JPS63204074A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS63204074A
JPS63204074A JP3655387A JP3655387A JPS63204074A JP S63204074 A JPS63204074 A JP S63204074A JP 3655387 A JP3655387 A JP 3655387A JP 3655387 A JP3655387 A JP 3655387A JP S63204074 A JPS63204074 A JP S63204074A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
return pipe
pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3655387A
Other languages
Japanese (ja)
Inventor
三宅 斉和
武夫 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3655387A priority Critical patent/JPS63204074A/en
Publication of JPS63204074A publication Critical patent/JPS63204074A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は満液式蒸発器の油戻し管に温度式自動上対策に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a temperature-type automatic countermeasure for an oil return pipe of a flooded evaporator.

(従来の技術) 従来より、冷凍装置において、例えば特公昭54−25
671号公報に開示される如く、満液式蒸発器内部の冷
却管より所定高さに存在する冷媒および油の一部をを圧
amの吸入管に戻す油戻し管を設けて、蒸発器の液面上
部の油濃度の高い冷媒を圧縮機に戻すことにより冷凍回
路中の油回収効率を高めるとともに、油戻し管に温度式
自動膨張弁の感温筒を取付け、冷媒の過熱度に応じて自
動膨張弁の開度を調節し、蒸発器内部の液面位置を適正
範囲に制御することにより、過熱度一定制御を行おうと
するものが知られている。
(Prior art) Conventionally, in refrigeration equipment, for example,
As disclosed in Japanese Patent No. 671, an oil return pipe is provided to return part of the refrigerant and oil present at a predetermined height from the cooling pipe inside the flooded evaporator to the suction pipe of the pressure am. By returning the refrigerant with a high oil concentration at the top of the liquid level to the compressor, the efficiency of oil recovery in the refrigeration circuit is increased.A temperature-sensitive cylinder of a thermostatic automatic expansion valve is attached to the oil return pipe, and the temperature-sensitive cylinder of the temperature-type automatic expansion valve is installed in the oil return pipe. There is a known system that attempts to control the degree of superheat to be constant by adjusting the opening degree of an automatic expansion valve and controlling the liquid level inside the evaporator within an appropriate range.

(発明が解決しようとする問題点) ところで、冷媒配管中を冷媒と油とが共に流れる場合、
第3図に示すように、冷媒は配管の中央付近を流れ(図
中実線矢印)、油は配管の管壁(a)にそってほぼ均一
の厚みを持った環状の流れ(図中破線矢印)となること
が知られている。
(Problems to be solved by the invention) By the way, when refrigerant and oil flow together in refrigerant piping,
As shown in Figure 3, the refrigerant flows near the center of the pipe (solid line arrow in the figure), and the oil flows in an annular shape with an almost uniform thickness along the pipe wall (a) (dashed line arrow in the figure). ) is known to be.

そして、油戻し管に感温筒(b)を取付けて過熱ガス冷
媒の温度を検出しようとする場合、回収される油の量に
応じて管壁(a)内側の油膜の厚みが変化するので、油
膜による熱伝達率に差が生じて、感温筒(b)で検出さ
れる冷媒温度と実際の冷媒湿度との関係が変わるという
問題がある。
When trying to detect the temperature of superheated gas refrigerant by attaching a temperature sensing cylinder (b) to the oil return pipe, the thickness of the oil film inside the pipe wall (a) changes depending on the amount of oil recovered. There is a problem that a difference occurs in the heat transfer coefficient due to the oil film, and the relationship between the refrigerant temperature detected by the temperature sensing tube (b) and the actual refrigerant humidity changes.

すなわち、感温筒(b)で検出される冷媒温度が一定値
toで油上り率が違うときの実際の冷媒温度、例えば油
上り率5%の時(図中実線)の実際の冷媒温度t5と油
上り率1%の時(図中破線)の実際の冷媒温度t1とを
比較すると、油上り率5%のときの方が油膜の厚みが厚
くなり、油膜の流れによる熱伝達率は油膜の厚みにほぼ
比例するために、冷媒温度t5は冷媒温度t1よりも低
くなる。つまり、自動膨張弁側では、油上り率が高いと
きには実際の冷媒の過熱度に比べて見掛上過熱度が高く
検知されることになるので、その開度が適正開度よりも
大きく調節されて冷凍装置が湿り運転に陥り易く、しか
も、湿り運転になると、冷媒流量とともに油の流iも増
大して冷媒温度の検出誤差が大きくなり、更に湿り運転
が増長されるという悪循環が生じ得る。
That is, the actual refrigerant temperature when the refrigerant temperature detected by the temperature sensing tube (b) is a constant value to and the oil rising rate is different, for example, the actual refrigerant temperature t5 when the oil rising rate is 5% (solid line in the figure). Comparing the actual refrigerant temperature t1 when the oil rising rate is 1% (dashed line in the figure), the oil film is thicker when the oil rising rate is 5%, and the heat transfer coefficient due to the flow of the oil film is Since the refrigerant temperature t5 is approximately proportional to the thickness of the refrigerant, the refrigerant temperature t5 is lower than the refrigerant temperature t1. In other words, on the automatic expansion valve side, when the oil rise rate is high, the apparent degree of superheat is detected to be higher than the actual degree of superheat of the refrigerant, so the opening degree is adjusted to be larger than the appropriate opening degree. The refrigeration system is likely to fall into wet operation, and when it becomes wet operation, the oil flow i increases as well as the refrigerant flow rate, increasing the detection error of the refrigerant temperature, and further increasing the wet operation, which can create a vicious cycle.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、適切な構成でもって油上り率増大時の感温筒にお
ける過熱ガス冷媒の温度検出誤差を低減することにより
、油上り率の増大による湿り運転を防止して、安定した
過熱度制御を行うことにある。
The present invention has been made in view of the above, and its purpose is to reduce the temperature detection error of the superheated gas refrigerant in the thermosensor when the oil rising rate increases with an appropriate configuration, thereby increasing the oil rising rate. The objective is to prevent wet operation due to an increase in the temperature and to perform stable superheat degree control.

(問題点を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図お
よび第2図に示すように、圧縮機(1)、凝縮器(2)
、温度式自動膨張弁(4)および内部に冷却管(6)を
有する満液式蒸発器(5)を順次接続してなる冷凍回路
を備えた冷凍装置を前提とする。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a compressor (1), a condenser (2), as shown in FIGS.
, a refrigeration system equipped with a refrigeration circuit formed by sequentially connecting a thermostatic automatic expansion valve (4) and a flooded evaporator (5) having a cooling pipe (6) therein is assumed.

そして、上記蒸発器(5)に蒸発器(5)内部の所定の
高さに存在する冷媒および油の一部を圧a機(1)の吸
入管(7a)に戻す油戻し管(8)を設けるものとする
。さらに、該油戻し管(8)に冷媒および油の流れを分
離して、冷媒の流れる冷媒通路(14)と油の流れる油
通路(15)とを有する分離手段(11)を介設し、上
記冷媒通路(14)にガス冷媒の温度を測定する上記温
度式自動膨張弁(4)の感温筒(4a)を取付ける構成
としたものである。
An oil return pipe (8) returns a part of the refrigerant and oil present at a predetermined height inside the evaporator (5) to the suction pipe (7a) of the pressure-a machine (1). shall be established. Furthermore, separating means (11) is provided in the oil return pipe (8) to separate the flows of refrigerant and oil, and has a refrigerant passage (14) through which the refrigerant flows and an oil passage (15) through which oil flows, The temperature sensing tube (4a) of the thermostatic automatic expansion valve (4) for measuring the temperature of the gas refrigerant is attached to the refrigerant passage (14).

(作用) 以上の構成により、本発明では、冷凍装置の運転中、蒸
発器(5)から冷媒および油の一部が油戻し管(8)を
介して圧縮機(1)の吸入管(7a)に分流して流れる
。そして、油戻し管(8)を流れる過熱ガス冷媒の温度
が感温筒により検出され、その過熱度に応じて自動膨張
弁(4)の開度が調節されて、過熱度一定制御が行われ
る。そのとき、油戻し管(8)に介設された分離手段(
11)により、油戻し管(8)中の冷媒と油との混合流
が分離され、冷媒通路(14)側に冷媒が、油通路く1
5)側に油が分流されて流れるので、冷媒通路(14)
内部には油膜がほとんど生じない。そして、冷媒通路(
14)に感温筒(4a)が取付けられているので、感温
筒(4a)で検出される過熱ガス冷媒の温度値は油上り
率の変化に左右されることがない。よって、正確な過熱
ガス冷媒の温度に応じて自動膨張弁(4)の開度が適正
に調節されるので、油上り率の増大による湿り運転を有
効に防止することがでさ、安定した過熱度制御を行うこ
とができる。
(Function) With the above configuration, in the present invention, during operation of the refrigeration system, part of the refrigerant and oil from the evaporator (5) passes through the oil return pipe (8) to the suction pipe (7a) of the compressor (1). ). Then, the temperature of the superheated gas refrigerant flowing through the oil return pipe (8) is detected by the temperature sensing cylinder, and the opening degree of the automatic expansion valve (4) is adjusted according to the degree of superheat, thereby performing constant superheat degree control. . At that time, the separation means (
11), the mixed flow of refrigerant and oil in the oil return pipe (8) is separated, and the refrigerant flows into the refrigerant passage (14) side, and the refrigerant flows into the oil passage (1).
Since the oil is diverted to the 5) side, the refrigerant passage (14)
Almost no oil film is formed inside. And the refrigerant passage (
Since the temperature sensing tube (4a) is attached to 14), the temperature value of the superheated gas refrigerant detected by the temperature sensing tube (4a) is not affected by changes in the oil rising rate. Therefore, since the opening degree of the automatic expansion valve (4) is appropriately adjusted according to the exact temperature of the superheated gas refrigerant, it is possible to effectively prevent wet operation due to an increase in the rate of oil rise, and to maintain stable overheating. control can be performed.

(実施例) 以下、本発明の実施例を第1図および第2図に基づき説
明する。
(Example) Hereinafter, an example of the present invention will be described based on FIGS. 1 and 2.

第1図は本発明の実施例に係る冷凍装置の冷媒系統を示
し、(1)は圧縮機、(2)は冷媒を凝縮して液化する
凝縮器、(3)は該凝縮器で液化した冷媒を貯溜する受
液器、(4)は冷媒の過熱度に応じて開度を自動調節す
る自動膨張弁、(5)は冷媒の蒸発を行う蒸発器であっ
て、上記各典雅(1)〜(5)は、冷媒配管(7)によ
り冷媒の流通可能に順次接続されて冷凍回路を構成して
いる。ここに、上記蒸発器(5)は、内部に水が流通す
る冷W管(6)を備えかつ該冷f!J管(6)全体を冷
媒液に浸漬させた満液式の構造をしており、冷媒との熱
交換により冷水を得るようになされている。
FIG. 1 shows a refrigerant system of a refrigeration system according to an embodiment of the present invention, in which (1) is a compressor, (2) is a condenser that condenses and liquefies the refrigerant, and (3) is a refrigerant that is liquefied in the condenser. (4) is an automatic expansion valve that automatically adjusts its opening according to the degree of superheating of the refrigerant; (5) is an evaporator that evaporates the refrigerant; - (5) are sequentially connected by refrigerant piping (7) so that refrigerant can flow therein, thereby forming a refrigeration circuit. Here, the evaporator (5) is equipped with a cold W pipe (6) through which water flows, and the cold f! It has a liquid-filled structure in which the entire J pipe (6) is immersed in refrigerant liquid, and cold water is obtained by heat exchange with the refrigerant.

そして、(8)は蒸発器(5)の冷却管(6)より所定
高さの位置にある部位の器壁に一端を開口し、蒸発器(
5)と吸入管(7a)とを冷媒および油の流通可能に接
続する油戻し管、(10)は、該油戻し管(8)を流通
する冷媒と冷凍回路中の液管(7b)の液冷媒との熱交
換により油戻し管(8)中の冷媒を加熱して、冷媒の過
熱度を上昇させるための熱交換器(10)である。
(8) has one end opened in the wall of the evaporator (5) at a predetermined height from the cooling pipe (6), and
5) and the suction pipe (7a), an oil return pipe (10) connects the oil return pipe (8) to allow the flow of refrigerant and the liquid pipe (7b) in the refrigeration circuit. This is a heat exchanger (10) for heating the refrigerant in the oil return pipe (8) through heat exchange with a liquid refrigerant to increase the degree of superheating of the refrigerant.

また、(11)は油戻し管(8)に介設された油分離器
であって、該油分離器(11)は、第2図に示すように
、1字を略90度傾けた形状に配設されてその横方向に
延びる主管部(13G)が油戻し管(8)に接続され、
油戻し管(8)の流れを上下2つの流れに分流する第1
T継手(13)と、該第1T継手(13)の上側の分岐
管(13a)に接続され、立上ったのち略水平方向に折
り曲げられ更に垂直下方向に折り曲げられた形状を有す
る冷媒通路(14)と、第1T!!手(13)の下側の
分岐管部(13b)に接続され、垂下したのち略水平方
向に折り曲げられ更に垂直上方向に折り曲げられた形状
を有する抽油1(15)と、上記第1T継手(13)と
対称の形状に配設されかつ上記冷媒通路(14)および
油通路(15)に分離した流れを合流せしめる第2T!
1手(16ンとで構成されており、上記第1、第2T継
手(13)、(16)を介して冷媒通路(14)を上部
に油通路(15)を下部にして両通1(14)。
Further, (11) is an oil separator installed in the oil return pipe (8), and as shown in FIG. A main pipe section (13G) disposed in and extending in the lateral direction is connected to an oil return pipe (8),
A first pipe that divides the flow of the oil return pipe (8) into two upper and lower flows.
A refrigerant passage that is connected to the T-joint (13) and the upper branch pipe (13a) of the first T-joint (13) and has a shape that is raised, bent approximately horizontally, and further bent vertically downward. (14) and the 1st T! ! An oil extractor 1 (15) connected to the branch pipe section (13b) on the lower side of the hand (13) and having a shape of hanging down, bent in a substantially horizontal direction, and further bent in a vertically upward direction; and the first T-joint. A second T is arranged in a shape symmetrical to that of (13) and makes the separate flows merge into the refrigerant passage (14) and oil passage (15).
The refrigerant passage (14) is connected to the upper part and the oil passage (15) is connected to the lower part through the first and second T-joints (13) and (16). 14).

(15)を並列に接続してなる略長方形の閉環形状をな
している。また、第2T継手(16)の合流管部(16
c)は油戻し管(8)を介して圧縮機(1)の吸入’I
!j (7a)に接続されている。
(15) are connected in parallel to form a substantially rectangular closed ring shape. Also, the confluence pipe part (16) of the second T joint (16)
c) the suction of the compressor (1) via the oil return pipe (8);
! j (7a).

そして、上記油分離器(11)の冷媒通路(14)外壁
の第2Tll1手(16)の直上部には、過熱ガス冷媒
の温度を検出するための上記自動膨張弁(4)の感温筒
(4a)が壁面に接して取付けられている。
And, directly above the second Tll1 hand (16) on the outer wall of the refrigerant passage (14) of the oil separator (11), there is a temperature sensing cylinder of the automatic expansion valve (4) for detecting the temperature of the superheated gas refrigerant. (4a) is attached in contact with the wall surface.

尚、上記冷媒通路(14)および油通路(15)の流体
抵抗を等しくする目的で、2つのTI手(13)、(1
6)は長方形内において互いに点対称の位置にあるよう
に取付けられている。また、上記油戻し管(8)および
油分離器(11)の略水平部は、油の逆流を阻止すべく
、いずれも圧縮機(1)の吸入管(7a)に対して一定
の下り勾配を有するようになされている。
In addition, in order to equalize the fluid resistance of the refrigerant passage (14) and the oil passage (15), two TI hands (13) and (1
6) are attached so as to be point-symmetrical to each other within the rectangle. Further, the substantially horizontal portions of the oil return pipe (8) and the oil separator (11) have a certain downward slope relative to the suction pipe (7a) of the compressor (1) in order to prevent backflow of oil. It is designed to have the following.

なお、第1図において、<5a)、(5b)は蒸発器(
5)の上部に形成され、圧a機(1)の吸入管(7a)
が接続される2つの小空間であって、該2つの小空間(
5a)、(5b)は、圧縮機(1)に吸入される冷媒中
の油および液冷媒を可及的に分離除去させて湿りの少な
いガス冷媒を吸入管(7a)に吸入させる橢能を有する
ものである。
In addition, in Fig. 1, <5a) and (5b) are the evaporators (
5) is formed on the upper part of the suction pipe (7a) of the pressure machine (1).
are two small spaces connected to each other, the two small spaces (
5a) and (5b) have the ability to separate and remove oil and liquid refrigerant in the refrigerant sucked into the compressor (1) as much as possible, and suck the gas refrigerant with less moisture into the suction pipe (7a). It is something that you have.

第1図および第2図において、冷凍装置の運転時、圧縮
機(1)で圧縮された冷媒は凝縮器(2)で凝縮液化さ
れ、受液器(3)で貯溜された後、自vJ膨張弁(4)
で膨張作用を受けて蒸発器(5)で冷却管(6)の水と
の熱交換により蒸発し、ガス冷媒となって蒸発器(5)
上部の2つの小空間(5a>、(5b)から吸入管(7
a)を経テ圧IFj1(1)に戻る。そのとき、蒸発器
(5)の冷却管(6)より所定高さの付近は冷媒の液面
となっており、液面付近は比重の軽い油が多く含まれ、
かつ水との熱交換により気化した冷媒との混合が生ずる
のでフォーミング現象を呈しており、その部分と接する
部位の器壁に油戻し管(8)が開口されているので、油
の割合の多い冷媒が油戻し管(8)を分流して流れ、熱
交換器(10)で熱交換を受けて過熱したガス冷媒とな
って、油とともに油分離器(11)を経て圧縮機(1)
の吸入管(7a)に流れる。
In Figures 1 and 2, during operation of the refrigeration system, the refrigerant compressed by the compressor (1) is condensed and liquefied in the condenser (2), stored in the liquid receiver (3), and then Expansion valve (4)
Under the expansion action of
From the two small spaces at the top (5a>, (5b)
Return a) to transtemal pressure IFj1 (1). At that time, the area near a predetermined height from the cooling pipe (6) of the evaporator (5) is the liquid level of the refrigerant, and the area near the liquid level contains a lot of oil with a light specific gravity.
Also, due to heat exchange with water, mixing with the vaporized refrigerant occurs, resulting in a forming phenomenon, and since the oil return pipe (8) is opened in the container wall at the part that comes in contact with that part, the oil has a high proportion of oil. The refrigerant flows through the oil return pipe (8), undergoes heat exchange in the heat exchanger (10), becomes a superheated gas refrigerant, and passes through the oil separator (11) with oil to the compressor (1).
into the suction pipe (7a).

そして、油分離器(11)において、油戻し管(8)内
の中央付近を流れる冷媒の流れ(図中実線矢印)と、管
壁に沿って環状に流れてきた油の流れ(図中破線矢印)
との混合流が第1TII1手(13)の分岐点にぶつか
ると、自重差によって油は第1T継手(13)の下側分
岐管(13b)に流れ、軽いガス冷媒はほとんど上側分
岐管(13a)に流れるので、冷媒通路(14)にはほ
とんどガス冷媒だけが分離されて流れる。よって、上記
油分離器(11)は、油戻し管(8)中の冷媒および油
の流れを冷媒通路(14)と油通路(15)とに分離す
る分離手段としての機能を有するものである。次に、冷
媒通路(14)に取付けられた感温筒(4a)により冷
媒の過熱度が検出され、該過熱度に応じて、以下の過熱
度一定制御が行われる。
In the oil separator (11), the flow of refrigerant flowing near the center of the oil return pipe (8) (solid line arrow in the figure) and the flow of oil flowing in an annular shape along the pipe wall (dashed line in the figure) arrow)
When the mixed flow hits the branch point of the first TII1 hand (13), the oil flows to the lower branch pipe (13b) of the first T joint (13) due to the difference in self weight, and the light gas refrigerant mostly flows to the upper branch pipe (13a). ), so almost only the gas refrigerant is separated and flows into the refrigerant passage (14). Therefore, the oil separator (11) has the function of separating the flow of refrigerant and oil in the oil return pipe (8) into the refrigerant passage (14) and the oil passage (15). . Next, the degree of superheat of the refrigerant is detected by the temperature sensing cylinder (4a) attached to the refrigerant passage (14), and the following constant superheat degree control is performed according to the degree of superheat.

すなわち、冷凍装置の運転中に蒸発器(5)の負荷が減
少して液面が上昇すると、液冷媒密度の濃い部分が油戻
し管(8)の開口部に接するようになり、油戻し管(8
)には液冷媒を多く含む湿り冷媒が流れて、熱交換器(
10)を通り過ぎた過熱ガス冷媒の温度が低下する。そ
して、@湿部(4a)で検出される過熱ガス冷媒の温度
に応じて自動膨張弁(4)の開度が絞られるので、蒸発
器(5)内の液面が下がり、油戻し管(8)には適度な
液冷媒量を含んだ冷媒が流れるようになる。
That is, when the load on the evaporator (5) decreases and the liquid level rises during operation of the refrigeration system, the part with high liquid refrigerant density comes into contact with the opening of the oil return pipe (8), and the oil return pipe (8
), a wet refrigerant containing a large amount of liquid refrigerant flows through the heat exchanger (
10) The temperature of the superheated gas refrigerant that has passed through decreases. Then, the opening degree of the automatic expansion valve (4) is reduced according to the temperature of the superheated gas refrigerant detected in the wet part (4a), so the liquid level in the evaporator (5) decreases and the oil return pipe ( 8) allows a refrigerant containing an appropriate amount of liquid refrigerant to flow.

また、蒸発器(5)の負荷が増大して液面が下降すると
、液冷媒密度の薄い部分が油戻し管(8)の開口部に接
するようになり、油戻し管(8)には液冷媒の少ない冷
媒が流れて、熱交換器(10)を通り過ぎた過熱ガス冷
媒の温度が上昇する。そして、感ffiM(4a)で検
出される過熱ガス冷媒の温度に応じて自動膨張弁(4)
の開度が大きく調節されるので、蒸発器(5)の液面が
上昇し、油戻し管(8)には適度な液冷媒量を含んだ冷
媒が流れるようになる。以上によって、蒸発器(5)の
液面位置が適正範囲に保持され、過熱度一定制御が行わ
れる。
Moreover, when the load on the evaporator (5) increases and the liquid level falls, the part with low density of the liquid refrigerant comes into contact with the opening of the oil return pipe (8), and the oil return pipe (8) is filled with liquid. The refrigerant with less refrigerant flows and the temperature of the superheated gas refrigerant that has passed through the heat exchanger (10) increases. Then, an automatic expansion valve (4) is installed according to the temperature of the superheated gas refrigerant detected by the sensor ffiM (4a).
Since the opening degree of the evaporator (5) is adjusted to a large extent, the liquid level of the evaporator (5) rises, and refrigerant containing an appropriate amount of liquid refrigerant flows into the oil return pipe (8). As described above, the liquid level position of the evaporator (5) is maintained within an appropriate range, and superheat degree constant control is performed.

したがって、上記実施例では、油分離器(11)により
、油戻し管(8)中の冷媒および油の流れが冷媒通路(
14)と油通路(15)とに分離され、該冷媒通路(1
4)に感温筒(4a)が取付けられているので、その配
管内部には油膜がなく、従来のように、感温筒(4a)
で検出される過熱ガス冷媒の温度値が油上り率の変化に
左右されることはない。よって、正確なガス冷媒の過熱
度に応じて自動膨張弁(4)の開度が適正に調節される
ので、上記のような湿り運転を有効に防止することがで
き、蒸発器(5)の液面の制御と過熱度一定制御とを安
定して行うことができる。
Therefore, in the above embodiment, the oil separator (11) prevents the flow of refrigerant and oil in the oil return pipe (8) from the refrigerant passage (
14) and an oil passage (15), and the refrigerant passage (1
Since the temperature sensing tube (4a) is attached to the tube 4), there is no oil film inside the pipe, and unlike the conventional method, the temperature sensing tube (4a)
The temperature value of the superheated gas refrigerant detected in is not affected by changes in the oil rising rate. Therefore, since the opening degree of the automatic expansion valve (4) is appropriately adjusted according to the exact degree of superheating of the gas refrigerant, the above-mentioned wet operation can be effectively prevented, and the evaporator (5) Liquid level control and superheat constant control can be performed stably.

また、油分離器(11)において、油通路(15)に分
離された油は第2TO手(16)でガス通路(14)の
ガス冷媒と合流して油戻し管(8)を経て圧縮機(1)
の吸入管(7a)に流れるので、油回収のべ能が害され
ることはない。
In addition, in the oil separator (11), the oil separated into the oil passage (15) joins the gas refrigerant in the gas passage (14) at the second TO hand (16), and passes through the oil return pipe (8) to the compressor. (1)
Since the oil flows into the suction pipe (7a) of the oil, the efficiency of oil recovery is not impaired.

尚、上記実施例では、油分離器(11)として2つのT
elli手(13)、<16>を利用した配管の組み合
わせで構成したものを用いているが、カートリッジとし
て市販されているような衝突形又は遠心分離形の油分離
器を用いても、同様の効果を得ることができる。
In addition, in the above embodiment, two Ts are used as the oil separator (11).
Although we use a combination of piping using ellipses (13) and <16>, it is also possible to use a collision type or centrifugal type oil separator such as those commercially available as cartridges. effect can be obtained.

(発明の効果) 以上説明したように、本発明によれば、冷凍装置の蒸発
器から圧amの吸入管に冷媒および油の一部を戻す油戻
し管を設け、該油戻し管中の流れを冷媒の流れと油の流
れとに分離して、冷媒の流れる通路に温度式自動膨張弁
の感温筒を取付けるようにしたので、過熱ガス冷媒の温
度を正確に検出することができ、油上り率の増大による
湿り運転を有効に防止して安定した過熱度制御を行うこ
とができる。
(Effects of the Invention) As explained above, according to the present invention, an oil return pipe is provided for returning part of the refrigerant and oil from the evaporator of the refrigeration device to the pressure am suction pipe, and the flow in the oil return pipe is By separating the flow into the refrigerant flow and the oil flow, and installing a temperature-sensing tube of a thermostatic automatic expansion valve in the path where the refrigerant flows, the temperature of the superheated gas refrigerant can be accurately detected, and the oil flow It is possible to effectively prevent wet operation due to an increase in the rising rate and perform stable superheat degree control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例を示し、第1図は
その全体構成図、第2図は油分離器の部分拡大図である
。第3図は従来の感温筒取付部の冷媒温度検出誤差の説
明図である。 (1)・・・圧縮橢、(2)・・・凝縮器、(4)・・
・自動膨張弁、(4a)・・・感温筒、(5)・・・蒸
発器、(6)・・・冷却管、(7a)・・・吸入管、(
8)・・・油戻し管、(11)・・・油分離器(油分離
手段)、(14)・・・冷媒通路、(15)・・・油通
路。 特 許 出 願 人  ダイキン工業株式会社代   
理   人       弁理士  前  1)  弘
第3図 第2図 15(油通路)
1 and 2 show an embodiment of the present invention, with FIG. 1 being an overall configuration diagram thereof, and FIG. 2 being a partially enlarged view of an oil separator. FIG. 3 is an explanatory diagram of a refrigerant temperature detection error in a conventional temperature-sensing cylinder mounting section. (1)... Compressor, (2)... Condenser, (4)...
・Automatic expansion valve, (4a)...Temperature cylinder, (5)...Evaporator, (6)...Cooling pipe, (7a)...Suction pipe, (
8)...Oil return pipe, (11)...Oil separator (oil separation means), (14)...Refrigerant passage, (15)...Oil passage. Patent applicant Daikin Industries, Ltd. representative
Attorney Patent Attorney 1) Hiroshi Figure 3 Figure 2 15 (Oil passage)

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機(1)、凝縮器(2)、温度式自動膨張弁
(4)および内部に冷却管(6)を有する満液式蒸発器
(5)を順次接続してなる冷凍回路を備えた冷凍装置に
おいて、上記蒸発器(5)には、蒸発器(5)内部の所
定の高さに存在する冷媒および油の一部を圧縮機(1)
の吸入管(7a)に戻す油戻し管(8)が設けられてい
るとともに、該油戻し管(8)には冷媒および油の流れ
を分離して、冷媒の流れる冷媒通路(14)と油の流れ
る油通路(15)とを有する分離手段(11)が介設さ
れ、上記冷媒通路(14)にはガス冷媒の温度を検出す
る上記自動膨張弁(4)の感温筒(4a)が取付けられ
ていることを特徴とする冷凍装置。
(1) A refrigeration circuit consisting of a compressor (1), a condenser (2), a thermostatic automatic expansion valve (4), and a flooded evaporator (5) having an internal cooling pipe (6) connected in sequence. In the refrigeration system, a part of the refrigerant and oil present at a predetermined height inside the evaporator (5) is transferred to the compressor (1).
An oil return pipe (8) is provided to return the oil to the suction pipe (7a), and the oil return pipe (8) is provided with an oil return pipe (8) that separates the flow of refrigerant and oil so that the refrigerant passage (14) through which the refrigerant flows is connected to the oil return pipe (8). A separating means (11) having an oil passage (15) through which gas flows is interposed, and a temperature sensing tube (4a) of the automatic expansion valve (4) for detecting the temperature of the gas refrigerant is provided in the refrigerant passage (14). A refrigeration device characterized in that it is installed.
JP3655387A 1987-02-19 1987-02-19 Refrigerator Pending JPS63204074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3655387A JPS63204074A (en) 1987-02-19 1987-02-19 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3655387A JPS63204074A (en) 1987-02-19 1987-02-19 Refrigerator

Publications (1)

Publication Number Publication Date
JPS63204074A true JPS63204074A (en) 1988-08-23

Family

ID=12472950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3655387A Pending JPS63204074A (en) 1987-02-19 1987-02-19 Refrigerator

Country Status (1)

Country Link
JP (1) JPS63204074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395674B2 (en) 2004-07-01 2008-07-08 Daikin Industries, Ltd. Air conditioner
US7607317B2 (en) 2004-08-04 2009-10-27 Daikin Industries, Ltd. Air conditioner with oil recovery function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395674B2 (en) 2004-07-01 2008-07-08 Daikin Industries, Ltd. Air conditioner
US7607317B2 (en) 2004-08-04 2009-10-27 Daikin Industries, Ltd. Air conditioner with oil recovery function

Similar Documents

Publication Publication Date Title
US5369958A (en) Air conditioner
US5605058A (en) Air conditioning system, and accumulator therefor and manufacturing method of the accumulator
US5953934A (en) Refrigerant circulating apparatus and method of assembling a refrigerant circuit
EP3173714B1 (en) Refrigerating cycle system and liquid flow-back prevention method
JP3819672B2 (en) Oil level detection device and air conditioner for high pressure vessel
US11199347B2 (en) Oil separation device and refrigeration cycle apparatus
JPS63204074A (en) Refrigerator
US2760355A (en) Method of returning oil from an element of a refrigeration system to the compressor thereof
IL44785A (en) A refrigeration system provided with variable length capillary tube
US3163015A (en) Refrigeration system including charge checking means
JP2002333220A (en) Compression type heat pump
JP4278351B2 (en) Oil level detection method and apparatus for compressor
JP4004356B2 (en) Oil level detection method and apparatus for compressor
KR102034612B1 (en) Air conditioner and method for controlling the same
JP2568709B2 (en) Heat transfer device
JP4115094B2 (en) Air conditioner
KR870001252Y1 (en) Liquid separator for use in a refrigerating air conditioning apparatus
JP2020085269A (en) Refrigeration cycle device
JP3448915B2 (en) refrigerator
JPS61243263A (en) Oil-return control mechanism of oil separator
JPH02254275A (en) Water level indicator for accumulator
JPH06193975A (en) Refrigerating cycle
JPS6089641A (en) Heat pump
JP2001317830A (en) Air conditioner
JP2001296069A (en) Compression type heat pump