JPS6320399B2 - - Google Patents

Info

Publication number
JPS6320399B2
JPS6320399B2 JP56087001A JP8700181A JPS6320399B2 JP S6320399 B2 JPS6320399 B2 JP S6320399B2 JP 56087001 A JP56087001 A JP 56087001A JP 8700181 A JP8700181 A JP 8700181A JP S6320399 B2 JPS6320399 B2 JP S6320399B2
Authority
JP
Japan
Prior art keywords
paint
printed
conductive paint
powder
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56087001A
Other languages
Japanese (ja)
Other versions
JPS57202796A (en
Inventor
Shinji Okamoto
Kyoshi Ida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP8700181A priority Critical patent/JPS57202796A/en
Publication of JPS57202796A publication Critical patent/JPS57202796A/en
Publication of JPS6320399B2 publication Critical patent/JPS6320399B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

【発明の詳細な説明】 本発明は、うるし系レジンを適当な溶剤に溶解
して作つた塗料に微細なCu粉末を分散して成る
Cu粉末導電塗料(以下Cu塗料と略記する)を用
いて、合成樹脂積層板の表面に印刷法により電気
回路を形成した印刷配線基板(以下PCボードと
略記する)をベースとして、その裏面に抵抗を印
刷法(主としてスクリーン印刷法)によつて作
り、表面の印刷配線と表裏貫通孔(以下スルーホ
ールと略称する)により、適当な導電塗料で連絡
して成る印刷抵抗回路基板(以下PRC基板と略
称する)の製造方法に関するものである。
[Detailed description of the invention] The present invention is made by dispersing fine Cu powder in a paint made by dissolving lacquer-based resin in a suitable solvent.
The base is a printed circuit board (hereinafter referred to as PC board) in which an electrical circuit is formed by printing on the surface of a synthetic resin laminate using Cu powder conductive paint (hereinafter referred to as Cu paint), and a resistor is placed on the back side. A printed resistor circuit board (hereinafter referred to as a PRC board) is made by a printing method (mainly a screen printing method), and is made by connecting printed wiring on the surface and through holes on the front and back sides (hereinafter referred to as through holes) with an appropriate conductive paint. The present invention relates to a manufacturing method of

従来の印刷抵抗回路基板の製造方法の大要を第
1図、第2図及び第3図を用いて説明する。
An outline of a conventional method for manufacturing a printed resistor circuit board will be explained with reference to FIGS. 1, 2, and 3.

第1図のa〜e図は断面図による大まかな工程
の説明図である。なお以下の説明で表面というの
は断面の下面を示し、裏面というのは上面を示
す。a図はCu張り積層板を設計仕様に従つて切
断した断面の一部を示す。図において1は積層
板、2は1に張りつけたCu箔を示す。
Figures a to e in Fig. 1 are cross-sectional views for explaining the rough steps. Note that in the following description, the front surface refers to the lower surface of the cross section, and the back surface refers to the upper surface. Figure a shows a part of the cross section of a Cu-clad laminate cut according to the design specifications. In the figure, 1 shows the laminate, and 2 shows the Cu foil attached to 1.

第1工程は、前記積層板を洗滌、乾燥した後、
設計図に従つて作成した写真原板に基づいて作つ
たマスクを、2で示すCu箔上に塗布、乾燥した
感光レジンの薄層の上に密着して露光し、次にこ
れを化学処理、即ちケミカルエツチングによつて
必要な配線パターンを残し、不用なCu箔を除去
する。次にb図に示すように設計に従つてスルー
ホール3をプレスで抜き、反対面(裏面)の上
に、後に抵抗を印刷する個所等必要な部分に下塗
り防湿層4を、防湿塗料を塗布、乾燥して作る。
防湿層4は基板1の耐湿性が充分なときは省略さ
れる。以上で第1工程は完了する。b図は第1工
程を終了した状態を示す。
The first step is to wash and dry the laminate, and then
A mask made based on a photographic original plate prepared according to the design drawings is applied onto the Cu foil shown in 2, exposed to light in close contact with a thin layer of dried photosensitive resin, and then chemically treated, i.e. Chemical etching leaves the necessary wiring pattern and removes unnecessary Cu foil. Next, as shown in figure b, press out the through holes 3 according to the design, and apply an undercoat moisture-proof layer 4 and moisture-proof paint on the opposite side (back side) where necessary, such as where resistors will be printed later. , made by drying.
The moisture-proof layer 4 is omitted when the substrate 1 has sufficient moisture resistance. The first step is thus completed. Figure b shows the state after the first step has been completed.

第2工程はスルーホール3の端子及び壁面に導
電塗料、例えばAg塗料を塗布、乾燥して表裏両
面の導電を完了する。c図は第2工程の終了状態
を示すもので5は導電塗料による導通層を示して
いる。なお第3図は前記c図の表面を示す斜視図
である。c図と同一部分には同じ符号を付して説
明を省略する。
In the second step, conductive paint, for example Ag paint, is applied to the terminals and walls of the through-hole 3 and dried to complete conductivity on both the front and back surfaces. Figure c shows the state at the end of the second step, and 5 indicates a conductive layer made of conductive paint. Note that FIG. 3 is a perspective view showing the surface of FIG. c. The same parts as in Fig. c are given the same reference numerals and their explanation will be omitted.

第3工程は、d図に示すように抵抗6を印刷法
によつて作るのである。印刷抵抗の製法は既に広
く知られているので(例えば、特願昭43−47483
号)極めて簡単に述べる。一般に導電材料はカー
ボン粉末を用いる。カーボンは低抵抗は主にグラ
フアイト又はグラフアイトにアセチレンブラツク
を混合したものを用い、中抵抗はアセチレンブラ
ツク又はアセチレンブラツクに無定形カーボンブ
ラツクを混合したものを用い、高抵抗はカーボン
ブラツク又はこれに無機質の微粉末を混和したも
のを用いるのが一般である。抵抗器としての特性
を安定させるためカーボンは一般に高温熱処理を
ほどこす。バインダーとしては熱硬化性レジンを
用いる。熱可塑性レジンは用いることはできな
い。温度によつて軟化膨張して、抵抗とした場
合、抵抗値の変化が大きくなるからである。一般
にはフエノール系、キシレン系、又は種類の異な
るレジンを混合した混合レジンが用いられる。ま
れには細かいSiO2などの無機質の微粉末を混和
することもある。
In the third step, as shown in Figure d, the resistor 6 is manufactured by a printing method. The manufacturing method of printed resistors is already widely known (for example, Japanese Patent Application No. 47483/1973).
No.) I will explain it very simply. Carbon powder is generally used as the conductive material. For carbon with low resistance, graphite or a mixture of graphite and acetylene black is mainly used, for medium resistance, acetylene black or a mixture of acetylene black and amorphous carbon black is used, and for high resistance, carbon black or a mixture thereof is used. Generally, a mixture of fine inorganic powder is used. Carbon is generally subjected to high-temperature heat treatment to stabilize its properties as a resistor. A thermosetting resin is used as the binder. Thermoplastic resins cannot be used. This is because when it softens and expands due to temperature and becomes a resistance, the change in resistance value becomes large. Generally, phenol-based resins, xylene-based resins, or mixed resins in which different types of resins are mixed are used. In rare cases, fine inorganic powder such as SiO 2 may be mixed.

上記の混合物に適当な溶剤を加えて混練して、
印刷に適した抵抗塗料を作る。
Add a suitable solvent to the above mixture and knead it,
Making a resistive paint suitable for printing.

抵抗印刷は、主としてスクリーン印刷法が用い
られる。即ち回路設計図に従つて作られたスクリ
ーン膜(一般にはナイロンスクリーン)のマスク
を用い、これを前記4の防湿層の上に固定し、そ
の上からスキージーを用いて抵抗塗料を印刷し、
その後恒温槽を用いて高温焼付を行う。焼付温度
は普通120℃〜150℃である。量産の場合にはトン
ネル炉を用いる。その後、抵抗値を安定させるた
め熱エージングを行うこともある。最後に抵抗値
の調整を行う。一般には、抵抗値が設計値より小
さいときは抵抗体の一部をけずりとり、大きいと
きは端子に銀塗料を塗布して調整する。
For resistive printing, screen printing is mainly used. That is, a screen film (generally a nylon screen) mask made according to the circuit design drawing is used, and this is fixed on the moisture-proof layer described in 4 above, and a resistive paint is printed on it using a squeegee.
After that, high-temperature baking is performed using a constant temperature bath. Baking temperature is usually 120°C to 150°C. For mass production, a tunnel furnace is used. After that, thermal aging may be performed to stabilize the resistance value. Finally, adjust the resistance value. Generally, if the resistance value is smaller than the designed value, part of the resistor is scraped off, and if it is larger, the terminal is coated with silver paint to adjust it.

第2図はこのようにして作られた印刷抵抗の斜
視図を示す。第1図のd図と同一の部分には同じ
符号を付して説明を省略する。
FIG. 2 shows a perspective view of a printed resistor made in this way. Components that are the same as those in FIG.

第4工程はe図に示すように、抵抗体6、表裏
導通層5などを湿度、機械的損傷等から保護する
ために、レジンを主体とする防湿塗料による保護
層7を、印刷法によつて形成し、高温乾燥して本
工程を終る。
In the fourth step, as shown in Figure e, in order to protect the resistor 6, front and back conductive layers 5, etc. from humidity, mechanical damage, etc., a protective layer 7 made of a moisture-proof paint mainly composed of resin is applied by a printing method. The main process is completed by forming and drying at high temperature.

なお、回路設計の場合、第4図に示すように、
高密度抵抗設定などの場合、抵抗端子をそのまま
スルーホールすることなく、相当離れた場所でス
ルーホールし、その間をAg塗料による印刷配線
8によつて連結することが多い。7はスルーホー
ルの無い場合の銀端子を示す。なお第2図と同一
部分には同じ符号を付して説明を省略した。
In addition, in the case of circuit design, as shown in Figure 4,
In the case of high-density resistance setting, the resistor terminals are often not directly through-holeed, but rather through-holeed at a considerable distance and connected between them by printed wiring 8 made of Ag paint. 7 shows a silver terminal without a through hole. Note that the same parts as in FIG. 2 are given the same reference numerals, and their explanations are omitted.

以上、従来のPRC基板の製法の大要を述べた。 The above is an overview of the conventional method for manufacturing PRC boards.

次に従来の製造法の欠点について簡単に述べ
る。
Next, shortcomings of conventional manufacturing methods will be briefly described.

(イ) 少量生産の場合、Cu箔層のエツチング加工
が高価につく。かつ、エツチング工程は公害を
伴うので、小規模で実施することは困難であ
る。
(b) For small-volume production, etching the Cu foil layer is expensive. In addition, the etching process involves pollution, so it is difficult to carry out on a small scale.

(ロ) 抵抗焼付、塗膜乾燥等、繰り返し熱処理を行
うので、基板の「そり」を避けることはできな
い。「そり」は後の工程をスムーズに流すこと
を困難にする。ひどい場合は廃棄処分とされる
ことも起つてくる。「そり」の原因は、Cuのあ
る表面と、ない表面の熱膨張率が異なることに
よる。
(b) Since heat treatments such as resistance baking and coating drying are performed repeatedly, "warping" of the board cannot be avoided. “Warpage” makes it difficult for subsequent processes to flow smoothly. In severe cases, it may even be disposed of. The cause of "warpage" is that the coefficient of thermal expansion differs between surfaces with and without Cu.

(ハ) Cμ箔の厚さが最小にしても10μmは必要であ
るため、回路を構成するケミカルエツチングの
工程の際サイド・エツチングを生ずるので、微
細パターンを作ることが困難である。
(c) Since the minimum thickness of the Cμ foil is required to be 10 μm, side etching occurs during the chemical etching process that forms the circuit, making it difficult to create fine patterns.

(ニ) 簡単にCu箔層回路部分の変更ができない。
ケミカルエツチングの工程が必要なためであ
る。
(d) The Cu foil layer circuit portion cannot be easily changed.
This is because a chemical etching process is required.

(ホ) 抵抗体の高密度形成の場合、密度制限を受け
る。その理由はAgのマイグレーシヨン
(Migration;移行)によるもので、従来の
PRCの製法の場合避け得られない重大欠点で
あつた。次のこの現象を極めて簡単に述べる。
第5図において、1は絶縁基板、15は1に密
着しているAg電極、16は直流電源とする。
いま、表面湿度が大になつたとすると、次のよ
うな化学反応が生ずる。
(e) In the case of high-density formation of resistors, there are density restrictions. The reason for this is due to the migration of Ag, which
This was a serious drawback that could not be avoided in the PRC manufacturing method. This phenomenon will be explained very briefly below.
In FIG. 5, 1 is an insulating substrate, 15 is an Ag electrode in close contact with 1, and 16 is a DC power source.
Now, if the surface humidity increases, the following chemical reaction will occur.

(a) Ag電極の表面が酸化されているとき。 (a) When the surface of the Ag electrode is oxidized.

Ag2O+2Ag(OH)2Ag++2(OH)-
(1) (b) Ag電極の表面が酸化されていないとき。
Ag 2 O+2Ag(OH)2Ag + +2(OH) -
(1) (b) When the surface of the Ag electrode is not oxidized.

2Ag+H2OAg2O+H2↑ (2) Ag2O+H2O2Ag(OH)2Ag+ +2(OH)- (3) それ故電源16によつてエネルギーが与えら
れると、反応は→方向に進む。そうすると生じ
た銀イオンAg+は(−)側電極に引かれて移動
し、(+)電荷を失うとAgとして表面に沈着し
て17で示すような樹脂状の外観を呈する。こ
の現像をAgマイグレーシヨンと称する。樹脂
状沈着は、電源電圧が大、湿度が大になるほど
顕著になり、ついに両電極を短絡するに至る。
2Ag+H 2 OAg 2 O+H 2 ↑ (2) Ag 2 O+H 2 O2Ag(OH)2Ag + +2(OH) - (3) Therefore, when energy is given by the power source 16, the reaction proceeds in the → direction. Then, the generated silver ions Ag + are attracted to the (-) side electrode and move, and when they lose their (+) charge, they are deposited on the surface as Ag, giving a resin-like appearance as shown at 17. This development is called Ag migration. The resin-like deposit becomes more noticeable as the power supply voltage and humidity become higher, eventually leading to a short circuit between the two electrodes.

この現象は化学反応なので両電極間の電位傾
度が大きいほど著しくなる。即ち両電極間の距
離をx、16の電源電圧をVとすると (∂V/∂x) に依存する。
Since this phenomenon is a chemical reaction, it becomes more pronounced as the potential gradient between the two electrodes increases. That is, when the distance between both electrodes is x and the power supply voltage of 16 is V, it depends on (∂V/∂x).

それ故第4図において抵抗の銀電極間隔又は
引出しAg配線の間隔をxとしたときその許容
最小値をxni、その間の電圧Vの値をそれぞれ xni=50μm=50×10-4cm V=20V とすると、 (−∂V/∂x)max20/50×10-4=4000V/cm (4) という大きい値になるので、低湿度でもマイグ
レーシヨンは容易に起る。逆にV=20Vという
のは一般使用上、多く用いられる電圧なので、
逆にマイグレーシヨンが起りにくい必要間隔xh
を求めるに、この場合許容される電位傾度の値
を100V/cmと考えると、(4)式を参照して (δV/δxh)20/xh=100V/cm (5) 故に Xh=20/100=0.2cm=2mm (6) という大きい値になる。即ち印刷抵抗のAg電
極又はAg配線の最小許容間隔は2mmという大
きい値になる。それ故Ag塗料のようにマイグ
レーシヨン特性の大きい塗料を用いては、特別
の防湿加工を行わないと高密度実装はできない
ことになる。実装密度は電極間隔で定まるから
である。
Therefore, in Fig. 4, when the interval between the silver electrodes of the resistor or the interval between the lead Ag wiring is x, the minimum allowable value is x ni , and the value of the voltage V between them is x ni = 50 μm = 50 × 10 -4 cm V. = 20V, the value is as large as (−∂V/∂x)max20/50×10 -4 =4000V/cm (4), so migration easily occurs even at low humidity. On the other hand, V = 20V is a voltage that is often used in general use, so
On the other hand, the required interval x h that makes it difficult for migration to occur
To find the value of potential gradient allowed in this case is 100V/cm, referring to equation (4), (δV/δx h )20/x h = 100V/cm (5) Therefore, X h = 20/100=0.2cm=2mm (6) This is a large value. That is, the minimum allowable interval between Ag electrodes or Ag wiring of a printed resistor is as large as 2 mm. Therefore, if a paint with high migration characteristics such as Ag paint is used, high-density mounting will not be possible unless special moisture-proofing treatment is performed. This is because the packaging density is determined by the electrode spacing.

本発明は、前記した諸欠点をを除去し若しくは
著しく改善したPRC基板の製造方法を提供する
ことを目的としたものである。この目的を達成す
るため、本発明に係るPRC基板の製造方法は、 (i) うるし系レジンを適当な溶剤に溶解した塗料
に微細なCu粉末を分散してなるCu粉末導電塗
料を用いて、 (ii) 合成樹脂積層板の表面に印刷法により電気回
路を形成した配線基板の裏面に、 (iii) カーボン微粉末と熱硬化性レジンとを主成分
とする抵抗体を形成し、 (iv) 該抵抗体の両端を、表面の前記印刷配線の上
の所定の場所に、適当に設けた表裏両面の貫通
孔により、適当な導電塗料によつて連絡し、 (v) 然る後に耐湿塗料を用いて前記抵抗等の部分
を被覆する保護層を設けることを特徴としたも
のである。
An object of the present invention is to provide a method for manufacturing a PRC board that eliminates or significantly improves the above-mentioned drawbacks. In order to achieve this objective, the method for manufacturing a PRC board according to the present invention includes: (i) using a Cu powder conductive paint made by dispersing fine Cu powder in a paint made by dissolving a lacquer-based resin in an appropriate solvent; (ii) On the back side of a wiring board on which an electric circuit is formed by a printing method on the surface of a synthetic resin laminate, (iii) a resistor whose main components are carbon fine powder and thermosetting resin is formed, and (iv) Both ends of the resistor are connected at predetermined locations above the printed wiring on the front surface through appropriate conductive paint through holes on both the front and back surfaces, and (v) moisture-resistant paint is then applied. The invention is characterized in that a protective layer is provided to cover parts such as the resistor.

次に本発明の構成について、次の実施例につい
て説明する。本発明の基礎をなすものは、本発明
の発明者と同一の発明者及び同一の出願人に係る
発明、即ち特願昭56−056278号、(特開昭57−
172795号公報参照、以下前出願と略称する)に開
示された発明である。
Next, the configuration of the present invention will be described with reference to the following embodiments. The basis of the present invention is the invention of the same inventor and same applicant as the inventor of the present invention, namely, Japanese Patent Application No. 56-056278,
This is the invention disclosed in Publication No. 172795 (hereinafter referred to as the previous application).

即ち前出願の要旨は、合成樹脂積層板の表面
に、微細なCu粉末をうるし系レジンに分散して
成るCu導電塗料を用いて、電気回路の配線を印
刷法によつて構成することを特徴とする、Cu粉
末導電塗料を用いた印刷配線基板の製造方法、に
係る。
In other words, the gist of the previous application is that electrical circuit wiring is constructed by a printing method on the surface of a synthetic resin laminate using a Cu conductive paint made of fine Cu powder dispersed in a lacquer-based resin. The present invention relates to a method for manufacturing a printed wiring board using Cu powder conductive paint.

前出願の発明により、従来用いられていたCu
張り積層板を用いる必要がなく、従つてCu回路
を形成するためのケミカルエツチングの工程もそ
の必要がなくなつたのである。その意義は極めて
大きいといえるであろう。
According to the invention of the previous application, the previously used Cu
There is no need to use stretched laminates, and therefore no need for chemical etching steps to form Cu circuits. It can be said that its significance is extremely large.

次に前出願発明によるPCボードの製法につい
て述べる。
Next, a method for manufacturing a PC board according to the previously filed invention will be described.

スクリーン印刷法による方法が最も多いので、
この場合について記す。
The most common method is screen printing,
This case will be described.

回路設計図に従つて、ナイロンマスクを作る。
ナイロンマスクの作り方は印刷抵抗の普及により
既に広く公知となつているので省略する。このマ
スクをスクリーン膜として積層板(基板)の表面
に重ね、うるし系レンジを結合剤とするCu導電
塗料を、合成樹脂で作つたスキージー(主にポリ
ウレタン樹脂製)で一定の印圧を加えて印刷す
る。印刷された基板を乾燥器に収容して、適当な
温度、時間で硬化させる。膜厚が30μm前後であ
れば140℃〜150℃の温度、30〜60分の時間で充分
である。量産の場合はトンネル炉を用いる。比抵
抗を考慮すると膜厚は10μm〜50μmの範囲が適
当である。
Make a nylon mask according to the circuit blueprint.
The method of making a nylon mask is already widely known due to the widespread use of printed resistors, so the explanation will be omitted. This mask was layered on the surface of the laminate (substrate) as a screen film, and a certain amount of printing pressure was applied to the Cu conductive paint using a lacquer-based range as a binder using a synthetic resin squeegee (mainly made of polyurethane resin). Print. The printed substrate is placed in a dryer and cured at an appropriate temperature and time. If the film thickness is around 30 μm, a temperature of 140° C. to 150° C. and a time of 30 to 60 minutes are sufficient. For mass production, a tunnel furnace is used. Considering specific resistance, the appropriate film thickness is in the range of 10 μm to 50 μm.

塗料の乾燥、焼付を終つたものを適当な溶剤で
洗浄して完成品とする。一般には低級アルコール
による洗浄がよいようである。
After the paint has dried and baked, it is washed with an appropriate solvent to form a finished product. In general, cleaning with lower alcohol seems to be better.

印刷膜の厚さを調整するには、ナイロンマスク
を作るナイロンの衣地の厚さを選定すればよい。
スキージーの印圧を変えても調整できるが、量産
の場合はマスクがスキージーの摩耗を考えると、
もつとも適した印圧を定めて、いつもこれを一定
としたほうがよい。
The thickness of the printed film can be adjusted by selecting the thickness of the nylon fabric from which the nylon mask is made.
It can be adjusted by changing the printing pressure of the squeegee, but in case of mass production, the mask will wear out the squeegee.
It is better to determine an appropriate printing pressure and keep it constant at all times.

次に基板としては熱硬性レジンを用いた合成樹
脂積層板であれば、よいわけであるが、Cu導電
塗料を焼きつける温度は前記したように140℃〜
150℃であるから、少くとも耐熱温度150℃以上の
ものであることが必要である。このような耐熱性
積層板としては、フエノール系又はエポキシ系の
高耐熱性基板がよい。耐熱性に優れ、かつ低価格
であることによる。
Next, as a substrate, a synthetic resin laminate using thermosetting resin is fine, but as mentioned above, the temperature at which the Cu conductive paint is baked is 140℃~
Since the temperature is 150°C, it is necessary that the heat resistant temperature is at least 150°C or higher. As such a heat-resistant laminate, a highly heat-resistant phenol-based or epoxy-based substrate is preferable. This is due to its excellent heat resistance and low price.

なお印刷法としては、手軽である上にマスプロ
にも適するのでスクリーン印刷法を用いたが、凹
版印刷法も用いることができることは当然であ
る。特に正確なパターンが必要なときは凹版印刷
法が優れているようである。
As the printing method, screen printing was used because it is easy and suitable for mass production, but it goes without saying that intaglio printing can also be used. Intaglio printing appears to be superior, especially when precise patterns are required.

前述の工程により所要のPCボードが得られた
ので、次に該基板を用いてPRC基板を製造する
方法を第6図のA〜E図を参照して説明する。図
において第1図と同一の部分については同じ符号
を付して説明を省略する。A図は前記PCボード
の断面図で、1は絶縁基板、21はCu塗料で印
刷した配線を示している。
Now that the required PC board has been obtained through the above-described steps, a method for manufacturing a PRC board using the board will now be described with reference to FIGS. 6A to 6E. In the figure, the same parts as in FIG. 1 are designated by the same reference numerals, and the explanation thereof will be omitted. Figure A is a cross-sectional view of the PC board, where 1 shows the insulating substrate and 21 shows the wiring printed with Cu paint.

次に第一工程は抵抗を印刷すべき部分に耐湿層
4及びスルーホール3を設けることは、前記と同
様である。B図は第1工程を終了した状態を示
す。なお耐湿層4は基板の耐湿性が充分であれば
省略してよい。
Next, in the first step, a moisture-resistant layer 4 and through holes 3 are provided in the area where the resistor is to be printed, as described above. Figure B shows the state after the first step has been completed. Note that the moisture-resistant layer 4 may be omitted if the substrate has sufficient moisture resistance.

第2工程はC図に示すようにスルーホール3の
端子及び壁面に25で示すCu導電塗料を塗付、
乾燥して導通を完了することである。この場合、
AgマイグレーシヨンのおそれがなければAg塗料
も用いることができる。
The second step is to apply Cu conductive paint 25 to the terminal and wall of through hole 3 as shown in Figure C.
The process is to complete the conduction by drying. in this case,
Ag paint can also be used if there is no risk of Ag migration.

第3工程はD図に示すように抵抗6を印刷法に
よつて作る。この製法については、既り前記した
ので簡単のため省略する。
In the third step, as shown in Figure D, the resistor 6 is manufactured by a printing method. Since this manufacturing method has already been described above, it will be omitted for simplicity.

第4工程はE図に示すように、湿度、機械的損
傷から抵抗体等を保護するために保護層7を設け
ることであるが、これも既に前記したので省略す
る。
The fourth step, as shown in Fig. E, is to provide a protective layer 7 to protect the resistor etc. from humidity and mechanical damage, but this has also been described above and will therefore be omitted.

本発明に係るPRC基板の製造法における2大
特色のうち、1つは既に述べたようにCu導電塗
料を用いたPCボードを、従来のCu張り積層板に
よるPCボードの代りに用いることである。第2
の特色は第4図に示すような高密度配線の場合
に、従来のAg塗料を用いた場合のように、マイ
グレーシヨンが生じないという点にある。従つ
て、その密度は、印刷技術の許す限り密度を大に
することができるという点にある。もつとも、特
に高電圧が相隣る導体部分に印加されるようなと
きは、許容される最高電位傾度で定まることにな
る。このような理由で、本発明に係る製造方法に
よつて初めて高密度実装が可能になつたといえる
であろう。
Among the two major features of the PRC board manufacturing method according to the present invention, one is, as already mentioned, that a PC board using Cu conductive paint is used in place of the conventional PC board using Cu-clad laminates. . Second
The feature of this method is that migration does not occur in the case of high-density wiring as shown in FIG. 4, unlike when conventional Ag paints are used. Therefore, the density is such that it can be made as high as printing technology allows. However, especially when a high voltage is applied to adjacent conductor parts, it is determined by the maximum allowable potential gradient. For these reasons, it can be said that the manufacturing method according to the present invention has made high-density packaging possible for the first time.

次に数値例を挙げる。マイグレーシヨンのない
場合、許容される最高電位傾度は一般に次のよう
に考えられている。
Next, a numerical example is given. In the absence of migration, the maximum allowable potential gradient is generally considered as follows.

(∂V/∂x)max1000V/cm (7) よつて使用電圧を前記の如く20Vとすると、(7)
式により (∂V/∂x)maxV/xni=20/xni=1000V/cm (8) よつて xni=20/1000=0.2mm (9) 即ち(6)式に比較して1/10になる。つまり実装密
度を10倍にも増すことができることになる。
(∂V/∂x)max1000V/cm (7) Therefore, if the working voltage is 20V as mentioned above, (7)
According to the formula (∂V/∂x)maxV/x ni = 20/x ni = 1000V/cm (8) Therefore, x ni = 20/1000 = 0.2 mm (9) That is, 1/ Becomes 10. In other words, the packaging density can be increased by a factor of 10.

次に本発明の効果について簡単に述べる。 Next, the effects of the present invention will be briefly described.

(1) 化学エツチングの工程を必要としない。従つ
て公害のおそれがないので小企業でも容易に製
造することができる。
(1) No chemical etching process is required. Therefore, since there is no risk of pollution, even small companies can easily manufacture it.

(2) 熱処理を繰り返しても「そり」を生じない。(2) No warping occurs even after repeated heat treatment.

(3) スルーホールをCu塗料を用いて行つた場合
には、抵抗器の高密度化ができる。
(3) If through-holes are made using Cu paint, it is possible to increase the density of the resistor.

(4) 印刷配線回路の一部変更が容易である。(4) It is easy to partially change the printed wiring circuit.

(5) 抵抗特性については、従来の製法によるもの
と変るところはない。
(5) Regarding resistance characteristics, there is no difference from those made using conventional manufacturing methods.

即ち第7図は抵抗の温度特性で曲線,′
はそれぞれ本発明に係る製品及び従来製品の特
性で、殆んど差はない。この場合初抵抗値は
150Ωである。曲線,′についても同様で、
殆んど差はない。初抵抗値は何れも1KΩ〜
50KΩの場合である。
In other words, Figure 7 shows the temperature characteristics of resistance, and the curve ′
are the characteristics of the product according to the present invention and the conventional product, respectively, and there is almost no difference. In this case, the initial resistance value is
It is 150Ω. The same goes for the curve, ′,
There is almost no difference. Initial resistance value is 1KΩ~
This is the case of 50KΩ.

第8図は負荷寿命特性で、周囲温度40℃、負
荷1/32W、1000時間後の抵抗変化率を示す。曲
線,′はそれぞれ本発明に係る製品及び従
来製品の特性で殆んど差はない。なお横軸は試
料の初抵抗値である。第9図は耐湿放置特性
で、温度40℃、湿度95%R.H.の恒温恒湿槽中
に1000時間放置後の抵抗変化率を示す。,
′はそれぞれ本発明に係る製品及び従来製品
の場合を示す。殆んど差は認められない。なお
横軸は試料の初抵抗値である。
Figure 8 shows the load life characteristics, showing the rate of change in resistance after 1000 hours at an ambient temperature of 40°C and a load of 1/32W. The curves ′ and ′ have almost no difference in characteristics between the product according to the present invention and the conventional product. Note that the horizontal axis is the initial resistance value of the sample. Figure 9 shows the humidity resistance characteristics and shows the rate of change in resistance after being left in a constant temperature and humidity chamber at a temperature of 40°C and a humidity of 95% RH for 1000 hours. ,
' indicates the case of a product according to the present invention and a conventional product, respectively. Almost no difference can be observed. Note that the horizontal axis is the initial resistance value of the sample.

(6) 価格が格段に安価になる。(6) The price will be much lower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜e図は従来の技術によるPRC基板
の製造工程の説明図、第2図は印刷抵抗回路を示
す斜視図、第3図はPRC基板の表裏両面のスル
ーホール導通孔を示す斜視図、第4図は高密度化
したPRC基板の一部の平面図、第5図はAgマイ
グレーシヨン発生の機構の説明用斜視図、第6図
A〜Eは本発明に係る技術によるPRC基板の製
造工程の説明図、第7図は抵抗の温度特性を示す
グラフ、第8図は負荷寿命特性を示すグラフ、第
9図は耐湿放置特性を示すグラフ、である。 図において、1……合成樹脂積層板、7……保
護層、3……スルーホール孔、21……Cu塗料
による印刷配線、4……防湿層、25……Cu塗
料による表裏導通層、6……印刷抵抗を示す。
Figures 1 a to e are explanatory diagrams of the manufacturing process of a PRC board using conventional technology, Figure 2 is a perspective view showing a printed resistance circuit, and Figure 3 is a perspective view showing through holes on both the front and back sides of the PRC board. 4 is a plan view of a part of a high-density PRC substrate, FIG. 5 is a perspective view for explaining the mechanism of Ag migration generation, and FIGS. 6A to 6E are PRC substrates according to the technology of the present invention. FIG. 7 is a graph showing the temperature characteristics of the resistor, FIG. 8 is a graph showing the load life characteristics, and FIG. 9 is a graph showing the moisture resistance characteristics. In the figure, 1...Synthetic resin laminate, 7...Protective layer, 3...Through hole, 21...Printed wiring with Cu paint, 4...Moisture-proof layer, 25...Top and back conductive layer with Cu paint, 6 ...Indicates printing resistance.

Claims (1)

【特許請求の範囲】 1 (i) うるし系レジンを適当な溶剤に溶解した
塗料に微細なCu粉末を分散して成るCu粉末導
電塗料(以下Cu塗料と略称する)を用いて、 (ii) 合成樹脂積層板の表面に印刷法により電気回
路を形成した配線基板の裏面に、 (iii) カーボン微粉末と熱硬化性レジンとを主成分
とする抵抗体を形成し、 (iv) 該抵抗体の両端を、表面の前記印刷配線の上
の所定の場所に、適当に設けた表裏両面の貫通
孔(以下スルーホールと略称する)により適当
な導電塗料によつて連絡し、 (v) 然る後、耐湿塗料を用いて前記印刷抵抗等の
部分を被覆する保護層を設けること、 を特徴とするCu粉末導電塗料を用いた印刷抵抗
回路基板の製造方法。 2 第1項記載の合成樹脂積層板として耐熱度
150℃以上のフエノール系合成樹脂積層板を用い
ることを特徴とする、特許請求の範囲第1項記載
のCu粉末導電塗料を用いた印刷抵抗回路基板の
製造方法。 3 第1項記載の合成樹脂積層板として耐熱度
150℃以上のエポキシ系合成樹脂積層板を用いる
ことを特徴とする、特許請求の範囲第1項記載の
Cu粉末導電塗料を用いた印刷抵抗回路基板の製
造方法。 4 第1項記載の印刷抵抗体の両端を、その反対
側の表面の印刷配線の上の所定の場所に、スルー
ホールにより連絡する導電塗料として、前記Cu
塗料を用いることを特徴とする、特許請求の範囲
第1項ないし第3項の何れか1つに記載のCu粉
末導電塗料を用いた印刷抵抗回路基板の製造方
法。
[Claims] 1 (i) Using a Cu powder conductive paint (hereinafter abbreviated as Cu paint), which is made by dispersing fine Cu powder in a paint made by dissolving a lacquer-based resin in a suitable solvent, (ii) (iii) a resistor whose main components are carbon fine powder and thermosetting resin is formed on the back side of a wiring board on which an electric circuit is formed by a printing method on the surface of a synthetic resin laminate; (iv) the resistor (v) Connect both ends of the wiring board at a predetermined location above the printed wiring on the front surface using a suitable conductive paint through through holes (hereinafter abbreviated as through holes) on both the front and back sides, and (v) A method for manufacturing a printed resistor circuit board using a Cu powder conductive paint, characterized in that: a moisture-resistant paint is used to provide a protective layer covering the printed resistor, etc. 2. Heat resistance as the synthetic resin laminate described in item 1.
A method for producing a printed resistor circuit board using a Cu powder conductive paint according to claim 1, characterized in that a phenolic synthetic resin laminate having a temperature of 150° C. or higher is used. 3. Heat resistance as a synthetic resin laminate described in item 1.
Claim 1, characterized in that an epoxy synthetic resin laminate having a temperature of 150°C or higher is used.
A method for manufacturing printed resistor circuit boards using Cu powder conductive paint. 4. As a conductive paint, both ends of the printed resistor described in item 1 are connected to predetermined locations on the printed wiring on the opposite surface by through holes.
A method for manufacturing a printed resistor circuit board using a Cu powder conductive paint according to any one of claims 1 to 3, characterized in that a paint is used.
JP8700181A 1981-06-08 1981-06-08 Method of producing printed resistance circuit board using cu powder conductive paint Granted JPS57202796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8700181A JPS57202796A (en) 1981-06-08 1981-06-08 Method of producing printed resistance circuit board using cu powder conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8700181A JPS57202796A (en) 1981-06-08 1981-06-08 Method of producing printed resistance circuit board using cu powder conductive paint

Publications (2)

Publication Number Publication Date
JPS57202796A JPS57202796A (en) 1982-12-11
JPS6320399B2 true JPS6320399B2 (en) 1988-04-27

Family

ID=13902637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8700181A Granted JPS57202796A (en) 1981-06-08 1981-06-08 Method of producing printed resistance circuit board using cu powder conductive paint

Country Status (1)

Country Link
JP (1) JPS57202796A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034225A (en) * 1973-07-27 1975-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034225A (en) * 1973-07-27 1975-04-02

Also Published As

Publication number Publication date
JPS57202796A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
US5981043A (en) Electroconductive coating composition, a printed circuit board fabricated by using it and a flexible printed circuit assembly with electromagnetic shield
US3775725A (en) Printed resistor
US3061911A (en) Method of making printed circuits
KR900003152B1 (en) Method for forming capacitive circuit on circuit board
JPH023317B2 (en)
US4119480A (en) Method of manufacturing thick-film circuit devices
US3648364A (en) Method of making a printed resistor
JPS5915394B2 (en) Thick film fine pattern generation method
US4963389A (en) Method for producing hybrid integrated circuit substrate
US6225035B1 (en) Method for forming a thick-film resistor
JPS6320399B2 (en)
US20060096780A1 (en) Thin film circuit integrating thick film resistors thereon
JPH0353790B2 (en)
TW503681B (en) Manufacture method of resistor layer of multi-layer printed circuit board
JPH10284814A (en) Circuit pattern and its formation
JPH04146684A (en) Circuit board and manufacture thereof
GB1187916A (en) Multilayer Printed Circuit Board and Method for Manufacturing Same.
JPH0373503A (en) Formation of circuit
JPH0584679B2 (en)
JPH0410753B2 (en)
JP2849163B2 (en) Manufacturing method of electronic circuit board
JPH0567882A (en) Multilayer circuit board
JPS5830207A (en) Production of microstrip line
JPS63187682A (en) Printed wiring board and manufacture of the same
JPH04180691A (en) Manufacture of ceramic circuit board