JPS63203918A - Orifice type static pressure gas journal bearing - Google Patents

Orifice type static pressure gas journal bearing

Info

Publication number
JPS63203918A
JPS63203918A JP3731087A JP3731087A JPS63203918A JP S63203918 A JPS63203918 A JP S63203918A JP 3731087 A JP3731087 A JP 3731087A JP 3731087 A JP3731087 A JP 3731087A JP S63203918 A JPS63203918 A JP S63203918A
Authority
JP
Japan
Prior art keywords
bearing
air supply
orifice
shaft
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3731087A
Other languages
Japanese (ja)
Inventor
Shizuka Yamazaki
山崎 靜
Yoshio Fujikawa
芳夫 藤川
Shigeki Ogawa
繁樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP3731087A priority Critical patent/JPS63203918A/en
Publication of JPS63203918A publication Critical patent/JPS63203918A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the pressure distribution on a bearing surface uniform by forming shallow grooves extending axially and circumferencially, and forcing compressed gas supplied in a bearing gap to flow along the grooves. CONSTITUTION:When compressed air is supplied to an air supply inlet 4, the compressed air flows into a bearing gap 3 through a nozzle 5. Then, the compressed air which flows into the bearing gap 3 flows in both circumferencial and axial directions along grooves 8, and is throttled at the radial stepped parts formed on both axial ends of the grooves 8, and flows outward from both axial ends of the bearing gap 3. The pressure on a bearing surface 9 is thus kept high, while the pressure destribution thereat is uniformalized because the compressed air flows in both circumferencial and axial directions along the grooves 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、オリフィスを備える給気孔から軸と軸受面
間に形成された軸受すきまに圧縮気体を供給して軸を支
持するようにしたオリフィス形静圧気体ジャーナル軸受
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention provides an orifice that supports a shaft by supplying compressed gas from an air supply hole having an orifice to a bearing gap formed between a shaft and a bearing surface. This relates to type hydrostatic gas journal bearings.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

軸を支持する軸受部材の軸受面に給気孔と連通ずるポケ
ットを設け、そのポケットを介して軸受すきまに圧縮気
体を供給するオリフィス形静圧気体ジャーナル軸受は従
来から存在するが、このようなジャーナル軸受は、ポケ
ットを大きくする程、ジャーナル軸受の負荷容量を高め
ることができる反面、空気の圧縮性に関係してニューマ
チックハンマが発生し易くなり、上記ポケットを大きく
することができlない。このため、そのポケットの圧力
を高(してもポケットから離れた軸受面では圧力の低下
があるため、剛性や負荷容量が限られていた。
Orifice-type hydrostatic gas journal bearings have traditionally existed, in which a pocket communicating with an air supply hole is provided on the bearing surface of the bearing member that supports the shaft, and compressed gas is supplied to the bearing clearance through the pocket. The larger the pocket in a bearing, the higher the load capacity of the journal bearing, but on the other hand, pneumatic hammer is more likely to occur due to the compressibility of air, making it impossible to make the pocket larger. For this reason, even if the pressure in the pocket is high (even if the pressure is high, the pressure decreases on the bearing surface away from the pocket, which limits its rigidity and load capacity.

上記のようなニューマチックハンマの発生を防止し、剛
性および負荷容量を高めることを技術的課題とした発明
として、例えば特公昭56−134623号公報に記載
されたものがある。
For example, there is an invention described in Japanese Patent Publication No. 134623/1983, which aims to prevent the occurrence of pneumatic hammer as described above and increase rigidity and load capacity.

上記公報に記載されたオリフィス形静圧気体ジャーナル
軸受は、第9図および第10図のように、軸11を支持
する軸受部材12にオリフィス13を有する複数の給気
孔14を周方向に等間隔に形成し、その軸受部材12の
軸受面15に給気溝16を設け、上記給気溝16を、軸
方向の溝17の両端に周方向の溝18を設けたH形とし
である。
As shown in FIGS. 9 and 10, the orifice type static pressure gas journal bearing described in the above publication has a plurality of air supply holes 14 having orifices 13 in a bearing member 12 supporting a shaft 11 at equal intervals in the circumferential direction. The bearing surface 15 of the bearing member 12 is provided with an air supply groove 16, and the air supply groove 16 is H-shaped, with circumferential grooves 18 provided at both ends of an axial groove 17.

上記のようなジャーナル軸受においては、給気溝16が
互いに独立しているため、その給気溝16に送り込まれ
た気体の周方向の流れが発生せず、負荷による軸11の
偏心に対応した適当な差圧の発生により、負荷容量と剛
性を著しく高めることができるという利点がある。
In the above-mentioned journal bearing, since the air supply grooves 16 are independent from each other, the gas fed into the air supply grooves 16 does not flow in the circumferential direction, and the eccentricity of the shaft 11 due to the load can be accommodated. The advantage is that the load capacity and stiffness can be significantly increased by generating a suitable differential pressure.

しかし、周方向への気体の回り込みがないため、隣接す
る給気溝16間の圧力が低くなり、周方向の圧力バラン
スが悪いという不都合がある。
However, since there is no circulation of gas in the circumferential direction, the pressure between adjacent air supply grooves 16 becomes low, resulting in an inconvenience that the pressure balance in the circumferential direction is poor.

また、軸受部材12の軸受面15に給気溝16を、各給
気孔14と対向して周方向に等間隔に設ける必要がある
ため、加工に非常に手間がかかるという不都合もある。
Furthermore, since it is necessary to provide the air supply grooves 16 on the bearing surface 15 of the bearing member 12 at equal intervals in the circumferential direction, facing each air supply hole 14, there is also the disadvantage that processing is extremely time-consuming.

〔発明の目的〕[Purpose of the invention]

そこで、この発明は上記の不都合を解消し、軸受面にお
ける圧力の均一化を図り、加工の容易な、しかも高い剛
性及び負荷容量を得ることができるオリフィス形静圧気
体ジャーナル軸受を提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide an orifice-type hydrostatic gas journal bearing that eliminates the above-mentioned disadvantages, equalizes the pressure on the bearing surface, is easy to process, and can obtain high rigidity and load capacity. The purpose is

〔発明の構成〕[Structure of the invention]

上記の目的を達成するために、この発明は、軸と軸受部
材との間に軸受すきまを形成し、軸と軸受部材のいずれ
か一方にオリフィスを備える複数の給気孔を周方向に所
要の間隔をおいて設け、他方には上記給気孔に対する対
向面に軸方向および周方向に拡がる浅い溝を形成した構
成としたものである。
In order to achieve the above object, the present invention forms a bearing gap between a shaft and a bearing member, and provides a plurality of air supply holes each having an orifice in either one of the shaft or the bearing member at a required interval in the circumferential direction. and a shallow groove extending in the axial direction and the circumferential direction is formed on the other surface facing the air supply hole.

〔作用〕[Effect]

上記のような構成にすれば、給気孔から軸受すきまに圧
縮気体を供給することにより、その圧縮気体は溝に沿っ
て軸方向および周方向に流れるため、軸受面の圧力分布
を均一にすることができる。
With the above configuration, by supplying compressed gas from the air supply hole to the bearing clearance, the compressed gas flows along the groove in the axial and circumferential directions, making the pressure distribution on the bearing surface uniform. Can be done.

また、圧縮気体のまわり込みによってニューマチックハ
ンマが発生しにくく、さらに、溝の軸方向両端部に形成
された半径方向の段差によって気体を絞り込むことがで
きるため、オリフィスによる絞り効果に段差部における
表面絞り効果も加わり、軸受面を高い圧力に保持するこ
とができる。
In addition, pneumatic hammer is less likely to occur due to the compressed gas going around, and the gas can be narrowed down by the radial step formed at both axial ends of the groove, so the throttling effect of the orifice is combined with the surface at the step. With the addition of a throttling effect, it is possible to maintain high pressure on the bearing surface.

〔実施例〕〔Example〕

以下、この発明の実施例を第1図乃至第3図に基づいて
説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3.

第1図および第2図に示すように、軸1とこれを支持す
る軸受部材2との間には軸受すきま3が設けられている
。軸受部材2には、複数の給気孔4が周方向に等間隔に
、かつ複列に形成され、各給気孔4の先端にノズル5が
設けられている。また、給気孔4の内部はノズル5の内
径より小径のオリフィス6が設けられている。
As shown in FIGS. 1 and 2, a bearing clearance 3 is provided between the shaft 1 and a bearing member 2 that supports it. In the bearing member 2, a plurality of air supply holes 4 are formed in double rows at equal intervals in the circumferential direction, and a nozzle 5 is provided at the tip of each air supply hole 4. Further, an orifice 6 having a smaller diameter than the inner diameter of the nozzle 5 is provided inside the air supply hole 4 .

ここで、オリフィス6は、軸受部材2に直接設けてもよ
く、あるいは図示のようにオリフィス6を備えるオリフ
ィスプレート7を給気孔4に取付けるようにしてもよい
Here, the orifice 6 may be provided directly on the bearing member 2, or an orifice plate 7 provided with the orifice 6 may be attached to the air supply hole 4 as shown.

上記オリフィス6は、絞り効果を発揮させるために、小
径のものでなければならない。しかしこのようなオリフ
ィス6を軸受部材2に直接加工することは容易なことで
はなく、また、穿孔途中に径の小さなドリルの破損も多
く、そのドリルの破損によって軸受部材2が不良品にな
り易い。したがって図示例のように、オリフィスプレー
ト7を給気孔4に取付けることにすれば、上記のような
不都合の解消に効果を挙げることができる。
The orifice 6 must have a small diameter in order to exhibit a throttling effect. However, it is not easy to directly machine such an orifice 6 into the bearing member 2, and small-diameter drills are often damaged during drilling, and the bearing member 2 is likely to be defective due to the drill damage. . Therefore, by attaching the orifice plate 7 to the air supply hole 4 as shown in the illustrated example, it is possible to effectively eliminate the above-mentioned disadvantages.

前記軸1には、給気孔4に対する対向面に軸方向および
周方向に拡がる浅い溝8が設けられている。
The shaft 1 is provided with a shallow groove 8 extending in the axial direction and the circumferential direction on the surface facing the air supply hole 4 .

ここで、溝8の深さhは、ノズル5による自成絞り部の
面積よりオリフィス絞り部の面積を小にしてオリフィス
絞りの効果を出すため、次式が成立するよう選定する。
Here, the depth h of the groove 8 is selected so that the following equation holds true in order to make the area of the orifice constriction smaller than the area of the self-produced constriction by the nozzle 5 and to produce the orifice constriction effect.

π πdi(ho+ h)≧□d−・・・・・・■4   
   dt ここで、各記号は、第3図に示すように、dl・・・・
・・オリフィスの内径 d、・・・・・・ノズルの内径
ho・・・・・・軸受すきま である。
π πdi(ho+h)≧□d−・・・・・・■4
dt Here, each symbol is dl... as shown in Figure 3.
...Inner diameter of the orifice d, ...Inner diameter of the nozzle ho...Between the bearing clearance.

実施例で示すジャーナル軸受は上記の構造から成り、こ
のジャーナル軸受は従来のジャーナル軸受と同様に、給
気孔4から軸受すきま3に圧縮気体を供給して軸1を支
持する。
The journal bearing shown in the embodiment has the above-mentioned structure, and this journal bearing supports the shaft 1 by supplying compressed gas from the air supply hole 4 to the bearing clearance 3 in the same manner as the conventional journal bearing.

いま、給気孔4に圧縮気体を供給すると、この圧縮気体
は、オリフィス6において圧力が高められ、ノズル5か
ら軸受すきま3に流入する。また、軸受すきま3に流入
した圧縮気体は、溝8に沿って周方向および軸方向に流
れ、その溝8の軸方向両端部に形成された半径方向の段
差部において絞り込まれ、軸受すきま3の軸方向両端か
ら外部に流出する。
Now, when compressed gas is supplied to the air supply hole 4, the pressure of this compressed gas is increased in the orifice 6 and flows into the bearing gap 3 from the nozzle 5. In addition, the compressed gas that has flowed into the bearing clearance 3 flows in the circumferential direction and axial direction along the groove 8, and is narrowed down at the radial step formed at both axial ends of the groove 8, and is narrowed down in the bearing clearance 3. It flows out from both ends in the axial direction.

上記のように、圧縮気体は、オリフィス6により絞り込
まれ、溝8の段差部において絞り込まれるため、オリフ
ィス絞り効果の他に表面絞りの効果を受け、このため、
軸受面Sを高い圧力に保持することができると共に、上
記圧縮気体は、溝8に沿って周方向および軸方向に流れ
るため、軸受面9における圧力分布が均一になり、軸受
負部容量および剛性を著しく高めることができる。
As mentioned above, the compressed gas is narrowed down by the orifice 6 and narrowed down at the stepped portion of the groove 8, so in addition to the orifice throttling effect, the compressed gas is subjected to the surface throttling effect.
Since the bearing surface S can be maintained at a high pressure and the compressed gas flows in the circumferential and axial directions along the grooves 8, the pressure distribution on the bearing surface 9 becomes uniform, and the bearing negative capacity and rigidity are improved. can be significantly increased.

第4図は、本発明に係る軸受の軸受すきまに対する軸受
剛性の計算結果を示すグラフである。
FIG. 4 is a graph showing calculation results of bearing stiffness with respect to bearing clearance of the bearing according to the present invention.

ここで、軸受の各部の寸法は下記の通りである。Here, the dimensions of each part of the bearing are as follows.

軸受面の内径D=60m 軸受面の長さL −40am 溝の長さl−30鶴 溝の深さhμm オリフィス径d+”0.15m菖 ノズル径dz=o、51m 第4図から明らかなように、溝9の深さhが8μm付近
において剛性が高く、それより大でも小でも剛性は低下
している。
Inner diameter of bearing surface D = 60 m Length of bearing surface L -40 am Groove length l - 30 Depth of crane groove h μm Orifice diameter d + "0.15 m Iris nozzle diameter dz = o, 51 m As is clear from Figure 4 In addition, the rigidity is high when the depth h of the groove 9 is around 8 μm, and the rigidity decreases when the depth h is larger or smaller than that.

また、第5図は、本発明に係る軸受の軸受すきまに対す
る減衰係数の計算結果を示すグラフである。軸受の各部
の寸法と同様である。
Moreover, FIG. 5 is a graph showing the calculation results of the damping coefficient with respect to the bearing clearance of the bearing according to the present invention. The dimensions are the same as the dimensions of each part of the bearing.

この第5図から明らかなように、軸受すきまり。As is clear from this Fig. 5, the bearing clearance.

が8μmにおいて、fs8の深さが大なる程減衰係数は
減少していくが、溝8の深さhが16μmであっても減
衰係数は正であり、安定している。
is 8 μm, the damping coefficient decreases as the depth of fs8 increases, but even if the depth h of the groove 8 is 16 μm, the damping coefficient remains positive and stable.

なお、減衰係数が負になると、ニューマチックハンマが
発生し易くなる。
Note that when the damping coefficient becomes negative, pneumatic hammer is more likely to occur.

上記第4図と第5図から、軸1と軸受部材2との間に形
成された軸受すきまhoは、8μmとするのが好ましい
From FIGS. 4 and 5 above, it is preferable that the bearing clearance ho formed between the shaft 1 and the bearing member 2 is 8 μm.

第6図および第7図は、本発明に係る軸受のノズル5の
内径を変化させたときの減衰係数と軸受剛性の計算結果
を示すグラフである。ここで、軸受すきまhoは8μm
である。
6 and 7 are graphs showing calculation results of the damping coefficient and bearing rigidity when the inner diameter of the nozzle 5 of the bearing according to the present invention is changed. Here, the bearing clearance ho is 8 μm
It is.

第6図および第7図から明らかなように、ノズル5の内
径d2が111より大きい範囲では、内径が大になって
も軸受剛性はほとんど増加せず、減衰係数は負に近づく
傾向にある。したがって、この範囲では殆ど利用価値が
少なく、ノズル5の内径d2はl ms以下とするのが
よい。
As is clear from FIGS. 6 and 7, in a range where the inner diameter d2 of the nozzle 5 is larger than 111, the bearing rigidity hardly increases even if the inner diameter becomes large, and the damping coefficient tends to become negative. Therefore, in this range, there is little utility value, and the inner diameter d2 of the nozzle 5 is preferably set to 1 ms or less.

第1図および第2図に示す実施例においては、軸受部材
2に給気孔4を形成し、軸1に溝8を形成したが、第8
図に示すように、上記と逆に、軸受部材2に溝8を形成
し、軸1に給気孔4を設けるようにしてもよい。
In the embodiment shown in FIGS. 1 and 2, the air supply hole 4 is formed in the bearing member 2, and the groove 8 is formed in the shaft 1.
As shown in the figure, the groove 8 may be formed in the bearing member 2 and the air supply hole 4 may be provided in the shaft 1, contrary to the above.

第8図に示すように、給気孔4に閉塞端を備える筒体1
0を嵌着し、その筒体10の閉塞端にノズル5を設け、
筒体10の内部にオリフィス6を備えるオリフィスプレ
ート7を取付けることにすれば、給気孔4の加工をより
容易とすることができる。
As shown in FIG. 8, the cylinder 1 has a closed end in the air supply hole 4.
0 is fitted, a nozzle 5 is provided at the closed end of the cylinder 10,
By attaching the orifice plate 7 having the orifice 6 inside the cylindrical body 10, the machining of the air supply hole 4 can be made easier.

実施例の場合は、周方向に等間隔に並ぶ給気孔4を複列
設けた場合を示したが、この場合、溝の軸方向中央部の
一部に軸受両端と同じ高さのランド部を円周上に設けて
もよい。また、給気孔は単列であってもよい。
In the example, a double row of air supply holes 4 arranged at equal intervals in the circumferential direction is provided, but in this case, a land portion at the same height as both ends of the bearing is provided in a part of the axial center of the groove. It may be provided on the circumference. Moreover, the air supply holes may be in a single row.

C効果〕 以上のように、この発明によれば給気孔に供給した圧縮
気体はオリフィスにより絞りこまれて給気孔と対向する
溝内に流入し、その溝に沿って周方向および軸方向に流
れ、上記溝の軸方向両端部に設けた半径方向の段差部に
おいて絞り込まれるため、前記オリフィス絞りによる効
果に表面絞りの効果も加わり、軸受面を高い圧力に保持
することができる。このため、軸受の剛性および負荷容
量の向上を図ることができる。
Effect C] As described above, according to the present invention, the compressed gas supplied to the air supply hole is narrowed by the orifice, flows into the groove facing the air supply hole, and flows in the circumferential and axial directions along the groove. Since the groove is narrowed down at the radial stepped portions provided at both axial ends of the groove, the effect of the surface throttle is added to the effect of the orifice throttle, making it possible to maintain a high pressure on the bearing surface. Therefore, the rigidity and load capacity of the bearing can be improved.

また、溝の軸方向および周方向に気体が流れるため、軸
受面の圧力分布が均一化し、給気孔の数を従来のものよ
り減らすことができると共に、ニューマチックハンマの
発生の防止にも効果を挙げることができる。
In addition, since gas flows in the axial and circumferential directions of the groove, the pressure distribution on the bearing surface becomes uniform, the number of air supply holes can be reduced compared to conventional models, and it is also effective in preventing the occurrence of pneumatic hammer. can be mentioned.

また、軸と軸受部材のいずれか一方に給気孔を形成し、
他方に溝を設けたので、軸受の製作が容易である。
In addition, an air supply hole is formed in either the shaft or the bearing member,
Since a groove is provided on the other side, manufacturing of the bearing is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係るジャーナル軸受の一実施例を
示す縦断正面図、第2図は同上の縦断側面図、第3図は
同上の拡大断面図、第4図は同上軸受の軸受すきまと剛
性の関係を示すグラフ、第5図は同上軸受の軸受すきま
と減衰係数の関係を示すグラフ、第6図は同上の軸受の
ノズル径と剛性の関係を示すグラフ、第7図は同上のノ
ズル径と減衰係数の関係を示すグラフ、第8図はこの発
明に係るジャーナル軸受の他の実施例を示す縦断正面図
、第9図は従来のジャーナル軸受を示す縦断正面図、第
10図は縦断側面図である。 1・・・・・・軸、2・・・・・・軸受部材、3・・・
・・・軸受すきま、4・・・・・・給気孔、6・・・・
・・オリフィス、7オリフイスプレート、8・・・・・
・溝。
Fig. 1 is a longitudinal sectional front view showing one embodiment of a journal bearing according to the present invention, Fig. 2 is a longitudinal sectional side view of the same, Fig. 3 is an enlarged sectional view of the same, and Fig. 4 is a bearing clearance of the same. Figure 5 is a graph showing the relationship between the bearing clearance and damping coefficient of the same bearing as above, Figure 6 is a graph showing the relationship between nozzle diameter and rigidity of the same bearing, Figure 7 is the same as above. Graph showing the relationship between nozzle diameter and damping coefficient, FIG. 8 is a longitudinal sectional front view showing another embodiment of the journal bearing according to the present invention, FIG. 9 is a longitudinal sectional front view showing a conventional journal bearing, and FIG. 10 is a longitudinal sectional front view showing the conventional journal bearing. FIG. 1...shaft, 2...bearing member, 3...
... Bearing clearance, 4 ... Air supply hole, 6 ...
... Orifice, 7 Orifice plate, 8...
·groove.

Claims (4)

【特許請求の範囲】[Claims] (1)軸とその軸を支持する軸受部材の間に軸受すきま
を形成し、軸と軸受部材のいずれか一方に、上記軸受す
きまに圧縮気体を供給するオリフィスを備える複数の給
気孔を周方向に所要の間隔をおいて設け、他方には、上
記給気孔と対向する面に周方向および軸方向に拡がる浅
い溝を形成したオリフィス形静圧気体ジャーナル軸受。
(1) A bearing clearance is formed between a shaft and a bearing member that supports the shaft, and a plurality of air supply holes equipped with orifices that supply compressed gas to the bearing clearance are provided in either one of the shaft and the bearing member in the circumferential direction. an orifice-type hydrostatic gas journal bearing, which is provided at a required interval on the other side, and has a shallow groove extending in the circumferential direction and the axial direction on the surface facing the air supply hole.
(2)前記軸受部材に給気孔を設け、軸の外径面に溝を
形成した特許請求の範囲第1項記載のオリフィス形静圧
気体ジャーナル軸受。
(2) The orifice type static pressure gas journal bearing according to claim 1, wherein an air supply hole is provided in the bearing member and a groove is formed on the outer diameter surface of the shaft.
(3)前記軸に給気孔を形成し、軸受部材の軸受面に溝
を設けた特許請求の範囲第1項記載のオリフィス形静圧
気体ジャーナル軸受。
(3) The orifice type hydrostatic gas journal bearing according to claim 1, wherein an air supply hole is formed in the shaft and a groove is provided in the bearing surface of the bearing member.
(4)前記オリフィスが給気孔に嵌合したオリフィスプ
レートに設けられていることを特徴とする特許請求の範
囲第1項記載のオリフィス形静圧気体ジャーナル軸受。
(4) The orifice type static pressure gas journal bearing according to claim 1, wherein the orifice is provided in an orifice plate fitted into the air supply hole.
JP3731087A 1987-02-19 1987-02-19 Orifice type static pressure gas journal bearing Pending JPS63203918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3731087A JPS63203918A (en) 1987-02-19 1987-02-19 Orifice type static pressure gas journal bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3731087A JPS63203918A (en) 1987-02-19 1987-02-19 Orifice type static pressure gas journal bearing

Publications (1)

Publication Number Publication Date
JPS63203918A true JPS63203918A (en) 1988-08-23

Family

ID=12494121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3731087A Pending JPS63203918A (en) 1987-02-19 1987-02-19 Orifice type static pressure gas journal bearing

Country Status (1)

Country Link
JP (1) JPS63203918A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257346A (en) * 1998-01-23 1999-09-21 Rech Ind & Dev Sa:Co Sliding bearing
JP2008069942A (en) * 2006-09-15 2008-03-27 Univ Kanagawa Spindle device
JP2012117659A (en) * 2010-12-03 2012-06-21 Ind Technol Res Inst Self-compensating hydrostatic journal bearing
JP2015098876A (en) * 2013-11-18 2015-05-28 オイレス工業株式会社 Static pressure gas bearing and rotating device using the same
WO2021129425A1 (en) * 2019-12-25 2021-07-01 至玥腾风科技集团有限公司 Air bearing, rotor system, and microturbine
CN114992245A (en) * 2022-07-12 2022-09-02 安徽润安思变能源技术有限公司 Static pressure gas radial bearing and mounting equipment thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164337A (en) * 1978-06-16 1979-12-27 Fumitane Ichikawa Shutter door provided with emergency opening device
JPS56134623A (en) * 1980-03-24 1981-10-21 Nippon Seiko Kk Orifice type gas static pressure bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164337A (en) * 1978-06-16 1979-12-27 Fumitane Ichikawa Shutter door provided with emergency opening device
JPS56134623A (en) * 1980-03-24 1981-10-21 Nippon Seiko Kk Orifice type gas static pressure bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257346A (en) * 1998-01-23 1999-09-21 Rech Ind & Dev Sa:Co Sliding bearing
JP2008069942A (en) * 2006-09-15 2008-03-27 Univ Kanagawa Spindle device
JP2012117659A (en) * 2010-12-03 2012-06-21 Ind Technol Res Inst Self-compensating hydrostatic journal bearing
US8485729B2 (en) 2010-12-03 2013-07-16 Industrial Technology Research Institute Self-compensating hydrostatic journal bearing
JP2015098876A (en) * 2013-11-18 2015-05-28 オイレス工業株式会社 Static pressure gas bearing and rotating device using the same
WO2021129425A1 (en) * 2019-12-25 2021-07-01 至玥腾风科技集团有限公司 Air bearing, rotor system, and microturbine
CN114992245A (en) * 2022-07-12 2022-09-02 安徽润安思变能源技术有限公司 Static pressure gas radial bearing and mounting equipment thereof

Similar Documents

Publication Publication Date Title
US4285551A (en) Fluid bearing
JP3860253B2 (en) Static pressure gas bearing
CA1138019A (en) Fluid-film pocket bearing
JPS63203918A (en) Orifice type static pressure gas journal bearing
CN111577765A (en) Static pressure type radial gas bearing structure
US3719405A (en) Gas bearing
US4013326A (en) Gas bearing roll shell assembly with preload means
US3575476A (en) Gas bearing
US3132903A (en) Slit regulated gas journal bearing
JPH09236119A (en) Thrust cylinder roller bearing
CN114508547A (en) Static pressure gas radial bearing with adjustable throttling hole parameters and centrifugal fan
JPS6235947Y2 (en)
JP2644247B2 (en) Hydrostatic gas bearing
JPS62141309A (en) Porous static pressure gas bearing
Su et al. Rotation effects on hybrid hydrostatic/hydrodynamic journal bearings
JPS6120735B2 (en)
CN113738761B (en) Small-hole throttling static-pressure thrust gas bearing with accompanying throttling hole
CN217898526U (en) Air-bearing structure
JPS58142024A (en) Gas bearing construction
JPH0238097Y2 (en)
JPS639785Y2 (en)
JPH08184313A (en) Double row taper-roller bearing device for mill
JP2544876Y2 (en) Hydrostatic gas bearing device
CN115614386A (en) Small-hole type aerostatic radial bearing shaft sleeve and bearing with high-pressure air cavity
JPS626336Y2 (en)