type phase separation absorbent
EP0042877B1 (en) A method for the separation of carbon isotopes by chemical exchange method
CN100448526C (en) Synthesis of ion imprinted polymer particles
JPH0550329B2 (en)
Badawy Uranium isotope enrichment by complexation with chelating polymer adsorbent
CN107261846B (en) Method for continuously separating enriched boron isotopes by ion exchange chromatography based on gradient elution
JPS6320563B2 (en)
Rivas et al. Capability of cationic water‐soluble polymers in conjunction with ultrafiltration membranes to remove arsenate ions
CN106964323B (en) A kind of CO containing imine linkage2Adsorbent material and its preparation method and application
Vural et al. Ligand sorption kinetics of aromatic amines on new ligand‐exchanger sporopollenin in cobalt ion form
CN116688717A (en) Efficient composite CO 2 Trapping agent and preparation method and application thereof
CN103537325A (en) Preparation method of difunctional group weak-base anion exchange resin
CN116284535A (en) Preparation method of high-temperature-resistant strong-alkaline alcohol compound ion exchange resin
CN104707584A (en) Preparation method for molecularly imprinted solid-phase extraction columns of anthraquinone sensitizing disperse dyes
CN106986958A (en) A kind of preparation method of the polyaminoacid ionic liquid of absorbing acid gases
CN112876587A (en) Medium-strength alkaline styrene amphoteric ion exchange resin and preparation method thereof
JPH0549328B2 (en)
She et al. Equilibrium studies on reactive extraction of glycine with di (2‐ethylhexyl) phosphoric acid dissolved in n‐octanol, butyl acetate and solvent oil
Matsusaki et al. Selectivity of anion exchange resin modified with anionic polyelectrolyte
Radova et al. Sorption of Pd (II) from aqueous solutions of chlorocomplexes by the copolymer of glycidylmethacrylate and ethylenedimethacrylate modified with ethylenediamine. The structure of complexes
Sun et al. Adsorption of tannin acid onto an aminated macroporous resin from aqueous solutions
JP2879648B2 (en) Selective metal ion separating agent containing kempimide derivative and method for treating aqueous solution containing metal ions using selective ion separating agent