JPS63203745A - Iron-containing magnetic material - Google Patents

Iron-containing magnetic material

Info

Publication number
JPS63203745A
JPS63203745A JP63027362A JP2736288A JPS63203745A JP S63203745 A JPS63203745 A JP S63203745A JP 63027362 A JP63027362 A JP 63027362A JP 2736288 A JP2736288 A JP 2736288A JP S63203745 A JPS63203745 A JP S63203745A
Authority
JP
Japan
Prior art keywords
iron
component
material according
content
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63027362A
Other languages
Japanese (ja)
Inventor
アルフレート、ミユラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS63203745A publication Critical patent/JPS63203745A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The new magnetic material containing iron contains at least three alloy components R, iron (Fe) and M, a tetragonal ThMn12 structure being formed. The material proportion of the Fe component is intended to be at least 60% by atomic weight. According to the invention, it is provided that at least one rare-earth metal is selected for R, and molybdenum (Mo) and/or tungsten (W) are selected for M, the Fe proportion being at most 85% by atomic weight and the R and M proportion being between 2 and 20% by atomic weight and 4 and 35% by atomic weight, respectively. As well as the phase with the ThMn12 structure, the material can have at least one further phase of the R-Fe-M system. In particular, it can also be a component of mixed or composite materials. <IMAGE>

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は少なくとも三つの合金成分R5鉄(Fe)及び
Mを有し、鉄成分の材料含有量が少なくとも60原子%
であり、またこの材料中に正方晶ThMn12構造が形
成されている、鉄含有磁気材料に関する。
Detailed description of the invention [Industrial field of application] The present invention has at least three alloy components R5 iron (Fe) and M, and the material content of the iron component is at least 60 atomic %.
and relates to an iron-containing magnetic material in which a tetragonal ThMn12 structure is formed.

〔従来の技術〕[Conventional technology]

この種の構造を有する材料は例えば文献「ジャーナル・
オブ・アプライド・フィジクス(Jounalof A
pplied Physics ) J第53t1第3
号1981年3月第2077〜2078頁に記載されて
いる。
Materials with this type of structure are known, for example, in the literature “Journal
Journal of Applied Physics
pplied Physics) J 53rd t1 3rd
No. 2077-2078, March 1981.

高いエネルギー生成物及び比較的低い300℃のキエリ
一温度を有する公知の硬磁性三元材料ネオジム(Nd)
  −鉄(Fe) −ホウ素(B)は主にNd2Fe1
4B並びにNd++、s f’e@1.3 Bs、、の
正方晶相から成っている(例えば前記文献(J、^pp
1. Phys、)第55巻第6号第2部1984年3
月第2083〜2087頁参照)、この場合単位セル(
P4m/閣)中の68個の原子から多数の鉄原子がシグ
マ型様構造の二層を形成する。鉄の緊密な充填度及び高
い含有量は相の高い飽和磁化M s (300にで1.
67 )の原因となり、軽希土類金属の付加は単位セル
の複雑な構造と共に顕著な結晶磁気異方性(異方性磁場
強度Haは300にで約9T)に関与する(例えば文献
「ソリッド・ステート・コミユニケーシヨン(Soli
d 5tate Cos+sun、)J第51巻第11
号1984年9月第857〜860頁参照)、更にNd
、Fe並びにBの代わりに他の希土類金属、遷移元素並
びに非金属との置換合金も研究されている。すなわち例
えば冒頭に記載した文献(J、^pp1.Phys、)
にはR−Fe−M型の特殊な三成分系の構造及び磁気特
性が記載されている。この場合Rはイツトリウム(Y)
であり、Mはマンガン(Mn)である、この三成分系は
とりわけその化学量論的組成Y (MnI−−Fe−)
+zと共に異方性の正方晶Tb1all構造を形成し、
これは反強磁性である、相当する構造体は単位セル(空
間群14/■)内に26個の原子を有する金属間相を有
する0図面の第5図には公知の二元化合物MoBe+*
のこの構造が略本されている(文献シューベルト(K、
5chubert)著「2成分相結晶構造(にrlst
allstrukturen zweiko+mpon
entiger Phasen) 」Springer
出版1964年第166〜167頁参照)、この場合図
面中の黒く塗りつぶされた中実円はMoにより占められ
た個々の格子点を表すが、中空円はBe格子点の層を示
す、相当する構造はx−0,67までの鉄含有量を有す
る上記の系Y (MnI−m Fe、I)t*に対して
も確認することができる0合金の鉄含有量が更に大きな
場合には付加的に六方晶構造ThtZlvの第二相を観
察することが可能である。
Known hard magnetic ternary material neodymium (Nd) with high energy production and relatively low Chieri temperature of 300 °C
-Iron (Fe) -Boron (B) is mainly Nd2Fe1
4B and Nd++, s f'e@1.3 Bs, (for example, the above-mentioned literature (J, ^pp
1. Phys, ) Volume 55 No. 6 Part 2 1984 3
(see page 2083-2087), in this case the unit cell (
A large number of iron atoms from the 68 atoms in P4m/Kaku) form two layers with a sigma-like structure. The tight packing and high content of iron result in a high saturation magnetization of the phase M s (300 to 1.
67), and the addition of light rare earth metals is responsible for the complex structure of the unit cell as well as the remarkable magnetocrystalline anisotropy (anisotropy field strength Ha is about 9 T at 300) (for example, in the literature “Solid-state・Comiunication (Soli)
d 5tate Cos+sun, ) J Volume 51 No. 11
No. 857-860, September 1984), and further Nd
, Fe, and B with other rare earth metals, transition elements, and nonmetals are also being investigated. That is, for example, the document mentioned at the beginning (J, ^pp1.Phys,)
describes the structure and magnetic properties of a special ternary system of R-Fe-M type. In this case, R is yttrium (Y)
, M is manganese (Mn), this ternary system has inter alia its stoichiometric composition Y (MnI--Fe-)
+z forms an anisotropic tetragonal Tb1all structure,
This is antiferromagnetic, and the corresponding structure has an intermetallic phase with 26 atoms in the unit cell (space group 14/■).
This structure is abbreviated (Reference Schubert (K,
``Binary phase crystal structure
allstrukturen zweiko+mpon
Springer
Published 1964, pp. 166-167), in which case the solid black circles in the drawing represent individual lattice points occupied by Mo, while the hollow circles indicate layers of Be lattice points, corresponding to The structure can also be confirmed for the above system Y (MnI-m Fe, I)t* with iron content up to x-0,67. It is possible to observe the second phase of hexagonal structure ThtZlv.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の課社は、キエリ一温度、磁気モーメント、異方
性結晶構造又は磁気異方性のようなその磁気特性を、個
々の合金パートナ−並びに合金中のそれぞれの含有量を
選択することによって変えることができ、また比較的経
費をかけずに製造できる鉄含有磁気材料を提供すること
にある。
The division of the present invention is able to modify its magnetic properties, such as Chieri temperature, magnetic moment, anisotropic crystal structure or magnetic anisotropy, by selecting the individual alloy partners and their respective contents in the alloy. The object of the present invention is to provide an iron-containing magnetic material that can be modified and manufactured relatively inexpensively.

〔課題を解決するための手段〕[Means to solve the problem]

この課題は本発明によれば、冒頭に記載した種類の鉄含
有磁気材料から出発して、Rとして希土類金属の群から
選択される少なくとも1種の元素を、Mとしてモリブデ
ン(Mo)及び/又はタンゲステン(W)を有しており
、Fe含有量が最高で85原子%であり、R含有量が2
〜20原子%であり、またMo及び/又はW含有量が4
〜35原子%であることにより解決される。
This task is achieved according to the invention, starting from an iron-containing magnetic material of the type mentioned at the outset, containing as R at least one element selected from the group of rare earth metals and as M molybdenum (Mo) and/or It has tungsten (W) with a Fe content of up to 85 at% and an R content of 2.
~20 at%, and the Mo and/or W content is 4
This is solved by being 35 atomic %.

〔作用効果〕[Effect]

従って本発明による材料は例えばB、Sl又はGeのよ
うな非金属を必要とせずに、価格的に有利な高い磁気モ
ーメントを有するFeを多量に含有する。ところで本発
明は、組成R−Fe−M。
The material according to the invention therefore contains a large amount of Fe, which has a high magnetic moment and is cost-effective, without the need for non-metals such as B, Sl or Ge, for example. By the way, the present invention uses a composition R-Fe-M.

並びにR−Fe−Wの少なくとも三成分よりなる合金が
例えば約100℃〜200℃の範囲のキュリ一温度及び
例えば約0.6〜1.0テスラの範囲の飽和磁化の磁気
特性を有するという認識に基づく、この場合側々の合金
成分を上記のパーセントで含有することによって、磁気
特性に関して有利なThMnt*相が材料中に少なくと
も多量に含まれることが保証される。特にガドリニウム
(Gd)又はサマリウム(Sm)のような希土類金属の
群から選択され得る若干の合金成分の場合、付加的に磁
気異方性を生ずる。更に上記の三成分系の他の成分を添
加することにより、特にコバルト(Co)を添加するこ
とにより場合によってはキュリ一温度又は飽和磁化を高
めることができる。
and the recognition that an alloy consisting of at least the three components R-Fe-W has magnetic properties such as a Curie temperature in the range of about 100°C to 200°C and a saturation magnetization in the range of about 0.6 to 1.0 Tesla, for example. The inclusion of the abovementioned percentages of the lateral alloying components in this case ensures that at least a large amount of the ThMnt* phase, which is advantageous with respect to the magnetic properties, is present in the material. In the case of some alloying components, which can be selected from the group of rare earth metals, in particular gadolinium (Gd) or samarium (Sm), additionally lead to magnetic anisotropy. Furthermore, by adding other components of the above-mentioned ternary system, particularly by adding cobalt (Co), the Curie temperature or saturation magnetization can be increased in some cases.

本発明による材料は不可避的な不純物を含めて単に正方
晶ThMn、、構造を有する相のみからなる必要はなく
、むしろこの材料中に上記合金成分以外の相を含有して
いてもよい。
The material according to the present invention does not need to consist solely of a phase having a tetragonal ThMn structure including unavoidable impurities, but rather may contain phases other than the above-mentioned alloy components.

更に本発明による材料は他の材料中に有利に内蔵されて
いるか又はこれに積層されていてもよく、従って本材料
は例えば混合又は複合材料の1成分を形成する。
Furthermore, the material according to the invention may advantageously be integrated into or laminated to other materials, so that the material forms, for example, a component of a mixture or composite material.

本発明による磁気材料の他の有利な実施態様は請求項2
以下に記載されている。
Another advantageous embodiment of the magnetic material according to the invention is as claimed in claim 2.
Described below.

〔実施例〕〔Example〕

次に本発明を実施例に基づき図面との関連において更に
詳述する。その際第1図は三成分系Fe−Mo−Ndで
の等温断面図の一部をグラフで表すものである。第2図
には特殊なF@sJO+tR*合金の温度との関連にお
ける磁化曲線を示し、また第3図及び第4図は公知の材
料F@+aRJとの比較の下にこの相のキュリ一温度並
びに飽和磁化を表す。
The invention will now be explained in more detail on the basis of examples and in conjunction with the drawings. In this case, FIG. 1 is a graph showing a part of an isothermal cross-sectional view of the ternary system Fe--Mo--Nd. Figure 2 shows the magnetization curve in relation to temperature for a special F@sJO+tR* alloy, and Figures 3 and 4 show the Curie temperature of this phase in comparison with the known material F@+aRJ. and saturation magnetization.

この場合Rはそれぞれ任意の希土類金属、特にセリウム
(Ce)、ネオジ、IA(Nd) 、サマリウム(Sm
) 、ガドリニウムCGd)、ジスプロシウム(Dy)
及びエルビウム(Er)の元素を意味する。Rは場合に
よっては数種の希土類金属からなる組合わせ物であって
もよい。
In this case, R is any rare earth metal, in particular cerium (Ce), neodymium, IA (Nd), samarium (Sm).
), gadolinium CGd), dysprosium (Dy)
and means the element erbium (Er). R may optionally be a combination of several rare earth metals.

組成R−Fe−Moの本発明による材料を製造するには
、それぞれ99.97%の含有量のFe及びMo並びに
最高1000pp−の酸化希土類を有する各個の希土類
金属99.9%から出発する。希土類金属を加工直前に
適当な大きさに鋸で細かく切断し、その表面を水研ぎ並
びに水中及び引続きエタノール中での超音波処理により
洗浄する。・次いで合金成分を保護ガスとしてのアルゴ
ン下に水で冷却した銅容器上で高周波発生器により得ら
れる熱によって融解するが、その際まずそのFe及びM
oが液化し、その後にそれぞれの希土類金属が加えられ
る。こうして生じた三元合金を通常少なくとも更に5回
完全に混合するまで高周波エネルギーで容器上で液化し
、急速に冷却する。これに対してサマリウム合金の場合
には酸化アルミニウムるつぼ中でただ一回だけ融解させ
ればよい、最後に三元合金を均質化するために約105
0〜1200℃で、すなわちそれぞれの溶融温度の約1
50℃下方の温度で約1時間燻焼する。このため個々の
合金からなる加熱体は保護ガスとしてのアルゴン下に誘
導的に加熱された密閉ニオブ中空円筒中の酸化アルミニ
ウムベース上に置く。
To produce the material according to the invention of the composition R-Fe-Mo, starting from 99.9% of each individual rare earth metal with a content of 99.97% of Fe and Mo and a maximum of 1000 pp of rare earth oxide. Immediately before processing, the rare earth metal is cut into pieces with a saw to a suitable size, and its surface is cleaned by wet sanding and ultrasonic treatment in water and subsequently in ethanol. The alloying components are then melted in a water-cooled copper vessel under argon as a protective gas by the heat obtained by a high-frequency generator, first of all the Fe and M
o is liquefied and then the respective rare earth metal is added. The resulting ternary alloy is typically liquefied on a vessel with radio frequency energy until thoroughly mixed at least five more times and rapidly cooled. In contrast, samarium alloys only need to be melted once in an aluminum oxide crucible;
from 0 to 1200°C, i.e. about 1 of the respective melting temperature.
Smoky for about 1 hour at a temperature below 50℃. For this purpose, the heating element of the individual alloy is placed on an aluminum oxide base in a closed niobium hollow cylinder that is inductively heated under argon as a protective gas.

合成し、繰り返し融解及び凝固した後側々の合金は当初
なお多相状態である。この場合正方晶ThMa、、相の
他に菱面体晶のThgZntv相も他の相と共に観察さ
れる。これに対して合金は均質化するための最終燻焼後
実際に一相のみとなう、その際酸化物及び他の相の残分
は合計で最高3容量%の量で観察される。この場合合金
の個々の相は金属組織学的にまたX線写真による分析で
処理することができる。
After being synthesized and repeatedly melted and solidified, the resulting alloy is initially still in a multiphase state. In this case, in addition to the tetragonal ThMa phase, a rhombohedral ThgZntv phase is also observed together with other phases. On the other hand, the alloy is actually only one phase after the final smoldering to homogenize, with residues of oxides and other phases being observed in amounts of up to 3% by volume in total. In this case, the individual phases of the alloy can be treated metallographically and by radiographic analysis.

第1図は三成分系Fe −Mo−Ndの相当する濃度比
を約1200℃の等温切断線で一般に通常のグラフによ
り示すものである。この場合その角点が三種の合金成分
Fe、Mo、、Nd (それぞれそこでは濃度が100
%になる)により決定される三辺から出発する。濃度の
三角形の各辺は二成分系M。
FIG. 1 shows the corresponding concentration ratios of the ternary system Fe--Mo--Nd in a generally conventional graph with an isothermal section at about 1200 DEG C. In this case, the corner points are the three alloy components Fe, Mo, and Nd (each with a concentration of 100
Starting from the three sides determined by Each side of the concentration triangle is a binary system M.

Fe、 FeNd及びNdMoの組成を示す、三角形の
表面は3辺に対する平行線からなる格子でおおわれ、そ
の際隣接する平行線はそれぞれ2原子%の間隔を有する
。この図では三成分系のここで重要なFe角のみが詳細
に表されている0図面から読み取れるように、ThMn
+m構造ををする相Nd@FII*JO+*が属する三
元磁場はTh1Zn+v構造を有するNd*Petyか
ら出発する範囲から二相磁場だけ分離されている0個々
の結晶構造は例えば相当する粉末を公知のX線回折針を
用いて調べることによう決定することができる。
The surface of the triangle, which shows the composition of Fe, FeNd and NdMo, is covered with a grid of parallel lines to the three sides, with adjacent parallel lines each having a spacing of 2 atom %. In this figure, only the important Fe angle of the three-component system is shown in detail. As can be read from the drawing, ThMn
The ternary magnetic field to which the phase Nd@FII*JO+* with +m structure belongs is separated by a two-phase magnetic field from the range starting from Nd*Pety with Th1Zn+v structure. This can be determined by examining it using an X-ray diffraction needle.

本発明によれば磁気材料はThMn+*構造を有する相
を多量に有しているべきである。この要件を満たすため
には材料中の個々の合金成分量を初めから決定しておく
、すなわち一般にFe成分は60〜85原子%、R成分
は2〜20原子%及びM成分は4〜35原子%を選択す
る。
According to the invention, the magnetic material should have a large amount of phases with a ThMn+* structure. In order to meet this requirement, the amounts of the individual alloying components in the material must be determined from the beginning, i.e., generally the Fe component is 60 to 85 atom%, the R component is 2 to 20 atom%, and the M component is 4 to 35 atom%. Select %.

ThMn+*構造が本発明材料中小なくとも50容量%
の量で存在するのを保証するため、相応する濃度三角形
の表面から、次の5点Pi〜P5で決定される五角形部
分表面を選択する。
ThMn+* structure is at least 50% by volume of the present invention material
From the surface of the corresponding concentration triangle, we select a pentagonal subsurface determined by the following five points Pi to P5.

R〔原子%〕 鉄〔原子%)M[原子%]Pi    
4    65    31P2   4   85 
   1.1P3   9    85     6P
41579     6 P5  15    65    20第1図にはこの
5点が三成分系Nd−Fa−M。
R [atomic%] Iron [atomic%] M [atomic%] Pi
4 65 31P2 4 85
1.1P3 9 85 6P
41579 6 P5 15 65 20 In Figure 1, these five points are the ternary system Nd-Fa-M.

の濃度三角形内に記入されている。この場合一点破線で
示された五角形の表面はThMn+*構造を有する破線
で示した範囲を包含し、これは次の点P1〜P5によっ
て更に詳細に記載することができる。
is filled in the concentration triangle of . In this case, the pentagonal surface indicated by the dashed line encompasses the area indicated by the dashed line with the ThMn+* structure, which can be described in more detail by the following points P1 to P5.

Nd(原子%)Fe(原子%)Mo(原子%〕PI  
  7     65     28P2   7  
   80     13P3   8      E
15     9,5P4  10     78  
   12P5  10     65     25
温度Tとの関係における磁化Mを、型pl!@@MO+
fR1の本発明による磁気的に配向されていない三成分
系単相合金について第2図のグラフに示す、この場合外
部磁界10に^/CIを前提とする。弐Ms−f(T)
からそれぞれのキエリ一温度Tcは相応する曲線の直線
部と温度軸との交点として決定することができる。相応
する確認値は次表から得られる。この表には更に室温及
び70kOeの外部磁界での個々の合金の飽和磁化Ms
を示す、飽和磁化Msは例えば振動磁力針を用いて相応
するプラスチック結合された磁界配向粉末で測定する。
Nd (atomic%) Fe (atomic%) Mo (atomic%) PI
7 65 28P2 7
80 13P3 8 E
15 9,5P4 10 78
12P5 10 65 25
The magnetization M in relation to the temperature T is expressed as the type pl! @@MO+
The graph of FIG. 2 shows a magnetically unoriented ternary single-phase alloy according to the invention with fR1, assuming an external magnetic field 10 of ^/CI. 2 Ms-f(T)
Therefore, each Chieri temperature Tc can be determined as the intersection of the straight part of the corresponding curve and the temperature axis. The corresponding confirmation values are obtained from the following table. This table also shows the saturation magnetization Ms of the individual alloys at room temperature and in an external magnetic field of 70 kOe.
The saturation magnetization, Ms, is measured, for example, using a vibrating magnetic needle with a corresponding plastic-bonded magnetically oriented powder.

希土類成分RTc (’C)   Ms (T)Ce 
      85    0.65N d      
l B 5    .1.03Nm      202
    0.97Cd      205    0,
67Dy      142    0,60E r 
     108    0.65上記の表に記載され
たキエリ一温度Tcは第3図において同じ希土類成分R
ををする型F6+tRJの公知三元合金のキエリ一温度
と対照して示されている。この場合公知の合金は文献[
第8回希土類磁石に関する国際会tlil事録(Pro
c、 8th Int。
Rare earth component RTc ('C) Ms (T)Ce
85 0.65Nd
l B 5. 1.03Nm 202
0.97Cd 205 0,
67Dy 142 0.60E r
108 0.65 The Chieri temperature Tc listed in the table above is the same as the rare earth component R in Figure 3.
is shown in contrast to the Chieri temperature of a known ternary alloy of type F6+tRJ with In this case, the known alloys are from the literature [
Proceedings of the 8th International Conference on Rare Earth Magnets tlil (Pro
c, 8th Int.

11orkshop on Rare−Earth−M
agnets) J Dayton社オハイオ(米国)
在1985年第423〜44G頁に記載されている。
11orkshop on Rare-Earth-M
Agnets) J Dayton Inc. Ohio (USA)
Published in 1985, pages 423-44G.

第3図による図面と同様に第4図において、本発明によ
る合金pg@@Mo+□R1の飽和磁化Msと上記文献
(Proc、 8th Int、 Workshop 
on Rare−Earth−Magnets)から明
らかな合金Pe+aRmBの飽和磁化Msを比較する。
Similarly to the drawing according to FIG. 3, in FIG.
On Rare-Earth-Magnets), the saturation magnetization Ms of the alloy Pe+aRmB is compared.

第3図及び第4図の双方から明らかなように、相Fe@
eMO+Jsは約100〜200℃の範囲内でキエリ一
温度Tcをまた約0.6〜ITの範囲内で飽和磁化Ms
を有する。この場合希土類金属゛Rの系列での個々の値
の経過は公知の型Pel4RtBのそれに相応する。最
高のキエリ一温度はガドリニウム相に、また最高の飽和
磁化はネオジウム相に存在する。
As is clear from both Fig. 3 and Fig. 4, the phase Fe@
eMO+Js has a Chieri temperature Tc within a range of approximately 100 to 200°C and a saturation magnetization Ms within a range of approximately 0.6 to IT.
has. In this case, the course of the individual values in the series of rare earth metals R corresponds to that of the known type Pel4RtB. The highest Chieri temperature exists in the gadolinium phase and the highest saturation magnetization in the neodymium phase.

R及びFeモーメーント間の強磁性結合が期待できる軽
希土類金属を有する代表的な相は、重希土類金属を有す
る相よりも高い飽和磁化を有する。
Typical phases with light rare earth metals in which ferromagnetic coupling between R and Fe moments can be expected have higher saturation magnetization than phases with heavy rare earth metals.

この場合P6soMO+*S11鍵及びF6*eMO+
*Gdsは、サマリウム相で特に顕著な磁気異方性を有
する。
In this case P6soMO+*S11 key and F6*eMO+
*Gds has particularly remarkable magnetic anisotropy in the samarium phase.

上記の実施例によれば、本発明による材料R−Fe−M
のM成分が元素MOであるものから出発した。しかし相
応する関係はクロム群からなるこの金属をタングステン
(W)金属により少なくとも部分的に代えた場合にも生
じる。
According to the above examples, the material R-Fe-M according to the invention
The starting point was one in which the M component was the element MO. However, a corresponding relationship also occurs if this metal of the chromium group is at least partially replaced by tungsten (W) metal.

更に本発明による実施例としては三元合金を選択した。Furthermore, a ternary alloy was selected for the embodiment according to the invention.

しかし上記の王台金成分の他に本発明による材料は、少
なくとも一種の他の合金成分を最高的lO原子%までの
量で含んでいてもよい、すなわち特にNd及びSm合金
に有利には最高8原子%までのコバルト(Co)を合金
して、キュリ一温度及び/又は飽和磁化を高めることが
できる。
However, in addition to the above-mentioned Otai gold component, the material according to the invention may also contain at least one other alloying component in an amount of up to 1 atomic %, i.e. preferably up to 8 atomic % for Nd and Sm alloys. % of cobalt (Co) can be alloyed to increase the Curie temperature and/or saturation magnetization.

この場合CO酸成分相応する量のFe成分の代わりに加
えられる。得られた四元合金Nd5F11v*C01M
01゜は、例えばCoを含まない三元合金NdsFes
tMOt。
In this case, a CO acid component is added in place of a corresponding amount of Fe component. Obtained quaternary alloy Nd5F11v*C01M
01° is, for example, a ternary alloy NdsFes that does not contain Co.
tMOt.

よりも約100℃高められたキュリ一温度及び約0.3
T高められた飽和磁化を有する。
Curie temperature is about 100℃ higher than that of about 0.3℃.
T has increased saturation magnetization.

硬磁気材料用出発物質としはその高い結晶異方性により
Smを有する三成分相並びにSm及びC。
Suitable starting materials for hard magnetic materials are ternary phases with Sm and Sm and C due to their high crystal anisotropy.

を有する画成分相が特に重要である。この場合異方性磁
界強度は約90kOeにまで達する。
Of particular interest are image component phases having . In this case, the anisotropic magnetic field strength reaches approximately 90 kOe.

3種類以上の合金成分を有する本発明による材料は純粋
な形でのみ使用可能なものではない、むしろ混合又は複
合材料の成分であることも有利である。すなわち例えば
ガラス又はセラミック、例えばAhOs 、SiC又は
Bのような無機物質並びに有機材料中に内蔵させるか又
はこれらの材料に積層させることもできる。
It is also advantageous for the materials according to the invention with three or more alloying components to be used not only in pure form, but rather as components of mixtures or composites. For example, they can be incorporated into or laminated to inorganic materials, such as glasses or ceramics, AhOs, SiC or B, as well as organic materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は三成分系Fe −Mo −Ndにおける等温断
面図の一部を示すグラフ図、第2図は特殊なFe1M0
+IR*合金の温度との関連におけ・る磁化曲線図、第
3図及び第4図は公知の材料Fe、、RJとの比較の下
にFe50M0+*Rs合金のキュリ一温度及び飽和磁
化を示すグラフ図、第5図は公知の二元化合物MoBe
+tの構造を示す略本図である。 IG 5 T[@C1−−−− I32
Figure 1 is a graph showing a part of the isothermal cross section in the ternary system Fe-Mo-Nd, and Figure 2 is a graph of a special Fe1M0
Magnetization curve diagrams in relation to the temperature of the +IR* alloy, Figures 3 and 4 show the Curie temperature and saturation magnetization of the Fe50M0+*Rs alloy in comparison with the known materials Fe, RJ. The graph diagram, FIG. 5, shows the known binary compound MoBe.
It is a schematic diagram showing the structure of +t. IG 5 T [@C1---- I32

Claims (1)

【特許請求の範囲】 1)少なくとも三つの合金成分R、鉄(Fe)及びMを
有し、鉄成分の材料含有量が少なくとも60原子%であ
り、この材料中で正方晶ThMn_1_2構造が形成さ
れている、鉄含有磁気材料において、 a)Rは希土類金属の群から選択される少なくとも一種
の元素であり、Mはモリブデン (Mo)及び/又はタングステン(W)で あり、 b)Fe含有量は最高85原子%であり、 c)Rの含有量は2〜20原子%であり、 d)モリブデン及び/又はタングステン含有量は4〜3
5原子%である ことを特徴とする鉄含有磁気材料。 2)三成分系R−Fe−Mの濃度比をそれ自体は公知の
方法で各成分により形成される角点を有する三角形の平
面としてグラフで表した場合、以下の点P1、P2、P
3、P4及びP5:  R〔原子%〕鉄〔原子%〕M〔M−%〕 P1    4    65    31 P2    4    85    11 P3    9    85     6 P4   15    79     6 P5   15    65    20 により限定される五角形の平面上にある交点が得られる
ように、三つの合金成分の含有量を選択する ことを特徴とする請求項1記載の材料。 3)鉄含有量が最高82原子%であることを特徴とする
請求項1又は2記載の材料。 4)ThMn_1_2構造を有する相の他に更に少なく
ともR−Fe−M系の別の相が存在していることを特徴
とする請求項1ないし3の1つに記載の材料。 5)三つの合金成分R、Fe及びMの他に更に少なくと
ももう一種の合金成分を有していることを特徴とする請
求項1ないし4の1つに記載の材料。 6)もう一つの合金成分の量が最高で10原子%である
ことを特徴とする請求項5記載の材料。 7)もう一つの成分としてコバルト(Co)を最大量で
8原子%有し、その量だけ相応する鉄成分が除かれてい
ることを特徴とする請求項5又は6記載の材料。 8)R成分が少なくとも2種の希土類金属からなること
を特徴とする請求項1ないし7の1つに記載の材料。 9)別の材料中に内蔵されているか又はこれに積層され
ていることを特徴とする請求項1ないし8の1つに記載
の材料。 10)構成成分が混合材料又は複合材料であることを特
徴とする請求項9記載の材料。
[Claims] 1) It has at least three alloy components R, iron (Fe) and M, the material content of the iron component is at least 60 atomic %, and a tetragonal ThMn_1_2 structure is formed in the material. In the iron-containing magnetic material, a) R is at least one element selected from the group of rare earth metals, M is molybdenum (Mo) and/or tungsten (W), and b) the Fe content is c) the content of R is between 2 and 20 at %; d) the content of molybdenum and/or tungsten is between 4 and 3;
An iron-containing magnetic material characterized by an iron content of 5 at.%. 2) When the concentration ratio of the ternary system R-Fe-M is expressed graphically as a triangular plane having corner points formed by each component using a method known per se, the following points P1, P2, P
3, P4 and P5: R [atomic %] iron [atomic %] M [M-%] P1 4 65 31 P2 4 85 11 P3 9 85 6 P4 15 79 6 P5 15 65 20 On the plane of the pentagon defined by 2. Material according to claim 1, characterized in that the contents of the three alloying components are selected such that an intersection point located at is obtained. 3) Material according to claim 1 or 2, characterized in that the iron content is at most 82 at.%. 4) The material according to claim 1, characterized in that, in addition to the phase having the ThMn_1_2 structure, at least another phase of the R-Fe-M system is present. 5) Material according to claim 1, characterized in that, in addition to the three alloying components R, Fe and M, it also has at least one other alloying component. 6) Material according to claim 5, characterized in that the amount of another alloying component is at most 10 atomic %. 7) The material according to claim 5 or 6, characterized in that it contains cobalt (Co) as another component in a maximum amount of 8 at %, and a corresponding amount of iron component is removed. 8) Material according to one of claims 1 to 7, characterized in that the R component consists of at least two rare earth metals. 9) Material according to one of claims 1 to 8, characterized in that it is embedded in or laminated to another material. 10) The material according to claim 9, characterized in that the constituent components are mixed materials or composite materials.
JP63027362A 1987-02-11 1988-02-08 Iron-containing magnetic material Pending JPS63203745A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3704238.6 1987-02-11
DE19873704238 DE3704238A1 (en) 1987-02-11 1987-02-11 IRONIC, MAGNETIC MATERIAL

Publications (1)

Publication Number Publication Date
JPS63203745A true JPS63203745A (en) 1988-08-23

Family

ID=6320754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027362A Pending JPS63203745A (en) 1987-02-11 1988-02-08 Iron-containing magnetic material

Country Status (4)

Country Link
EP (1) EP0278342B1 (en)
JP (1) JPS63203745A (en)
AT (1) ATE84902T1 (en)
DE (2) DE3704238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520945A (en) * 2012-05-02 2015-04-15 罗伯特·博世有限公司 Magnetic material, use thereof and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970809B2 (en) * 1987-12-28 1999-11-02 信越化学工業株式会社 Rare earth permanent magnet
JP3057448B2 (en) * 1988-05-26 2000-06-26 信越化学工業株式会社 Rare earth permanent magnet
DE3832472A1 (en) * 1988-09-23 1990-03-29 Siemens Ag METHOD FOR PRODUCING A MATERIAL WITH A HARD MAGNETIC PHASE FROM POWDER-BASED STARTING COMPONENTS
GB2232165A (en) * 1989-03-22 1990-12-05 Cookson Group Plc Magnetic compositions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110209A (en) * 1984-06-26 1986-01-17 Toshiba Corp Permanent magnet
CA1273783A (en) * 1986-03-05 1990-09-11 Yung-Tsai Yen Mounting preparation for optical membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520945A (en) * 2012-05-02 2015-04-15 罗伯特·博世有限公司 Magnetic material, use thereof and method for producing same
JP2015523462A (en) * 2012-05-02 2015-08-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Magnetic material, its use and method for producing said magnetic material

Also Published As

Publication number Publication date
EP0278342B1 (en) 1993-01-20
DE3877589D1 (en) 1993-03-04
DE3704238A1 (en) 1988-08-25
ATE84902T1 (en) 1993-02-15
EP0278342A2 (en) 1988-08-17
EP0278342A3 (en) 1989-11-15

Similar Documents

Publication Publication Date Title
Yang et al. Magnetic and crystallographic properties of novel Fe‐rich rare‐earth nitrides of the type RTiFe11N1− δ
JP5130270B2 (en) Magnetic material and motor using the same
Fuerst et al. Structural and magnetic properties of R3 (Fe, T) 29 compounds
US20150132174A1 (en) Rare Earth Composite Magnets with Increased Resistivity
Shen et al. Structure and magnetocrystalline anisotropy of R2Fe17− x Ga x compounds with higher Ga concentration
Menth et al. New high-performance permanent magnets based on rare earth-transition metal compounds
JPS63203745A (en) Iron-containing magnetic material
Sánchez et al. Evidence of exchange coupling in τ-MnAlC/FeCo system
Fuerst et al. Melt‐spun PrCo5 and related magnet materials: Coercivity enhancement by carbon addition
Baran et al. Crystal structure and magnetic properties of UFe4Al8
Kowalczyk et al. Structural and magnetic characteristics of R2Fe14− xCuxB systems (R= Y, Nd and Gd)
Huang et al. Magnetic properties and structure of nitrogenated La (Co/sub 1-x/Fe/sub x/)/sub 13/compounds (x= 0-0.4)
JP3073807B2 (en) Iron-rare earth permanent magnet material and method for producing the same
Fuerst et al. Effect of manganese substitution in erbium‐iron‐manganese‐boron: Spin reorientation, moment compensation, and structure
Politova et al. Low-temperature magnetostriction and distortions in the rare-earth Laves phases
JPS62240742A (en) Production of permanent magnet material
Tang et al. Rare-earth transition metal carbides
Sinha et al. Magnetic behavior of heavy rare earth RTiFe11-xCox alloys
Ouyang et al. Mixing effects of light and heavy rare earths in the Laves phase compounds Nd1− xHRxCo2 (HR= Gd, Tb)
Pourarian et al. Magnetic Anisotropy and Spin Reorientation in Nd 2-x Pr x Co 14 B
Bitoh et al. Microstructure and hard magnetic properties of directly synthesized L1 (Fe1− xPtx) 78Zr4B18 nanocrystalline alloys by melt spinning
Jiang et al. Magnetic characteristics of NdTbFe14-xCoxB and Nd2-xTbxCo14 alloys
Lucis Microstructure and phase analysis in Mn-Al and Zr-Co permanent magnets
Nasunjilegal et al. Formation and magnetic properties of a novel Gd3 (Fe, Ti) 29Ny nitride
Burzo Rare-Earths-Iron-Boron Compounds