JPS63204781A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63204781A
JPS63204781A JP62038251A JP3825187A JPS63204781A JP S63204781 A JPS63204781 A JP S63204781A JP 62038251 A JP62038251 A JP 62038251A JP 3825187 A JP3825187 A JP 3825187A JP S63204781 A JPS63204781 A JP S63204781A
Authority
JP
Japan
Prior art keywords
laser
waveguide
grooves
semiconductor laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62038251A
Other languages
Japanese (ja)
Other versions
JPH0728092B2 (en
Inventor
Kimihide Mizuguchi
水口 公秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62038251A priority Critical patent/JPH0728092B2/en
Priority to KR1019880001238A priority patent/KR900008629B1/en
Priority to US07/157,049 priority patent/US4847848A/en
Publication of JPS63204781A publication Critical patent/JPS63204781A/en
Publication of JPH0728092B2 publication Critical patent/JPH0728092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/14Heads, e.g. forming of the optical beam spot or modulation of the optical beam specially adapted to record on, or to reproduce from, more than one track simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Abstract

PURPOSE:To monitor respective laser beams fed by each laser chip sufficiently on a large scale by causing waveguide grooves to have a broader width, the larger grooves' extension directions have angles to the outgoing directions of respective laser beams. CONSTITUTION:The first-third waveguide grooves 32-34 which are formed at the fixing face side of a waveguide means 31 extend from a laser array side 23 to a photodetector side 27 and openings at the laser array side 23 are formed so that they are the same as intervals of optical axes 24b-26b and the openings at the photodetector side 27 are formed so that they are the same as intervals of light receiving regions 28-30. When a laser beam outgoing plane of the second laser chip 25 faces to the second light receiving region 29, the second waveguide groove 33 extends in parallel with the optical axes 24b-26b and then the first and third waveguide grooves 32 and 34 do not extend in parallel with the optical axes 24b-26b. The widths of the first and third waveguide grooves 32 and 34 are twice that of the second waveguide groove 33 and also gold as well as others are vaporized at the insides of respective grooves 32 and 34 and these arrangements serve the purpose of improving reflaction of light.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光学ディスク読取装置の光源として最適な半導
体レーザ装置に胸する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention is directed to a semiconductor laser device that is most suitable as a light source for an optical disk reader.

(ロ)従来の技術 現在、光学ディスク読取用の装置としては、消去用、続
出用、書込用の各ビームを個々に出力できるように6つ
の独立した共振器を約100μmの間隔で並列させてな
る6ピーム型の半導体レーザ装置が提案されている(実
願昭61−40952号〕。
(b) Conventional technology Currently, optical disk reading devices consist of six independent resonators arranged in parallel at intervals of about 100 μm so that each beam for erasure, continuous output, and writing can be output individually. A 6-beam type semiconductor laser device has been proposed (Utility Application No. 40952/1983).

(ハ)発明が解決しようとする間粗点 このように逓伝した共振器から出射されるレーザ光を夫
々独立にモニタするためには特開111A58−102
590号公報に囲示されている如く共振器近傍に共振器
個々に対給してモニタ川の受光素子を配する方法が考え
られる。
(c) Shortcomings to be solved by the invention In order to independently monitor the laser beams emitted from the resonators transmitted in this way, Japanese Patent Application Laid-Open No. 111A58-102
As shown in Japanese Patent No. 590, a method of arranging monitor light receiving elements in the vicinity of the resonators in pairs with each resonator may be considered.

然るに、半導体レーザビーム(共振器)から出力される
レーザ光のビーム広がり角θ〃は少なくとも10°程度
ある丸め、上記チップと受光素子との間隔は500μm
以下としない限り正確にモニタすることはできない。
However, the beam spread angle θ of the laser light output from the semiconductor laser beam (resonator) is rounded to at least about 10 degrees, and the distance between the chip and the light receiving element is 500 μm.
Accurate monitoring is not possible unless the following is done.

即ち、第6図に示す如く、100μm間隔(具体内には
各チップから出力されるレーザ光の光軸(4)間距離)
で並列された半導レーザチップ(1)〜(3)の各々の
出射面に対向して複数の受光素子(5)〜(7)が紀さ
れ、更に上記谷チップから出力されるレーザ光(1a)
〜(6a)の6広がり角が10°でかつ谷チップ(1)
〜(3)と受光素子!5)〜(7)との距離が500μ
m以上である1祭、受光素子側において各レーザ光が重
畳することとなる。従って各受光素子(5)〜(71は
大々対向するレーザチップ以外のチップから出力される
レーザ光をも受光することとなり1個々のレーザチップ
毎のモニタが不可能となる。
That is, as shown in Fig. 6, the interval is 100 μm (specifically, the distance between the optical axes (4) of the laser beams output from each chip).
A plurality of light-receiving elements (5)-(7) are arranged opposite to the emission surfaces of the semiconductor laser chips (1)-(3) arranged in parallel at 1a)
~(6a) 6 Spread angle is 10° and valley chip (1)
~(3) and the light receiving element! The distance between 5) and (7) is 500μ
When the distance is greater than m, the respective laser beams will be superimposed on the light receiving element side. Therefore, each of the light receiving elements (5) to (71) also receives laser light output from chips other than the opposing laser chip, making it impossible to monitor each individual laser chip.

尚、谷チップ(1)〜(3)と受光素子(5)〜17)
との距離を500μm以下とすると上記問題は解決でき
るが、このように近接させることはレーザチップと受光
素子との光軸合せ及びワイヤボンドによる配縁等が繁雑
となり実用的ではない。
In addition, the valley chips (1) to (3) and the light receiving elements (5) to 17)
Although the above problem can be solved by setting the distance between the laser chip and the light receiving element to 500 μm or less, it is not practical to make the laser chip and the light receiving element so close to each other because it requires complicated optical axis alignment and wire bonding.

そこで、本願出願人は実願昭61−185275号にお
いてシリコン基板上に溝幅が同一の複数の導波溝が末広
がり状に形成された専政部材を各レーザチップと受光素
子との間に配し、上記導波溝により谷レーザチップから
出力されるレーザ光を完全に分−する構成を提案した。
Therefore, in Utility Application No. 185275/1980, the applicant of the present application placed a dedicated member in which a plurality of waveguide grooves with the same groove width were formed on a silicon substrate in a shape that widened toward the end, between each laser chip and a light receiving element. We also proposed a configuration in which the laser light output from the valley laser chip is completely separated by the waveguide groove.

第4図は犬鵬唱61−185273号に3いて提案され
た装置を示しく8)は専政部材であり、(9)〜u幻は
該半波部材にjし成され良導波溝である。尚、第4図中
、第6図と同一箇所には同一番号を付し、説明を省略す
る。
Figure 4 shows the device proposed in No. 61-185273, where 8) is a self-contained member, and (9) to u are a good waveguide groove formed in the half-wave member. It is. Note that in FIG. 4, the same parts as in FIG. 6 are given the same numbers, and explanations are omitted.

然るに、所る傳1祝では、中央のレーザチップ(2)と
対応する導波溝u1の延在方向は祈るチップ(21から
出力されるレーザ光(23)の出射方向と平行となるた
め問題はないが、左右のレーザチップ(1)(3)と対
もする導波溝+91fll)の延在方向は祈るチップ(
1)(3)から出力されるレーザ光(1a)(3a)の
出射方向と平行とはならないため、上記中央の導波溝t
lGを専政するレーザ光(2a)に軟ぺて左右の4[溝
191 (1υを専政するレーザ光(1M)(3m)の
溝壁面では反射減衰量が大となる。この伯果受光素子(
5)〜(7)の出力は左右のものが中央のものに比べて
1/10以下に減少するので、充分なモニタが不可能で
あった。
However, in a certain Den 1 celebration, there is a problem because the extending direction of the waveguide groove u1 corresponding to the central laser chip (2) is parallel to the emission direction of the laser beam (23) output from the praying chip (21). However, the extending direction of the waveguide grooves (+91fl), which are paired with the left and right laser chips (1) and (3), is the same as the praying chip (
1) Since it is not parallel to the emission direction of the laser beams (1a) and (3a) output from (3), the central waveguide groove t
The laser beam (2a) that dominates lG has a large return loss on the groove wall surface of the 4 [grooves 191 (1M) (3m) on the left and right of the soft plate (laser light (1M) that dominates 1υ). element(
Since the outputs of 5) to (7) on the left and right sides were reduced to less than 1/10 of the outputs in the center, sufficient monitoring was impossible.

に)間粗点を解決するだめの手段 本発明#i祈る点に亀みてなされたもので、その構成的
特徴は、犬々2方向にレーザビームを出射する複数の半
導体レーザチップをアレイ状に構成した半導体レーザア
レイと、び半導体レーザアレイの各チップから出射され
一方の同一方向へ進行する各レーザビームを検出する受
光素子と、上記半導体レーザアレイと上記受光素子との
間に配置され、前記各レーザビームを受光素子へ導く複
数の導波溝が形成されたlJ反部材と、からなる半4休
レーザ装置において、上記辱i溝はその延在方向が上記
′P郡体レーザチップから出射されるレーザ光の出射方
向に対して角度をもつものほど幅広としたことにある。
2) Means to solve the problem of rough spots This invention was made in consideration of the points of the present invention #i, and its structural feature is that a plurality of semiconductor laser chips that emit laser beams in two directions are arranged in an array. a light receiving element for detecting each laser beam emitted from each chip of the semiconductor laser array and traveling in the same direction; and a light receiving element disposed between the semiconductor laser array and the light receiving element, In a semi-quadruple laser device consisting of a lJ anti-member in which a plurality of waveguide grooves are formed to guide each laser beam to a light-receiving element, the extending direction of the i-groove is emitted from the 'P group laser chip. The reason is that the wider the angle to the emission direction of the laser beam, the wider the angle.

(ホ)作 用 祈る構成によれば、4波溝内でのレーザ光の反射回数t
−減少でさる。
(e) According to the configuration, the number of reflections of the laser beam within the four wave grooves is t.
- Monkey due to decrease.

(へ)夫施例 第1図及びvJ2図は本発明の一夫施例を示し、(社)
はヒートシンクであり、シリコン等の半導体もしくは金
部等の良放熱体からなる。rμはヒートシンク(社)の
−主面上に積層されたIn層、儲は1対のレーザ光出射
面を有する弗1〜集6半辱休レーザチップ(至)〜磯か
らなるレーザアレイであり、該アレイはヒートシンク(
2)の−上口の左端側に谷チップ□□□〜(2)から出
力されるレーザ光(24a)〜(26a)の光軸(24
に+) 〜C26b)が平行となるように整列組直され
る。(2)はシリコンからなる受光素子、例〜渕は該受
光素子の一生面に形成された第1〜第5受光頭戚であり
、上記受光素子(昂はその一生面が各レーザチップ伽〜
彌の1方のレーザ光出射面と対向するようにヒートシン
ク211の右側に配される。尚、上記頂域迩〜Iの間隔
1i上記光軸(24b)〜(26b)の間隔より大であ
る。6υはシリコンからなる4波手段であり、該手段は
上記レーザチップ(至)〜缶に隣接してヒートシンクu
上に同者される。1.3a〜1Aは上記等疫手段Gυの
固層面側にダイシングもしくはエツチングにより形成さ
れた第1〜第3尋波溝であり、B溝は上記レーザアレイ
の側から受光素子方何へ延在し、その開口はレーザアレ
イの側では上記光軸(24b)〜C26b)の間隔と、
また受光素子@側では受光領域1〜■の間隔と夫々同一
となるように形成される。従って、第2図に示す如く第
2レーザチツプ四のレーザ光出射面と第2受光領域凶と
が対向する場合、第2導波溝(至)は光軸(24b)〜
(26b)と平行に延在し、第1、第6導波溝(32(
ロ)は光軸(24b)〜(26b)と平行圧延在しない
こととなる。また、上記第1.6導波溝G3(至)の溝
幅は第1導波溝關のそれの約2倍とすると共に6溝64
〜(ロ)の内面には金等を蒸着し、光反射性を高めてい
る。
(f) Example of Kazuo Figures 1 and 2 show an example of Kazuo of the present invention.
is a heat sink, which is made of a semiconductor such as silicon or a good heat dissipation material such as a metal part. rμ is an In layer laminated on the main surface of a heat sink, and numeral is a laser array consisting of a laser chip (from 1 to 6) to iso, which has a pair of laser light emitting surfaces. , the array is a heat sink (
Optical axes (24
+) to C26b) are rearranged and rearranged so that they are parallel to each other. (2) is a light-receiving element made of silicon; for example, the first to fifth light-receiving heads are formed on the whole surface of the light-receiving element;
It is arranged on the right side of the heat sink 211 so as to face one laser beam emitting surface of the mirror. Incidentally, the distance 1i between the apex regions I and I is larger than the distance between the optical axes (24b) and (26b). 6υ is a four-wave means made of silicon, and this means is connected to the heat sink u adjacent to the laser chip (toward) to the can.
be joined by a superior. 1.3a to 1A are first to third cross-wave grooves formed by dicing or etching on the solid surface side of the isostatic means Gυ, and the B groove extends from the laser array side to the light receiving element. However, on the laser array side, the aperture is equal to the distance between the optical axes (24b) to C26b), and
Further, on the light receiving element @ side, the spacing is the same as that of the light receiving regions 1 to 2, respectively. Therefore, when the laser beam emitting surface of the second laser chip 4 and the second light receiving area face each other as shown in FIG.
(26b) and extend parallel to the first and sixth waveguide grooves (32(
B) is not rolled parallel to the optical axes (24b) to (26b). Further, the groove width of the 1.6th waveguide groove G3 (to) is approximately twice that of the first waveguide groove, and the 6th groove 64
The inner surface of ~(b) is vapor-deposited with gold or the like to enhance light reflection.

祈る装はでは、第1〜%6レーザチツプ(至)〜彌から
出射されるレーザ光(241)〜(26m)は夫々第1
〜第6導波溝国〜(財)を伝わって第1〜第6受光領w
、■〜■に入射することとなる。
In the prayer outfit, the laser beams (241) to (26m) emitted from the 1st to 6th laser chips (241) to 26m are the 1st to 6th laser chips, respectively.
~6th waveguide country~(foundation) to the 1st to 6th light receiving areas w
, ■ to ■.

また、祈る装置において第1〜第6レーザチツプ(至)
〜(支)から夫々同一出力のレーザ光を出射させたとこ
ろ、第1〜第5受光領域(ハ)〜■に入射するレーザ光
散の比は1:3:1乃至1:1:1となった。
In addition, in the prayer device, the first to sixth laser chips (towards)
When laser beams of the same output are emitted from ~ (branches), the ratio of laser light scattering incident on the first to fifth light receiving areas (c) to ■ is 1:3:1 to 1:1:1. became.

尚、本来施例では光軸(24b)〜(26b)に平行で
ない!lI波溝の溝幅を光軸に平行な導波溝の溝幅の約
21倍どしたが、このような溝幅は光軸と導波溝との角
度によって変更すべきものである。
Incidentally, in the embodiment, it is not parallel to the optical axes (24b) to (26b)! Although the groove width of the II wave groove was set to about 21 times the groove width of the waveguide groove parallel to the optical axis, such groove width should be changed depending on the angle between the optical axis and the waveguide groove.

即ち、上記光軸と#!導波溝の角度が大きくなればなる
ほど上記倍率を大さくすることKより導波溝内での光反
射回政を減少させて、反射によるレーザ光の減食を抑止
できる。
That is, the above optical axis and #! As the angle of the waveguide groove becomes larger, by increasing the above-mentioned magnification, it is possible to reduce the amount of light reflection within the waveguide groove, thereby suppressing the loss of laser light due to reflection.

(→ 発明の効果 本発明によれば、各レーザチップから出力される各レー
ザ光を従来に比して充分大さくモニタできる。
(→ Effects of the Invention According to the present invention, each laser beam output from each laser chip can be monitored in a sufficiently large size compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

凹 第1図及び第2Aは本発明の実施例を示し、第1図は第
2図のB −B’線断面図、第2図は第1図のA−に線
断面図、第6図及び第4図は大々従来例を説明するため
の模式図及び断面図である。 @・・・レーザアレイ、(至)〜■・・・%1〜第3半
導体レーザチップ、罰・・・受光素子、1〜/31・・
・第1〜第6交光′@駅、I3υ・・・都波部材、(至
)〜(2)・・・第1〜第5尋波溝。 出頗人三洋電機株式会社 代理人弁理士 西 野 卓 嗣(外1名)第1図 第3図 5.補正の対象 手続補正書(自発) 1、事件の表示 昭和62年特許願第38251、 発明の名称 半導体レーザ装置 3、補正をする者 事件との関係 特許出願人 名称 (188)三洋電機株式会社 4、代 理 人 住所 守口市京阪本通2丁目18番地 (外1名) 連結先:電話(東京) 835−1111特許tンター
駐在 中用ムの出射方向に対して角度をもつものほど幅
広と(2)明細書の「発明の詳細な説明」の欄。 6、補正の内容 (1)特、f請求の紀Ill!1を別紙の通り補正する
。 t21  Eel細書@5頁%3行乃至同頁第15行に
、「本発明は・・・とじたことにある。」とあるのを。 下記の通り補正する。 記 「本発明は祈る点に鑑みてなされたもので、その構成内
時&は、複数の平行な軸に沿って、夫々前後2方回にレ
ーザビームを出射する半導体レーザ手段と、該半導体レ
ーザ手段から1方向に出射される各レーザビームを夫々
個々に検出する複数の受光頭載が配された受光素子と、
上記半導体レーザ手段と上記受光素子との間に配置され
、上記各レーザビームを上記各受光@域へ辱く複数の導
波溝が形成された等波部材からなる半導体レーザ放置に
おいて、 上記導波溝μその延在方向が上記谷レーザビー特許請求
の範囲 された4′tL部材と、からなる半尋俸レーザ装置に宴
いて、
1 and 2A show an embodiment of the present invention, FIG. 1 is a sectional view taken along the line B-B' in FIG. 2, FIG. 2 is a sectional view taken along the line A- in FIG. 1, and FIG. and FIG. 4 are a schematic diagram and a sectional view for explaining a conventional example. @...Laser array, (to) ~■...%1~3rd semiconductor laser chip, Punishment...Light receiving element, 1~/31...
・1st to 6th traffic lights' @ station, I3υ... Tsunami parts, (to) - (2)... 1st to 5th fathom wave grooves. Takuji Nishino (1 other person), patent attorney representing Sanyo Electric Co., Ltd. Figure 1 Figure 3 Figure 5. Written amendment to the procedure to be amended (voluntary) 1. Indication of the case 1985 Patent Application No. 38251, Name of the invention Semiconductor laser device 3. Person making the amendment Relationship to the case Name of the patent applicant (188) Sanyo Electric Co., Ltd. 4 , Agent Address: 2-18 Keihan Hondori, Moriguchi City (1 other person) Contact: Telephone (Tokyo) 835-1111 Patent Center Station 2) "Detailed Description of the Invention" column of the specification. 6. Contents of the amendment (1) Special, f-claimed Ill! Correct 1 as shown in the attached sheet. t21 Eel specification @ page 5, line 3 to line 15 of the same page, it says, ``The present invention consists in...binding.'' Correct as shown below. ``The present invention has been made in view of the above points, and its configuration includes a semiconductor laser means that emits a laser beam twice in the front and back along a plurality of parallel axes, and the semiconductor laser a light receiving element provided with a plurality of light receiving heads for individually detecting each laser beam emitted from the means in one direction;
When the semiconductor laser is left in place, the semiconductor laser is made of a uniform wave member disposed between the semiconductor laser means and the light receiving element, and in which a plurality of waveguide grooves are formed for directing each of the laser beams to each of the light receiving regions. A half-diameter laser device comprising a 4'tL member having a groove μ whose extending direction is within the scope of the above-mentioned valley laser beam patent claim,

Claims (1)

【特許請求の範囲】[Claims] (1)夫々2方向にレーザビームを出射する複数の半導
体レーザチップをアレイ状に構成した半導体レーザアレ
イと、該半導体レーザアレイの各チップから出射され一
方の同一方向へ進行する各レーザビームを検出する受光
素子と、上記半導体レーザアレイと上記受光素子との間
に配置され、前記各レーザビームを受光素子へ導く複数
の導波溝が形成された導波部材と、からなる半導体レー
ザ装置において、 上記導波溝はその延在方向が上記半導体レーザチップか
ら出射されるレーザ光の出射方向に対して角度をもつも
のほど幅広としたことを特徴とする半導体レーザ装置。
(1) Detecting a semiconductor laser array configured in an array of a plurality of semiconductor laser chips that each emit laser beams in two directions, and each laser beam emitted from each chip of the semiconductor laser array and traveling in the same direction. A semiconductor laser device comprising: a light-receiving element; a waveguide member disposed between the semiconductor laser array and the light-receiving element and having a plurality of waveguide grooves for guiding each laser beam to the light-receiving element; A semiconductor laser device characterized in that the width of the waveguide groove is increased as the direction of its extension is at an angle to the emission direction of laser light emitted from the semiconductor laser chip.
JP62038251A 1987-02-20 1987-02-20 Semiconductor laser device Expired - Lifetime JPH0728092B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62038251A JPH0728092B2 (en) 1987-02-20 1987-02-20 Semiconductor laser device
KR1019880001238A KR900008629B1 (en) 1987-02-20 1988-02-10 Semiconductor laser system
US07/157,049 US4847848A (en) 1987-02-20 1988-02-16 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62038251A JPH0728092B2 (en) 1987-02-20 1987-02-20 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS63204781A true JPS63204781A (en) 1988-08-24
JPH0728092B2 JPH0728092B2 (en) 1995-03-29

Family

ID=12520093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62038251A Expired - Lifetime JPH0728092B2 (en) 1987-02-20 1987-02-20 Semiconductor laser device

Country Status (2)

Country Link
JP (1) JPH0728092B2 (en)
KR (1) KR900008629B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297081A (en) * 1988-10-03 1990-04-09 Mitsubishi Electric Corp Semiconductor array laser
JPH0323959U (en) * 1989-07-20 1991-03-12
US5438586A (en) * 1992-11-30 1995-08-01 Canon Kabushiki Kaisha Apparatus with light-emitting element and method for producing it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297081A (en) * 1988-10-03 1990-04-09 Mitsubishi Electric Corp Semiconductor array laser
JPH0323959U (en) * 1989-07-20 1991-03-12
US5438586A (en) * 1992-11-30 1995-08-01 Canon Kabushiki Kaisha Apparatus with light-emitting element and method for producing it

Also Published As

Publication number Publication date
JPH0728092B2 (en) 1995-03-29
KR900008629B1 (en) 1990-11-26
KR880010523A (en) 1988-10-10

Similar Documents

Publication Publication Date Title
JP3589299B2 (en) Beam shaping device
IE820653L (en) Semiconductor laser having two radiation beams
JPS5997117A (en) Optical apparatus
ATE253231T1 (en) ASYMMETRIC REFLECTION ARRANGEMENT FOR THE ADDITION OF HIGH POWER LASER BEAMS
KR890004646B1 (en) Semiconductor device
JP4264231B2 (en) Concentrator
JP2000249875A (en) Optical communication module
JPS63204781A (en) Semiconductor laser device
CA2038334C (en) Apparatus and method for detecting the power level in single and multi-stripe integrated lasers
JPS58153388A (en) Monitoring method for semiconductor laser output beam
JPH08148756A (en) Semiconductor laser device
JP2005249547A5 (en)
JPS61144608A (en) Three-dimensional optical circuit
JPS63234585A (en) Semiconductor laser array device
JPH0635493Y2 (en) Semiconductor laser device
JPH0297081A (en) Semiconductor array laser
JPH01208886A (en) Semiconductor laser device
JPH0447980Y2 (en)
JPH04283708A (en) Optical module
JPH0627977Y2 (en) Semiconductor laser device
JPH0429582Y2 (en)
JPH01154583A (en) Multibeam semiconductor laser
JPS59135790A (en) Integrated semiconductor laser device
JP2910217B2 (en) prism
JPS63145359U (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term