JPS6320456Y2 - - Google Patents

Info

Publication number
JPS6320456Y2
JPS6320456Y2 JP2638784U JP2638784U JPS6320456Y2 JP S6320456 Y2 JPS6320456 Y2 JP S6320456Y2 JP 2638784 U JP2638784 U JP 2638784U JP 2638784 U JP2638784 U JP 2638784U JP S6320456 Y2 JPS6320456 Y2 JP S6320456Y2
Authority
JP
Japan
Prior art keywords
rotor
cutting
oxygen
wind
cutting oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2638784U
Other languages
Japanese (ja)
Other versions
JPS60141963U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2638784U priority Critical patent/JPS60141963U/en
Publication of JPS60141963U publication Critical patent/JPS60141963U/en
Application granted granted Critical
Publication of JPS6320456Y2 publication Critical patent/JPS6320456Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Processing Of Meat And Fish (AREA)

Description

【考案の詳細な説明】 この考案は、切断用ガスを利用して切断機を走
行駆動する自動ガス切断機に関し、特に、切断酸
素流でロータを回転させ、その回転力で車輪を駆
動するようにしたものに関する。
[Detailed description of the invention] This invention relates to an automatic gas cutting machine that uses cutting gas to drive the cutting machine.In particular, the invention uses cutting oxygen to rotate a rotor, and the rotational force drives the wheels. Concerning what has been done.

従来、この種の切断機は、特公昭53−40936号
に示すように、切断酸素導管中に方向調節弁を配
置して切断酸素を二系統としてロータ室に導入
し、両系統中にそれぞれ流路開閉弁を配置し、流
路開閉弁の操作により切断酸素をロータ室に噴出
させることにより、ロータを正逆択一的に回転さ
せ、その回転力で車輪を駆動するようにしてい
る。
Conventionally, as shown in Japanese Patent Publication No. 53-40936, this type of cutting machine has introduced a directional control valve in the cutting oxygen conduit to introduce cutting oxygen into the rotor chamber as two systems, with each flow flowing through both systems. A passage opening/closing valve is disposed, and by operating the passage opening/closing valve, cut oxygen is jetted into the rotor chamber, thereby rotating the rotor in either forward or reverse directions, and the rotational force thereof drives the wheels.

ところが、このものでは、両系統中に装着した
二つの流路開閉弁を個別に操作して、両系統から
のロータ室への切断酸素供給比により速度調節す
るようにしていたことから、両流路開閉弁の開度
調節が面倒なうえ、ロータを羽根車で形成し、そ
の羽根に切断酸素噴流を吹きつけるようにしてい
ることから、切断用酸素は羽根車のブレード先端
部によつて締切られ、瞬間的に切断用酸素が切断
用火口に送られない状態が発生して、切断用酸素
が脈動を起こし、切断性能を低下させるという問
題がある。特にこれは低速で厚物を切断する際に
生じやすい。
However, with this system, the two flow path opening/closing valves installed in both systems were operated individually, and the speed was adjusted by the cutoff oxygen supply ratio from both systems to the rotor chamber. Adjusting the opening of the road opening/closing valve is troublesome, and since the rotor is formed of an impeller and the cutting oxygen jet is blown onto the blades, the cutting oxygen is shut off by the tip of the blade of the impeller. There is a problem in that a situation occurs in which the cutting oxygen is not sent to the cutting nozzle momentarily, causing pulsation of the cutting oxygen and deteriorating the cutting performance. This is particularly likely to occur when cutting thick materials at low speeds.

また、薄物を切断する場合には必要切断酸素量
が少なくてすむが、ロータ室に噴出する切断酸素
量が少ないと、羽根車が回転始動しにくく、走行
性を損うという問題もある。
Further, when cutting thin materials, the amount of cutting oxygen required is small, but if the amount of cutting oxygen ejected into the rotor chamber is small, there is a problem in that the impeller is difficult to start rotating, impairing running performance.

本考案はこのような点に鑑み提案されたもの
で、ロータを均一速度で回転駆動できるようにす
るとともに、ロータの回転方向制御を容易に行な
えるようにするために、ロータと駆動車輪とを調
速機構及び減速機構を介して連結し、ロータの外
周面に軸方向にずれる複数の受風周面を設け、各
受風周面に受風穴を周方向適当間隔置きに凹設
し、各受風穴をロータ円周方向に長軸を有する長
円形に形成するとともに、各受風穴の底壁を円周
方向に傾斜面を有する山形に形成し、その山形頂
部を受風穴内に位置させ、互いに隣り合う受風周
面の受風穴同士を半ピツチずらせて位置させ、前
記ロータ室の内周面に切断酸素流入口を各受風周
面に対応させて配置し、各切断酸素流入口への酸
素供給を制御する制御弁を連動操作可能に構成
し、ロータ周面外側に回転始動補助具を配置した
ことを特徴としている。
The present invention was proposed in view of the above points, and in order to enable the rotor to rotate at a uniform speed and to easily control the rotational direction of the rotor, the rotor and drive wheels are connected. A plurality of wind receiving surfaces are provided on the outer circumferential surface of the rotor, connected through a speed regulating mechanism and a deceleration mechanism, and are offset in the axial direction. The wind blowing hole is formed into an oval shape having a long axis in the circumferential direction of the rotor, and the bottom wall of each wind blowing hole is formed into a chevron shape having an inclined surface in the circumferential direction, and the top of the chevron shape is located within the wind blowing hole, The wind blowing holes on the wind blowing peripheral surfaces that are adjacent to each other are positioned so as to be shifted by half a pitch, and the cutting oxygen inlets are arranged on the inner peripheral surface of the rotor chamber in correspondence with each wind blowing peripheral surface, and the cutting oxygen inlets are connected to each cutting oxygen inlet. The control valve that controls the oxygen supply of the rotor is configured to be operable in conjunction with each other, and a rotation starting aid is disposed on the outside of the rotor circumferential surface.

以下、本考案の実施例を図面に基づき説明す
る。
Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図は全体斜視図、第2図は第1図−線
断面図、第3図は第2図−線断面図を示し、
この自動ガス切断機は、駆動車輪1と従動車輪2
とを装備した本体フレーム3に切断用火口4を位
置調節自在に支持させてあり、本体フレーム3の
上部に駆動力発生装置Dと走行速度制御装置Cと
が前後に配置してある。
FIG. 1 is an overall perspective view, FIG. 2 is a cross-sectional view taken along the line of FIG. 1, and FIG. 3 is a cross-sectional view taken along the line of FIG.
This automatic gas cutting machine has a driving wheel 1 and a driven wheel 2.
A cutting nozzle 4 is supported by a main body frame 3 equipped with a main body frame 3 so as to be able to adjust its position, and a driving force generating device D and a running speed control device C are arranged in the front and rear on the upper part of the main body frame 3.

駆動力発生装置Dはケーシング5内に形成した
ロータ室6内に円筒状ロータ7を収容し、ロータ
7と一体回転する回転軸8の先端にウオーム9を
固定し、ロータ室6と切断用酸素導入口10とを
切断用酸素導入路11で連通連結するとともに、
ロータ室6と切断用酸素導出口12とを切断用酸
素導出路13で連通連結して形成してある。
The driving force generating device D houses a cylindrical rotor 7 in a rotor chamber 6 formed in a casing 5, and a worm 9 is fixed to the tip of a rotating shaft 8 that rotates integrally with the rotor 7. While communicating and connecting the inlet 10 with the cutting oxygen inlet 11,
The rotor chamber 6 and the cutting oxygen outlet 12 are connected to each other by a cutting oxygen outlet 13.

また、走行速度制御装置Cは、ロータ7と一体
になつて回転する前述の回転軸8に支持させた遠
心重錘式ガバナ装置Gと、このガバナ装置Gの摺
動フランジ14の移動量を規制する規制装置Bと
からなり、規制装置Bは回転摘み15の回転を、
一対の傘歯歯車16a,16b及び従動側傘歯歯
車16bに連結固定されているカムを介して揺動
板17の揺動を変換し、揺動板17の先端に付設
したパツド18が移動してきた摺動フランジ14
に接当して、回転軸8の回転数を一定に保持する
ように構成してある。
The traveling speed control device C also regulates the amount of movement of the centrifugal weight type governor device G supported by the aforementioned rotating shaft 8 that rotates integrally with the rotor 7, and the sliding flange 14 of this governor device G. The regulating device B controls the rotation of the rotary knob 15.
The swinging motion of the rocking plate 17 is converted through a cam connected and fixed to the pair of bevel gears 16a, 16b and the driven bevel gear 16b, and the pad 18 attached to the tip of the rocking plate 17 moves. sliding flange 14
The rotational speed of the rotating shaft 8 is maintained constant by contacting the rotating shaft 8.

回転軸8の先端に固定したウオーム9は減速機
構Mのウオームホイール19と噛み合つており、
減速機構Mと駆動車輪1の車軸20とはクラツチ
21を介して連動連結している。
A worm 9 fixed to the tip of the rotating shaft 8 is engaged with a worm wheel 19 of the reduction mechanism M,
The speed reduction mechanism M and the axle 20 of the drive wheel 1 are interlocked and connected via a clutch 21.

第4図はロータ室6への切断用酸素供給部の横
断平面図であり、ロータ室6への切断用酸素導入
路11に流路切換弁(制御弁)22が配置される
とともに、ロータ室6からの切断用酸素導出路1
3の始端部に、ロータ7に回転始動慣性を付与す
るキツカー(始動補助具)23が配置されてい
る。
FIG. 4 is a cross-sectional plan view of the cutting oxygen supply section to the rotor chamber 6, in which a flow path switching valve (control valve) 22 is arranged in the cutting oxygen introduction path 11 to the rotor chamber 6, and Oxygen outlet path 1 for cutting from 6
A kicker (starting aid) 23 is disposed at the starting end of the rotor 3 to provide rotational starting inertia to the rotor 7.

切断用酸素導入路11の流路切換弁22より下
流側(ロータ室側)は上下に位置するメイン流路
24とサブ流路25とで形成してあり、流路切換
弁22の弁軸には、各流路24,25に対応させ
てメイン流路制御用の弁子部22mとサブ流路制
御用の22sとが形成してある。また、各流路2
4,25はそれぞれロータ7の外周面26におけ
る接線方向に向けた正転駆動用流路24f,25
fと逆転駆動用流路24b,25bとで構成して
ある。
The downstream side (rotor chamber side) of the flow path switching valve 22 of the cutting oxygen introduction path 11 is formed by a main flow path 24 and a sub flow path 25 located above and below. A valve element 22m for controlling the main flow path and a valve element 22s for controlling the sub flow path are formed corresponding to each flow path 24, 25. In addition, each flow path 2
4 and 25 are normal rotation driving channels 24f and 25, respectively, which are oriented in the tangential direction on the outer circumferential surface 26 of the rotor 7.
f and reverse drive flow paths 24b and 25b.

ロータ室6に収容したロータ7は第6図に示す
ように、その外周面26が段付き状に形成され、
大径部外周面からなるメイン切断酸素流受風周面
27と小径部外周面からなるサブ切断酸素流受風
周面28とにそれぞれ長円形の受風穴29が凹設
してある。各受風穴29はロータ円周方向に長軸
を有しており、受風穴29の底壁30は長手方向
(ロータ円周方向)の中央部が突出し、ロータ円
周方向に傾斜面を有する山形状に形成してあり、
その突出端部31を受風穴29の内部に位置させ
ている。そして、メイン切断酸素流受風周面27
に形成した受風穴29mとサブ切断酸素流受風周
面28に形成した受風穴29sとは半ピツチずら
した状態で形成されている。
As shown in FIG. 6, the rotor 7 housed in the rotor chamber 6 has an outer peripheral surface 26 formed in a stepped shape.
Oval airflow holes 29 are recessed in each of the main cutting oxygen flow receiving circumferential surface 27 consisting of the outer circumferential surface of the large diameter portion and the sub-cutting oxygen flow receiving circumferential surface 28 consisting of the outer circumferential surface of the small diameter portion. Each of the wind blowing holes 29 has a long axis in the rotor circumferential direction, and the bottom wall 30 of the wind blowing hole 29 has a protruding central portion in the longitudinal direction (rotor circumferential direction) and a ridge having an inclined surface in the rotor circumferential direction. It is formed into a shape,
The protruding end portion 31 is located inside the ventilation hole 29. Then, the main cutting oxygen flow wind blowing circumferential surface 27
The wind blowing hole 29m formed in the sub-cutting oxygen flow wind blowing circumferential surface 28 and the wind blowing hole 29s formed in the sub-cutting oxygen flow wind blowing circumferential surface 28 are formed so as to be shifted by half a pitch.

キツカー23はケーシング5に回動可能に支持
された回動軸32に板バネ33を固定したもの
で、回動軸32の上端部に形成した回転摘み34
を回動させることにより、板バネ33の側端部が
ロータ7の外周面と接当し、その際の弾性力でロ
ータ7に正転方向又は逆転方向の始動慣性力を付
与できる構造になつている。
The kicker 23 has a leaf spring 33 fixed to a rotating shaft 32 rotatably supported by the casing 5, and a rotating knob 34 formed at the upper end of the rotating shaft 32.
By rotating the leaf spring 33, the side end portion of the leaf spring 33 comes into contact with the outer circumferential surface of the rotor 7, and the elastic force at that time creates a structure in which starting inertia force can be applied to the rotor 7 in the forward or reverse rotation direction. ing.

第8図は切断作業時での流路状態を示し、第8
図Aは薄物切断時、第8図Bは厚物切断時をそれ
ぞれ示す。流路切換弁22を一段操作した薄物切
断作業時には、メイン流路24が開通するととも
にサブ流路25は遮断状態に保持され、メイン流
路24からのみ切断用酸素がロータ室6に噴出
し、ロータ7を回転させる。また、流路切換弁2
2を二段操作した厚物切断作業時には、メイン流
路24、サブ流路25がともに開通状態となり、
両流路24,25から切断用酸素がロータ室6に
噴出し、ロータ7を回転させる。
Figure 8 shows the state of the flow path during cutting work.
Fig. 8A shows the cutting of a thin material, and Fig. 8B shows the cutting of a thick material. When cutting a thin material by operating the flow path switching valve 22 in one step, the main flow path 24 is opened and the sub flow path 25 is held in a blocked state, and cutting oxygen is blown into the rotor chamber 6 only from the main flow path 24. Rotate the rotor 7. In addition, the flow path switching valve 2
When cutting thick material by operating 2 in two stages, both the main flow path 24 and the sub flow path 25 are in an open state,
Cutting oxygen is ejected from both channels 24 and 25 into the rotor chamber 6, causing the rotor 7 to rotate.

図中符中35mはロータ室6の内周面36に開
口するメイン切断用酸素墳出口、35sは同じく
ロータ室6の内周面36に開口するサブ切断用酸
素墳出口、37は本体フレーム3に装備した酸素
及び燃料ガスの連結用接続具であり、予熱用酸素
及び燃料ガスはこの連結用接続具37からホース
(図外)で切断用火口4に供給される。
In the figure, 35m is an outlet of the main oxygen chamber for cutting which opens into the inner circumferential surface 36 of the rotor chamber 6, 35s is an outlet of the sub-cutting oxygen chamber which also opens into the inner circumferential surface 36 of the rotor chamber 6, and 37 is an outlet of the main body frame 3. The preheating oxygen and fuel gas are supplied from this connecting fitting 37 to the cutting nozzle 4 through a hose (not shown).

なお、上記実施例では、ロータ7を垂直軸心周
りに回転させるようにしたが、これを水平軸心周
りに回転させるように形成してもよい。また、ロ
ータ外周面26に形成した受風周面に受風穴29
を複数段に凹設するようにしてもよい。
In the above embodiment, the rotor 7 is rotated around the vertical axis, but it may be formed to rotate around the horizontal axis. In addition, a wind blowing hole 29 is formed on the wind blowing circumferential surface formed on the rotor outer circumferential surface 26.
may be recessed in multiple stages.

以上述べたように、本考案は切断用酸素流を切
断機本体の走行駆動力に利用するようにした自動
ガス切断機において、ロータと駆動車輪とを調速
機構及び減速機構を介して連結し、ロータの外周
面に軸方向にずれる複数の受風周面を設け、各受
風周面に受風穴を周方向適当間隔置きに凹設し、
各受風穴をロータ円周方向に長軸を有する長円形
に形成するとともに、各受風穴の底壁を円周方向
に傾斜面を有する山形に形成し、その山形頂部を
受風穴内に位置させ、互いに隣り合う受風周面の
受風穴同士を半ピツチずらせて位置させ、前記ロ
ータ室の内周面に切断酸素流入口を各受風周面に
対応させて配置し、各切断酸素流入口への酸素供
給を制御する制御弁を連動操作可能に構成してい
るので、切断用酸素の流量を増やすべく、両切断
酸素噴出口からロータ室に切断用酸素を吹き込ん
でも、受風穴は軸心方向に隣り合う受風周面に形
成したもの同士が半ピツチずれていることから、
ロータ外周面とロータ室内周面とで切断用酸素が
締切られることがなく、切断用火口に供給される
切断用酸素が脈動をおこすことがない。これによ
り、本考案では、厚物切断作業時にでも切断用酸
素を平均して供給することができ、切断精度を高
めることができる。
As described above, the present invention is an automatic gas cutting machine in which the oxygen flow for cutting is used to drive the cutting machine itself, in which the rotor and drive wheels are connected via a speed regulating mechanism and a deceleration mechanism. , a plurality of wind receiving peripheral surfaces are provided on the outer circumferential surface of the rotor that are offset in the axial direction, and wind receiving holes are recessed in each wind receiving peripheral surface at appropriate intervals in the circumferential direction,
Each airflow hole is formed into an oval shape with a long axis extending in the circumferential direction of the rotor, and the bottom wall of each airflow hole is formed into a chevron shape with an inclined surface in the circumferential direction, and the top of the chevron shape is located within the windflow hole. , the wind blowing holes on adjacent wind blowing surfaces are shifted by half a pitch from each other, and cut oxygen inlets are arranged on the inner circumferential surface of the rotor chamber in correspondence with each wind blowing circumferential surface, and each cut oxygen inlet The control valves that control the oxygen supply to the rotor chamber are configured to be able to be operated in conjunction with each other, so even if cutting oxygen is blown into the rotor chamber from both cutting oxygen jets to increase the flow rate of cutting oxygen, the air blowing holes will not be aligned with the axis. Since the shapes formed on the wind blowing surfaces that are adjacent to each other in the direction are shifted by half a pitch,
Cutting oxygen is not cut off between the outer peripheral surface of the rotor and the inner peripheral surface of the rotor, and the cutting oxygen supplied to the cutting nozzle does not pulsate. As a result, in the present invention, even when cutting thick materials, oxygen for cutting can be supplied evenly, and cutting accuracy can be improved.

また、ロータの外周面に受風周面を複数段に形
成し、制御弁の切換えによつて受風周面の使用段
数を変更可能に構成していることから、供給酸素
量の少ない薄物切断時にはメイン切断用酸素噴出
口だけから集中的に噴出させることができ、少量
の切断用酸素でもロータを効率良く回転させるこ
とができるうえ、ロータ周面外側に回転始動補助
具を配置していることから、この回転始動補助具
の操作でロータに回転始動慣性を付与してより始
動性を高めることができる。
In addition, the outer peripheral surface of the rotor is formed with multiple stages of wind-blow-off surrounding surfaces, and the number of stages in use of the wind-blow-off surrounding surfaces can be changed by switching the control valve, making it possible to cut thin materials with a small amount of supplied oxygen. In some cases, the main cutting oxygen outlet can be used to eject the oxygen in a concentrated manner, allowing the rotor to rotate efficiently even with a small amount of cutting oxygen.In addition, a rotation starting aid is placed on the outside of the rotor circumference. Therefore, by operating this rotational starting aid, rotational starting inertia can be imparted to the rotor to further improve starting performance.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を示し、第1図は全体斜
視図、第2図は第1図の−線断面図、第3図
は第2図の−線断面図、第4図は第2図の
−線断面図、第5図は第4図の−線断面
図、第6図はロータの取出し斜視図、第7図は第
6図の−線断面図、第8図Aは薄物切断時の
バルブ開閉状態を示す要部断面図、第8図Bは厚
物切断時のバルブ開閉状態を示す要部断面図であ
る。 1……駆動用車輪、3……本体フレーム、4…
…切断用火口、6……ロータ室、7……ロータ、
22……制御弁、23……回転始動補助具、26
……7の外周面、27,28……受風周面、2
9,29m,29s……受風穴、30……29の
底壁、31……30の山形突出端部、35m……
メイン切断用酸素墳出口、35s……サブ切断用
ガス墳出口、36……6の内周面、M……減速機
構、G……調速装置。
The drawings show an embodiment of the present invention, and FIG. 1 is an overall perspective view, FIG. 2 is a sectional view taken along the line -- in FIG. 1, FIG. 3 is a sectional view taken along the line -- in FIG. Figure 5 is a cross-sectional view taken along the line - in Figure 4, Figure 6 is a perspective view taken out of the rotor, Figure 7 is a cross-sectional view taken along the line - in Figure 6, and Figure 8 A is a thin section cut. Fig. 8B is a sectional view of the main part showing the valve opening and closing state when cutting thick material. 1... Drive wheel, 3... Body frame, 4...
...cutting vent, 6... rotor chamber, 7... rotor,
22... Control valve, 23... Rotation starting aid, 26
...Outer peripheral surface of 7, 27, 28...Blowing peripheral surface, 2
9, 29m, 29s...Blowing hole, 30...Bottom wall of 29, 31...30 chevron-shaped protruding end, 35m...
Main cutting oxygen mound outlet, 35s...Sub-cutting gas mound outlet, 36...inner peripheral surface of 6, M...deceleration mechanism, G...speed governor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 駆動用車輪1を装備してなる本体フレーム3に
切断用火口4を支持させ、駆動用車輪1を減速機
構Mを介してロータ7に連動連結し、ロータ室6
を切断用酸素流通路の途中に位置させ、切断用酸
素でロータ7を駆動するようにした自動ガス切断
機において、ロータ7と減速機構Mとの間に調速
装置Gを介装し、ロータ7の外周面26に軸方向
にずれる複数の受風周面27,28を設け、各受
風周面27,28に受風穴29m,29sを周方
向適当間隔置きに凹設し、各受風穴29m,29
sをロータ円周方向に長軸を有する長円形に形成
するとともに、各受風穴29m,29sの底壁3
0を円周方向に傾斜面を有する山形に形成し、受
風穴底壁30における山形突出端部31を各受風
穴29m,29s内に位置させ、互いに隣り合う
受風周面27,28の各受風穴29m,29s同
士を半ピツチずらせて位置させ、前記ロータ室6
の内周面36にメイン切断用酸素噴出口35mと
サブ切断用酸素噴出口35sとを各受風周面2
7,28に対応させて配置し、両切断酸素噴出口
35m,35sへの酸素供給を制御する制御弁2
2を連動操作可能に構成し、ロータ7の周面外側
に回転始動補助具23を設けたことを特徴とする
走行式自動ガス切断機。
The main body frame 3 equipped with the drive wheel 1 supports the cutting nozzle 4, and the drive wheel 1 is interlocked and connected to the rotor 7 via the deceleration mechanism M, and the rotor chamber 6
In an automatic gas cutting machine, a speed governor G is interposed between the rotor 7 and the deceleration mechanism M, and the rotor 7 is driven by the cutting oxygen. A plurality of wind receiving peripheral surfaces 27, 28 are provided on the outer peripheral surface 26 of No. 7, which are offset in the axial direction, and wind receiving holes 29m, 29s are recessed in each wind receiving peripheral surface 27, 28 at appropriate intervals in the circumferential direction. 29m, 29
s is formed into an oval shape having a long axis in the circumferential direction of the rotor, and the bottom wall 3 of each ventilation hole 29m, 29s
0 is formed into a chevron shape having an inclined surface in the circumferential direction, and the chevron-shaped protruding end portion 31 of the wind blowing hole bottom wall 30 is located within each wind blowing hole 29m, 29s, and each of the wind blowing peripheral surfaces 27, 28 adjacent to each other is The wind blowing holes 29m and 29s are shifted by half a pitch, and the rotor chamber 6
A main cutting oxygen outlet 35m and a sub-cutting oxygen outlet 35s are installed on the inner circumferential surface 36 of each wind receiving circumferential surface 2.
7 and 28, and controls the oxygen supply to both cutting oxygen jet ports 35m and 35s.
2 so that they can be operated in conjunction with each other, and a rotation starting aid 23 is provided on the outside of the circumferential surface of the rotor 7.
JP2638784U 1984-02-24 1984-02-24 Traveling automatic gas cutting machine Granted JPS60141963U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2638784U JPS60141963U (en) 1984-02-24 1984-02-24 Traveling automatic gas cutting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2638784U JPS60141963U (en) 1984-02-24 1984-02-24 Traveling automatic gas cutting machine

Publications (2)

Publication Number Publication Date
JPS60141963U JPS60141963U (en) 1985-09-20
JPS6320456Y2 true JPS6320456Y2 (en) 1988-06-07

Family

ID=30522347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2638784U Granted JPS60141963U (en) 1984-02-24 1984-02-24 Traveling automatic gas cutting machine

Country Status (1)

Country Link
JP (1) JPS60141963U (en)

Also Published As

Publication number Publication date
JPS60141963U (en) 1985-09-20

Similar Documents

Publication Publication Date Title
CA2767294C (en) Craft and method for assembling craft with controlled spin
EP0606108A1 (en) Bi-directional axial-flow blower
JPS6320456Y2 (en)
JP3649754B2 (en) Helicopter anti-torque and lateral steering device
US4728259A (en) Adjustable turbine
JPH0293572U (en)
EP0467336A2 (en) Bi-directional axial-flow blower
JP4567225B2 (en) Air motor for air tools
JPH0614808Y2 (en) Blower drive for speed sprayer
JPH0221049Y2 (en)
JP2810642B2 (en) Resistance control apparatus and resistance control method for personal watercraft
JPH0454846Y2 (en)
JPH08258703A (en) Air cushion ship with two stage fan
JPH0214734Y2 (en)
JP2766972B2 (en) Rotary fountain rotary drive
JPH06182265A (en) Rotary fountain device
JPH09243151A (en) Damper apparatus
JPS62149737U (en)
JP3228330B2 (en) Vertical water jet thruster
JPS6157911U (en)
JPH1130340A (en) Butterfly valve provided with air intake function
JPH0522286Y2 (en)
JPH0857011A (en) Jet feeder into bathtub
JPH05156959A (en) Thrust bearing of turbocharger
JPS5823435Y2 (en) cleaning equipment