JPS6320467B2 - - Google Patents

Info

Publication number
JPS6320467B2
JPS6320467B2 JP3616284A JP3616284A JPS6320467B2 JP S6320467 B2 JPS6320467 B2 JP S6320467B2 JP 3616284 A JP3616284 A JP 3616284A JP 3616284 A JP3616284 A JP 3616284A JP S6320467 B2 JPS6320467 B2 JP S6320467B2
Authority
JP
Japan
Prior art keywords
particle size
average particle
graphite
carbon black
nickel powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3616284A
Other languages
Japanese (ja)
Other versions
JPS60181174A (en
Inventor
Sadao Deyama
Koichi Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP3616284A priority Critical patent/JPS60181174A/en
Publication of JPS60181174A publication Critical patent/JPS60181174A/en
Publication of JPS6320467B2 publication Critical patent/JPS6320467B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、OA機器などのプラスチツク製筐体
に電磁波シールド処理を施すための塗料に関する
ものであり、従来より高く安定したシールド効果
と、その効果の経時的劣化の少ない塗料の開発を
目的としてなされたものである。 いわゆるパソコン、ワークステーシヨンおよび
ワードプロセツサーに代表されるOA機器などの
電子機器の筐体は従来殆ど金属製であつたが、機
器の小型・軽量化指向ならびにコストの面から、
次第にプラスチツク製に代えられている。しかし
これに伴い、電磁波の漏れが問題になつている。 即ち、筐体が金属製の場合は、筐体自身が電磁
波を吸収および反射して筐体内外の電磁波を遮断
していたのに対して、筐体がプラスチツクの場合
は、プラスチツクが電磁波を透過させるために、
機器が発生する電磁波を外部に漏らし、あるいは
外部の電磁波が筐体内に侵入して機器の誤動作を
起こす虞れがある。また、OA機器から漏洩する
電磁波は通常周波数30〜1000MHzであるが、この
漏洩を防ぐことは作業者の健康のためにも不可欠
のことである。これらの理由から、電子機器のプ
ラスチツク製筐体に電磁波シールド処理を施す必
要が出てきた。 従来プラスチツクの電磁波シールド処理には、
プラスチツクに導電性フイラーを混合してプラス
チツク自体にシールド性をもたせる方法と、プラ
スチツクの表面にシールド材を付着させる方法と
がある。現在は後者が主流であり、金属フイルム
(Al、Cu、Feなど。)を貼る方法や、金属溶射
(Zn)、メツキ、導電性塗料の塗布による導電性
被膜の形成などがある。本発明は、最後に記した
導電性被膜形成に用いる塗料に属するものであ
る。 本発明者らが先に開発した電磁波シールド塗料
(特願昭58−112478;特開昭60−4569)は、ニツ
ケル粉末にカーボンブラツクまたは黒鉛を0.5〜
20重量%添加したフイラーを含有する組成で、従
来のフイラーが金属粉単味のものよりも優れた電
磁波シールド効果を示す塗料であつた。ちなみ
に、フイラーの成分が金属粉単味の場合に比べ、
これに少量の黒鉛などを添加するとその減衰度は
急激に向上する。この効果は金属粉に対する添加
量がごく僅かな0.5%以上で有意となり、2%の
付近で極大値に達した後、添加量がさらに増える
と減少の傾向を示し、30%では金属粉単味より劣
る減衰度しか得られない。そこで添加の効果が確
実に大きい範囲として黒鉛およびカーボンブラツ
クの添加量を0.5〜20%の範囲としたのが、この
先発明の骨子である。 その後、この電磁波シールド塗料について更に
改良を重ねた結果、先発明の骨子を踏襲した上で
フイラーに黒鉛とカーボンブラツクとを併用し、
且つその配合割合を特定の範囲に限定した場合に
従来より高い電磁波シールド効果が得られると共
に、その効果を長時間維持することができること
を見出して本発明に到達した。 即ち本発明は、ニツケル粉末に黒鉛およびカー
ボンブラツクを合わせて0.5〜20重量%添加した
フイラーを含有する塗料において、フイラー中の
黒鉛とカーボンブラツクとの割合(重量比)を
90:10〜50:50の範囲とすることを骨子とするも
のである。 なお、長期間塗料を安定した懸濁状態に保ち、
且つ強固な塗膜を形成するためには、塗料組成物
中の固体粒子を微細化する必要がある。この理由
からニツケル粉末は平均粒径5μ以下のものが、
フレーク状ニツケルの場合は平均粒径50μ以下の
ものが好ましく、両者を混用しても差し支えはな
い。さらに、黒鉛粉末は平均粒径10μ以下のもの
が、カーボンブラツクは平均粒径1μ以下のもの
が好適である。 このように選択組み合わせると単に塗布作業時
における塗料の可使時間が長くなるだけでなく、
黒鉛の粗い粒子の間隙に微細なカーボンブラツク
の粒子が充填され、緻密で強固な塗膜を形成する
ことができる。 以下に本発明を、実施例により更に詳細に説明
する。 実施例 先ず導電性フイラーの材料として平均粒径5μ
の黒鉛粉、平均粒径0.1μのカーボンブラツク、平
均粒径2.5μのカーボニルニツケルおよび平均粒径
40μのフレーク状ニツケルを、塗料の樹脂成分と
して分子量約80000のメチルメタクリレートを主
成分とするアクリル樹脂、有機溶剤としてトルエ
ン:メチルエチルケトン=7:3の混合物からな
る溶剤を用意した。次いでこれらを後記の第1表
に示す割合に配合してボールミル中で混和し、塗
料1から塗料16を調合した。なお表中の配合割合
は重量部である。 次に、これらの塗料を150×150×2mmの大きさ
のABS樹脂板に、乾燥後の膜厚が50μになるよう
にそれぞれ塗布し、24時間自然乾燥してシールド
効果測定用の試料(試料1から試料16)を作製し
た。なお、試料番号は塗料番号に対応している。 シールド効果の測定:所定の間隔で配置された
一対のアンテナの中間の位置に、アンテナを結ぶ
直線とその面が垂直になるように樹脂板を置き、
アンテナの一方から周波数500MHzの電磁波を発
信し、他方で受信される(樹脂板に塗布した塗料
の種類に応じて減衰された)電磁波の強度を測定
する方法で行なつた。得られた各試料の減衰度を
第1表の初期シールド効果の欄に示す。なお樹脂
板がブランク試料、即ち塗料を塗布してない場合
は、減衰度(シールド効果)は0デシベルであ
る。 シールド効果の経時変化:前項で初期シールド
効果を測定した試料それぞれに、30サイクルのヒ
ートサイクルを負荷した後に前項と同じ要領で試
験を行ない、受信される電磁波の減衰度を測定し
た。 その結果を第1表の「ヒートサイクル経過後」
の欄に、また初期値との差を「経時変化値」の欄
に示す。なお第1図はこのデータをグラフ化した
もので、カーボンブラツクと黒鉛との配合比率が
シールド効果の経時変化(劣化)に及ぼす影響を
示している。 なお、1ヒートサイクルは次の通りである: [85℃、1時間]〜 [23℃、相対湿度50%、1時間]〜 [−29℃、1時間]〜 [23℃、相対湿度50%、1時間] この試験条件は、電磁波シールドを目的とする
プラスチツクの金属コーテイングについて、米国
UL規格中に定められている環境試験条件の一つ
(UL746C)であり、経時変化の最も顕著に現わ
れる条件である。またこの規格の反復回数は3サ
イクルであるが、本実施例においては、より過酷
な30サイクルとした。 以上の実験結果から、次のことが分る。即ち、
フイラー中の黒鉛とカーボンブラツクの配合比率
以外の諸条件が等しい試料1〜試料6を見ると、
先ず黒鉛単味(試料1)とカーボンブラツク単味
(試料6)とでは、初期のシールド効果は後者が
よく、経時的劣化は前者がやや少ないが、ともに
劣化の程度の大きいことが目につく。 これに対して、黒鉛とカーボンブラツクを併用
した試料2〜5の場合は、初期のシールド効果も
よいが、経時的劣化の少ない(試料2〜4)点が
大きな特徴となつている。これは電子機器の電磁
波シールド効果が長期間保たれることを意味し、
シールド塗料の信頼性の上で極めて重要なことで
ある。なおこの様な現象はフレーク状ニツケルを
用いた試料12〜16の群、ニツケルを減らした試料
7〜11の群の場合も、ともに同様の傾向を示して
いる。 この様に、シールド効果の経時的変化は黒鉛と
カーボンブラツクの併用によつて著しく減少する
が、その効果は、両者の配合比率に関係がある。
即ち第1図のグラフから明らかなように、劣化の
程度は黒鉛とカーボンブラツクが2:1の場合に
最小値を持つ下に凸の曲線を呈し、黒鉛が90%を
越すと急に大きくなり、1:1の場合は9:1の
場合と殆ど等しくなつている。従つて、経時的劣
化が少なく安定したシールド効果が保証されると
して、黒鉛とカーボンブラツクとの配合比率は
90:10〜50:50が好ましい。
The present invention relates to a paint for applying electromagnetic shielding treatment to plastic housings of OA equipment, etc., and was made with the aim of developing a paint that has a shielding effect that is higher and more stable than conventional ones, and whose effect is less likely to deteriorate over time. It is something that Traditionally, the housings of electronic devices such as personal computers, workstations, and office automation equipment such as word processors have been mostly made of metal.
They are gradually being replaced by plastic ones. However, along with this, leakage of electromagnetic waves has become a problem. In other words, when the casing is made of metal, the casing itself absorbs and reflects electromagnetic waves, blocking electromagnetic waves inside and outside the casing, whereas when the casing is made of plastic, the plastic allows the electromagnetic waves to pass through. In order to
There is a risk that electromagnetic waves generated by the device may leak to the outside, or external electromagnetic waves may enter the housing, causing the device to malfunction. Furthermore, electromagnetic waves leaking from office automation equipment usually have a frequency of 30 to 1000 MHz, and preventing this leakage is essential for the health of workers. For these reasons, it has become necessary to apply electromagnetic shielding treatment to the plastic housings of electronic devices. Conventional electromagnetic shielding treatment for plastics involves
There are two methods: one method is to mix a conductive filler into plastic to give the plastic itself a shielding property, and the other method is to attach a shielding material to the surface of the plastic. Currently, the latter method is the mainstream, and methods include pasting metal films (Al, Cu, Fe, etc.), metal spraying (Zn), plating, and forming a conductive film by applying conductive paint. The present invention pertains to the last-mentioned paint used for forming a conductive film. The electromagnetic shielding paint (Japanese Patent Application No. 112478/1982; Japanese Patent Application Laid-open No. 4569/1983) that the present inventors developed earlier is a coating containing carbon black or graphite in nickel powder of 0.5 to 0.5%.
With a composition containing 20% by weight of filler, the paint exhibited a better electromagnetic shielding effect than conventional filler containing only metal powder. By the way, compared to when the filler component is only metal powder,
When a small amount of graphite is added to this, the degree of attenuation increases rapidly. This effect becomes significant when the amount added to the metal powder is very small, 0.5% or more, and after reaching a maximum value around 2%, it shows a tendency to decrease as the amount added further increases, and at 30%, the amount added to the metal powder alone becomes significant. Only a lower degree of attenuation can be obtained. Therefore, the gist of the present invention is to set the amount of graphite and carbon black added in a range of 0.5 to 20% as a range in which the effect of addition is certainly large. Subsequently, as a result of further improvements to this electromagnetic shielding paint, while following the gist of the previous invention, a combination of graphite and carbon black was used as a filler.
In addition, the present invention was achieved by discovering that when the blending ratio is limited to a specific range, a higher electromagnetic shielding effect than before can be obtained, and the effect can be maintained for a long time. That is, the present invention provides a paint containing a filler in which a total of 0.5 to 20% by weight of graphite and carbon black is added to nickel powder.
The basic idea is to keep the ratio between 90:10 and 50:50. In addition, keeping the paint in a stable suspension state for a long period of time,
In order to form a strong coating film, it is necessary to make the solid particles in the coating composition fine. For this reason, nickel powder with an average particle size of 5μ or less is
In the case of flaky nickel, it is preferable that the average particle size is 50 μm or less, and there is no problem in using a mixture of both. Further, it is preferable that the graphite powder has an average particle size of 10 μm or less, and the carbon black has an average particle size of 1 μm or less. Combining these selections not only increases the pot life of the paint during application, but also
Fine carbon black particles fill the gaps between coarse graphite particles, forming a dense and strong coating. The present invention will be explained in more detail below with reference to Examples. Example First, as a material for conductive filler, the average particle size is 5μ.
graphite powder, carbon black with an average particle size of 0.1μ, carbonyl nickel with an average particle size of 2.5μ, and average particle size
A 40 μm flake of nickel was prepared, an acrylic resin whose main component was methyl methacrylate with a molecular weight of about 80,000 as a resin component, and a solvent consisting of a mixture of toluene and methyl ethyl ketone (7:3) as an organic solvent. Next, these were blended in the proportions shown in Table 1 below and mixed in a ball mill to prepare Paints 1 to 16. The blending ratios in the table are parts by weight. Next, each of these paints was applied to an ABS resin plate with a size of 150 x 150 x 2 mm so that the film thickness after drying would be 50μ, air-dried for 24 hours, and a sample for shielding effect measurement (sample Sample 16) was prepared from Sample 1. Note that the sample number corresponds to the paint number. Measuring shielding effectiveness: Place a resin plate in the middle of a pair of antennas placed at a predetermined distance so that the plane is perpendicular to the straight line connecting the antennas.
This was done by emitting electromagnetic waves with a frequency of 500 MHz from one side of the antenna, and measuring the intensity of the electromagnetic waves received by the other side (attenuated depending on the type of paint applied to the resin plate). The attenuation degree of each sample obtained is shown in the initial shielding effect column of Table 1. Note that when the resin plate is a blank sample, that is, no paint is applied, the attenuation degree (shielding effect) is 0 decibel. Changes in shielding effectiveness over time: Each sample whose initial shielding effectiveness was measured in the previous section was subjected to 30 heat cycles, and then tested in the same manner as in the previous section to measure the degree of attenuation of the received electromagnetic waves. The results are shown in Table 1 "After heat cycle"
The difference from the initial value is shown in the "Time-dependent change value" column. FIG. 1 is a graph of this data, showing the influence of the blending ratio of carbon black and graphite on the change (deterioration) of the shielding effect over time. One heat cycle is as follows: [85°C, 1 hour] ~ [23°C, 50% relative humidity, 1 hour] ~ [-29°C, 1 hour] ~ [23°C, 50% relative humidity] , 1 hour] These test conditions apply to metal coatings on plastics intended for electromagnetic shielding.
This is one of the environmental test conditions specified in the UL standard (UL746C), and is the condition where changes over time are most noticeable. Further, the number of repetitions in this standard is 3 cycles, but in this example, it was set to 30 cycles, which is more severe. From the above experimental results, the following can be found. That is,
Looking at Samples 1 to 6, which have the same conditions other than the blending ratio of graphite and carbon black in the filler,
First, between plain graphite (sample 1) and pure carbon black (sample 6), the latter has a better initial shielding effect, and the former has slightly less deterioration over time, but it is noticeable that the degree of deterioration is large in both cases. . On the other hand, in the case of samples 2 to 5 in which graphite and carbon black were used in combination, although the initial shielding effect was good, the major feature was that there was little deterioration over time (samples 2 to 4). This means that the electromagnetic shielding effect of electronic equipment is maintained for a long time.
This is extremely important for the reliability of shield paint. It should be noted that this phenomenon shows a similar tendency in both the group of samples 12 to 16 using flaky nickel and the group of samples 7 to 11 in which nickel is reduced. As described above, the change in shielding effect over time is significantly reduced by the combined use of graphite and carbon black, but this effect is related to the blending ratio of both.
That is, as is clear from the graph in Figure 1, the degree of deterioration exhibits a downward convex curve with a minimum value when the ratio of graphite and carbon black is 2:1, and increases suddenly when the ratio of graphite exceeds 90%. , the case of 1:1 is almost equal to the case of 9:1. Therefore, in order to guarantee a stable shielding effect with little deterioration over time, the blending ratio of graphite and carbon black is
90:10 to 50:50 is preferred.

【表】 以上に説明したように、本発明の電磁波シール
ド塗料は、高い電磁波シールド効果を有すると共
に、シールド効果の経時的劣化も少なく、従つて
プラスチツク製の電子機器用筐体に優れた電磁波
シールドを施すことが可能であり、実用上極めて
有用なものである。
[Table] As explained above, the electromagnetic shielding paint of the present invention not only has a high electromagnetic shielding effect, but also has little deterioration of the shielding effect over time. can be applied, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフイラー中のカーボンブラツクと黒鉛
との配合比率がシールド効果の経時変化に及ぼす
影響を示すグラフである。
FIG. 1 is a graph showing the influence of the blending ratio of carbon black and graphite in the filler on the change in shielding effect over time.

Claims (1)

【特許請求の範囲】 1 黒鉛粉末とカーボンブラツクとを重量比にて
90:10〜50:50の割合に配合した混合物を、ニツ
ケル粉末に対して0.5〜20重量%添加した組成の
フイラーを含有することを特徴とする電磁波シー
ルド塗料。 2 黒鉛粉末の平均粒径が10μ以下、カーボンブ
ラツクの平均粒径が1μ以下である特許請求の範
囲第1項に記載の電磁波シールド塗料。 3 ニツケル粉末が平均粒径5μ以下のカーボニ
ルニツケル粉である特許請求の範囲第1項または
第2項に記載の電磁波シールド塗料。 4 ニツケル粉末が平均粒径50μ以下のフレーク
状ニツケル粉である特許請求の範囲第1項または
第2項に記載の電磁波シールド塗料。 5 ニツケル粉末が平均粒径5μ以下のカーボニ
ルニツケル粉と平均粒径50μ以下のフレーク状ニ
ツケル粉の混合物である特許請求の範囲第1項ま
たは第2項に記載の電磁波シールド塗料。
[Claims] 1. Graphite powder and carbon black in weight ratio
1. An electromagnetic shielding paint characterized by containing a filler having a composition in which a mixture in a ratio of 90:10 to 50:50 is added in an amount of 0.5 to 20% by weight based on nickel powder. 2. The electromagnetic shielding paint according to claim 1, wherein the graphite powder has an average particle size of 10 μm or less, and the carbon black has an average particle size of 1 μm or less. 3. The electromagnetic shielding paint according to claim 1 or 2, wherein the nickel powder is carbonyl nickel powder with an average particle size of 5 μm or less. 4. The electromagnetic shielding paint according to claim 1 or 2, wherein the nickel powder is flaky nickel powder with an average particle size of 50 μm or less. 5. The electromagnetic shielding paint according to claim 1 or 2, wherein the nickel powder is a mixture of carbonyl nickel powder with an average particle size of 5 μm or less and flaky nickel powder with an average particle size of 50 μm or less.
JP3616284A 1984-02-29 1984-02-29 Electromagnetic wave shielding coating compound Granted JPS60181174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3616284A JPS60181174A (en) 1984-02-29 1984-02-29 Electromagnetic wave shielding coating compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3616284A JPS60181174A (en) 1984-02-29 1984-02-29 Electromagnetic wave shielding coating compound

Publications (2)

Publication Number Publication Date
JPS60181174A JPS60181174A (en) 1985-09-14
JPS6320467B2 true JPS6320467B2 (en) 1988-04-27

Family

ID=12462066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3616284A Granted JPS60181174A (en) 1984-02-29 1984-02-29 Electromagnetic wave shielding coating compound

Country Status (1)

Country Link
JP (1) JPS60181174A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1099446C (en) * 1997-05-26 2003-01-22 四川联合大学 Electromagnetic wave shielding coating, and method for preparing same
CN1099445C (en) * 1997-05-26 2003-01-22 四川联合大学 Electromagnetic wave shielding composite coating and method for preparing same
JP4552260B2 (en) * 2000-03-30 2010-09-29 Tdk株式会社 Nickel powder, electrode paste, and electronic component manufacturing method
JP4270942B2 (en) * 2003-05-29 2009-06-03 株式会社日立製作所 Electric motor

Also Published As

Publication number Publication date
JPS60181174A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
US3202488A (en) Silver-plated copper powder
JPS63500624A (en) Conductive composition and conductive powder used therein
US4695404A (en) Hyperconductive filled polymers
US4490282A (en) Conductive paint composition
US4493912A (en) Electromagnetic wave attenuating composition
US4517118A (en) New nickel coating composition for shielding electronic equipment and the like
JP2006144003A (en) Conductive coating composition and method for producing the same
JPS6320467B2 (en)
US5098735A (en) Shielding of houses and buildings from low and high frequency EMF radiation by organic based stabilized nickel conductive coatings
JP2007091859A (en) Conductive paint
JPS6015464A (en) Pigment
EP0117269B1 (en) Coating composition
JPS604569A (en) Paint for shielding electromagnetic radiation
JPS63239707A (en) Conductive composition
KR101820942B1 (en) Magentic shielding material for extremely low frequency and the preparing method thereof
JPH07169325A (en) Conductive coating composition
EP0292190B1 (en) Electrically conductive coating composition
JPS59147059A (en) Coating composition
JPS6081705A (en) Electromagnetic wave shielding material for wide band frequency band
JPS5936170A (en) Electrically-conductive paint
JPH0481627B2 (en)
JPS6074497A (en) Electromagnetic wave shielding material
Archambeault et al. Effects of corrosion on the electrical properties of conducted finishes for EMI shielding
Przybył et al. Defence Technology
JPS6049067A (en) Electrically conductive paint