JPS639785Y2 - - Google Patents

Info

Publication number
JPS639785Y2
JPS639785Y2 JP1982105246U JP10524682U JPS639785Y2 JP S639785 Y2 JPS639785 Y2 JP S639785Y2 JP 1982105246 U JP1982105246 U JP 1982105246U JP 10524682 U JP10524682 U JP 10524682U JP S639785 Y2 JPS639785 Y2 JP S639785Y2
Authority
JP
Japan
Prior art keywords
bearing
groove
bearing surface
orifice
deep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982105246U
Other languages
Japanese (ja)
Other versions
JPS5910521U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10524682U priority Critical patent/JPS5910521U/en
Publication of JPS5910521U publication Critical patent/JPS5910521U/en
Application granted granted Critical
Publication of JPS639785Y2 publication Critical patent/JPS639785Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はモーメント荷重に対する大きなモーメ
ント負荷容量と大きなモーメント剛性を有するオ
リフイス形静圧軸受に関する。
[Detailed Description of the Invention] The present invention relates to an orifice type hydrostatic bearing having a large moment load capacity and a large moment rigidity.

従来のオリフイス形静圧軸受は、軸受面の適所
に、単に圧力流体を軸受面に供給するための微少
孔径を有するオリフイスを設けて構成されるか、
あるいは第1図に示すようなオリフイスを含む圧
力流体の供給みぞを設けた構成となつている。
Conventional orifice-type hydrostatic bearings are either constructed by providing an orifice with a minute hole diameter at a suitable location on the bearing surface, or simply for supplying pressure fluid to the bearing surface.
Alternatively, a pressure fluid supply channel including an orifice as shown in FIG. 1 is provided.

すなわち、第1図では、固定側部材となる軸受
1aの軸方向の略中央に、前記軸受の外部から軸
受面11aに連通するオリフイス12aを設け、
前記軸受面には前記オリフイスから圧力流体を前
記軸受面に供給する供給みぞ13aが両側の軸受
端部に向つて伸び、略H形の供給みぞを形成し
て、前記軸受面と共働する軸2aをラジアル方向
に支承している。
That is, in FIG. 1, an orifice 12a that communicates with the bearing surface 11a from the outside of the bearing is provided approximately at the center in the axial direction of the bearing 1a, which is a fixed side member,
In the bearing surface, a supply groove 13a for supplying pressurized fluid from the orifice to the bearing surface extends toward both ends of the bearing, forming a substantially H-shaped supply groove, and forming a shaft that cooperates with the bearing surface. 2a is supported in the radial direction.

しかし、これら従来のオリフイス形静圧軸受の
うち、前者はモーメント荷重が作用すると軸受端
部で軸と軸受面が接触し、軸および軸受面の摩耗
や、さらには焼付事故を招来する問題があつた。
However, among these conventional orifice type hydrostatic bearings, the former has the problem that when a moment load is applied, the shaft and bearing surface come into contact at the end of the bearing, resulting in wear of the shaft and bearing surface, and even a seizure accident. Ta.

また、後者の場合には、軸受面に形成されてい
る略H形の圧力流体供給みぞによつて、前者に比
べモーメント荷重に対して高いモーメント負荷容
量を得られるが、起動時などに衝撃的にモーメン
ト荷重が作用した場合、依然として軸と軸受面の
接触が起る問題があつて十分なモーメント負荷容
量が得られていない状態である。
In the latter case, the approximately H-shaped pressure fluid supply groove formed on the bearing surface provides a higher moment load capacity than the former, but it is also possible to obtain a higher moment load capacity than the former. When a moment load is applied to the shaft, there is still the problem of contact between the shaft and the bearing surface, and a sufficient moment load capacity is not obtained.

本考案は、これら従来のオリフイス形静圧軸受
の問題を解消し、高いモーメント負荷容量を有す
るオリフイス形静圧軸受を得ることを目的とする
ものである。
The object of the present invention is to solve these problems of conventional orifice-type hydrostatic bearings and to obtain an orifice-type hydrostatic bearing having a high moment load capacity.

次に本考案を以下の図によつて説明する。第2
図は本考案の第1実施例であり、第3図は前記第
1実施例を従来の軸受と比べて、その作用を示す
説明図である。第2図において、軸受1の略中央
部に、前記軸受の外部と連通し、軸受面11に開
口するオリフイス12が、2列でかつ夫々の列に
円周方向に適数個設けられ、前記オリフイスは前
記軸受面への開口部121において、オリフイス
の孔径が圧力流体の絞り効果を得るため小径とな
つており、前記小径の開口部を含んで軸受の夫々
の端部に向けて圧力流体の供給みぞ13が形成さ
れ、さらに該みぞに連なつて、軸受面端部近傍
に、軸受面端部15に沿つて不連続に、しかも前
記供給みぞよりも深い深みぞ14が形成されてい
る。そして、供給みぞ13は深みぞ14と反対側
の端部が非みぞのランド部20に接続し、また軸
受部中央のランド部20の両側の供給みぞ13は
互に対向する。次に第3図は、第1実施例の構成
になる軸受において軸2にモーメント荷重が作用
して軸心が角度θだけ傾いた場合の軸受面11に
生ずる圧力分布の状態を示している。
Next, the present invention will be explained with reference to the following figures. Second
The figure shows a first embodiment of the present invention, and FIG. 3 is an explanatory view comparing the first embodiment with a conventional bearing and showing its effect. In FIG. 2, approximately at the center of the bearing 1, two rows of orifices 12 are provided in each row in the circumferential direction, communicating with the outside of the bearing and opening into the bearing surface 11. The orifice has a small diameter hole in the opening 121 to the bearing surface in order to obtain a pressure fluid throttling effect, and the pressure fluid is directed toward each end of the bearing including the small diameter opening. A supply groove 13 is formed, and furthermore, a deep groove 14 is formed discontinuously along the bearing surface end 15 near the end of the bearing surface, and is deeper than the supply groove. The end of the supply groove 13 opposite to the deep groove 14 is connected to the non-groove land portion 20, and the supply grooves 13 on both sides of the land portion 20 at the center of the bearing portion face each other. Next, FIG. 3 shows the state of the pressure distribution that occurs on the bearing surface 11 when a moment load acts on the shaft 2 and the shaft center is tilted by an angle θ in the bearing configured in the first embodiment.

すなわち、同図において、モーメント荷重が作
用して例えば左側の軸受面端部15で、軸と軸受
面のすきまの大きい上側と、すきまの小さい下側
の圧力分布は実線のようになる。この図の点線で
示すごとく深みぞ14を設けない場合の夫々の圧
力分布をP1,P2としたとき、上側と下側の圧力
差は(P1−P2)となり、また実線で示すごとく
深みぞ14を設けた場合の夫々の圧力分布をP3
P4としたとき、上側と下側の圧力差は(P3−P4
となつて、(P3−P4)>(P1−P2)の関係がある。
That is, in the figure, when a moment load acts, for example, at the left bearing surface end 15, the pressure distribution on the upper side where the clearance between the shaft and the bearing surface is large and on the lower side where the clearance is small is as shown by a solid line. As shown by the dotted line in this figure, when the pressure distribution in the case where the deep groove 14 is not provided is P 1 and P 2 , the pressure difference between the upper side and the lower side is (P 1 - P 2 ), and it is also shown by the solid line. The respective pressure distributions when the deep groove 14 is provided are P 3 ,
When P 4 , the pressure difference between the upper and lower sides is (P 3 − P 4 )
Therefore, there is a relationship of (P 3 −P 4 )>(P 1 −P 2 ).

すなわち、軸受面端部においては、深みぞ14
を設けることによつて、すきまの小さい下側は、
オリフイスの絞り効果よりも深みぞ14と軸受端
部15との間のすきまでの粘性絞り効果の方が大
きくなるため、オリフイスから出る流体は供給み
ぞを通つて、前記深みぞに有効に導入される結
果、深みぞに大きな圧力が生じ、逆にすきまの大
きい上側では、前記深みぞに存在した圧力流体は
すみやかに軸受外に排出され、オリフイスから供
給されるべき圧力流体はオリフイスの絞り効果に
よつて阻止されるので圧力は減少することにな
る。
That is, at the end of the bearing surface, the deep groove 14
By providing
Since the viscous throttling effect in the gap between the deep groove 14 and the bearing end 15 is greater than the throttling effect of the orifice, the fluid exiting the orifice is effectively introduced into the deep groove through the supply groove. As a result, a large pressure is generated in the deep groove, and conversely, on the upper side where the gap is large, the pressure fluid that existed in the deep groove is quickly discharged outside the bearing, and the pressure fluid that should be supplied from the orifice is affected by the throttling effect of the orifice. As a result, the pressure decreases.

このことは、図において右側軸受端部も同様で
あつて、傾きθを修正するように作用する復元力
は、下側と上側に生ずる圧力の差であるから、深
みぞがない場合に比べ、深みぞを設けた構成の力
が復元力が大きく、すなわちモーメント負荷容量
およびモーメント剛性が大きい。
This is the same for the right bearing end in the figure, and the restoring force that acts to correct the inclination θ is the difference between the pressure generated on the lower side and the upper side, so compared to the case where there is no deep groove, The deep groove configuration has a large restoring force, that is, a large moment load capacity and moment stiffness.

次に第4図は本考案の第2実施例で、角形スラ
スト軸受パツドに適用したものであつて、軸受面
11には軸受端部に沿つて不連続に適数個の深み
ぞ14を設け、該深みぞより軸受面の中央部に向
つて延在する圧力流体の供給みぞ13をつらね、
該供給みぞの適所にオリフイス12を設けた構成
となつている。そして、供給みぞ13は深みぞ1
4と反対側の端部が非みぞのランド部20に接続
し、また軸受部中央のランド部20の両側の供給
みぞ13は互に対向する。
Next, FIG. 4 shows a second embodiment of the present invention, which is applied to a square thrust bearing pad, in which a suitable number of deep grooves 14 are discontinuously provided in the bearing surface 11 along the bearing end. , a pressure fluid supply groove 13 extending from the deep groove toward the center of the bearing surface;
The configuration is such that an orifice 12 is provided at a suitable location in the supply groove. And supply groove 13 is deep groove 1
The end opposite to 4 connects to the non-groove land 20, and the supply grooves 13 on both sides of the land 20 in the center of the bearing part face each other.

以上実施例によつて説明した如く、軸受面端部
に不連続な深みぞを設けることによつて、深みぞ
がない場合に比べ、軸心が傾きθを生じたとき、
すきまの小さくなつた軸受面側の圧力と、すきま
の大きくなつた軸受面側の圧力との差が大きくな
つて、軸心の傾きを修正する復元力を大きく出
来、モーメント負荷容量およびモーメント剛性の
大きい軸受が得られる。
As explained above in the embodiments, by providing discontinuous deep grooves at the end of the bearing surface, when the axis is tilted θ compared to the case where there is no deep groove,
The difference between the pressure on the bearing surface side where the clearance is smaller and the pressure on the bearing surface side where the clearance is larger increases, increasing the restoring force to correct the inclination of the shaft center, and increasing the moment load capacity and moment rigidity. Larger bearings can be obtained.

このことは、大きなモーメント荷重がかかつた
時や衝撃的なモーメント荷重がかかつたときでも
軸と軸受面との接触を生ずることもない。
This prevents contact between the shaft and the bearing surface even when a large moment load or an impactful moment load is applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の軸受を示す縦断面図、第2図は
本考案の第1実施例を示す縦断面図、第3図は第
1実施例の作用を示す説明図、第4図は本考案の
第2実施例を示す正面図である。 符号の説明、1……軸受、11……軸受面、1
2……オリフイス、13……供給みぞ、θ……軸
心の傾き、14……深みぞ、2……軸、20……
ランド部。
Fig. 1 is a longitudinal sectional view showing a conventional bearing, Fig. 2 is a longitudinal sectional view showing a first embodiment of the present invention, Fig. 3 is an explanatory diagram showing the operation of the first embodiment, and Fig. 4 is a longitudinal sectional view showing the present invention. FIG. 3 is a front view showing a second embodiment of the invention. Explanation of symbols, 1...Bearing, 11...Bearing surface, 1
2...Orifice, 13...Supply groove, θ...Inclination of axis, 14...Deep groove, 2...Axis, 20...
land department.

Claims (1)

【実用新案登録請求の範囲】 (1) 静圧軸受の軸受面が、該軸受面端部近傍で軸
受面端部に沿い、かつ不連続に穿設された適数
個の深みぞと、該深みぞに連らなり軸受部中央
に向つて延在し、かつ前記深みぞより浅い圧力
流体の供給みぞと、該供給みぞ中の適所に穿け
られたオリフイスとを有し、前記供給みぞは深
みぞと反対側の端部が非みぞのランド部に接続
し、前記軸受部中央のランド部の両側の供給み
ぞは互に対向することを特徴とするオリフイス
形静圧軸受。 (2) 前記静圧軸受がラジアル形である実用新案登
録請求の範囲第1項記載のオリフイス形静圧軸
受。 (3) 前記静圧軸受がスラスト形である実用新案登
録請求の範囲第1項記載のオリフイス形静圧軸
受。
[Claims for Utility Model Registration] (1) The bearing surface of a hydrostatic bearing has an appropriate number of deep grooves discontinuously drilled along the end of the bearing surface near the end of the bearing surface. It has a pressure fluid supply groove connected to the deep groove, extending toward the center of the bearing part, and shallower than the deep groove, and an orifice bored at a suitable position in the supply groove, and the supply groove is deep. An orifice type hydrostatic bearing characterized in that an end opposite to the groove is connected to a non-groove land portion, and supply grooves on both sides of the land portion in the center of the bearing portion face each other. (2) The orifice type hydrostatic bearing according to claim 1, wherein the hydrostatic bearing is a radial type. (3) The orifice type hydrostatic bearing according to claim 1, wherein the hydrostatic bearing is a thrust type.
JP10524682U 1982-07-13 1982-07-13 Orifice type hydrostatic bearing Granted JPS5910521U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10524682U JPS5910521U (en) 1982-07-13 1982-07-13 Orifice type hydrostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10524682U JPS5910521U (en) 1982-07-13 1982-07-13 Orifice type hydrostatic bearing

Publications (2)

Publication Number Publication Date
JPS5910521U JPS5910521U (en) 1984-01-23
JPS639785Y2 true JPS639785Y2 (en) 1988-03-23

Family

ID=30246778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10524682U Granted JPS5910521U (en) 1982-07-13 1982-07-13 Orifice type hydrostatic bearing

Country Status (1)

Country Link
JP (1) JPS5910521U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644247B2 (en) * 1988-01-07 1997-08-25 エヌティエヌ株式会社 Hydrostatic gas bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633442A (en) * 1979-08-22 1981-04-03 Tdk Corp Manufacture of self-fluxing alloy wire for spraying

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583931Y2 (en) * 1978-06-16 1983-01-24 豊田工機株式会社 Hydrostatic bearing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633442A (en) * 1979-08-22 1981-04-03 Tdk Corp Manufacture of self-fluxing alloy wire for spraying

Also Published As

Publication number Publication date
JPS5910521U (en) 1984-01-23

Similar Documents

Publication Publication Date Title
US5915841A (en) Compliant foil fluid film radial bearing
US4285551A (en) Fluid bearing
US4232914A (en) Hollow roller tapered bearing
US5096309A (en) Hydrodynamic bearing system
JPS6014016Y2 (en) hydrostatic bearing
US6273616B1 (en) Mounting arrangement for a shaft
US1645345A (en) Ball bearing
US4502795A (en) Foil bearing alignment
JPS639785Y2 (en)
US4436516A (en) Cylindrical roller bearing support for trunnions in fork eyes of universal joints
JPH0756287B2 (en) Rolling bearing device
JPWO2005093273A1 (en) Spherical roller bearing
JPS6235947Y2 (en)
JPH10220467A (en) Double row tapered roller bearing having aligning mechanism
JP2644247B2 (en) Hydrostatic gas bearing
JPH06100218B2 (en) Bearings for ball joints
JPS6322333Y2 (en)
JPH11336753A (en) Self-aligning roller bearing
US3502376A (en) Bearing retainer
JPH02114223U (en)
JPH0221608Y2 (en)
US4555187A (en) Foil bearing alignment
JPH0451232Y2 (en)
JP2510397Y2 (en) Seal device
JPS6348811Y2 (en)