JPS63203718A - Method for accelerating dehydrogenation of molten steel - Google Patents

Method for accelerating dehydrogenation of molten steel

Info

Publication number
JPS63203718A
JPS63203718A JP3519587A JP3519587A JPS63203718A JP S63203718 A JPS63203718 A JP S63203718A JP 3519587 A JP3519587 A JP 3519587A JP 3519587 A JP3519587 A JP 3519587A JP S63203718 A JPS63203718 A JP S63203718A
Authority
JP
Japan
Prior art keywords
molten steel
powder
gas
dehydrogenation
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3519587A
Other languages
Japanese (ja)
Other versions
JPH07100813B2 (en
Inventor
Kaoru Masame
眞目 薫
Toru Matsuo
亨 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3519587A priority Critical patent/JPH07100813B2/en
Publication of JPS63203718A publication Critical patent/JPS63203718A/en
Publication of JPH07100813B2 publication Critical patent/JPH07100813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To increase a gas-metal boundary area and to effectively accelerate dehydrogenation by putting a molten steel contg. a specific ratio of alloy components into a vessel in which an adequate reduced pressure is maintained and top blowing the powder of an oxidizing agent which is previously sufficiently dried by heating onto the surface of the molten steel. CONSTITUTION:The molten steel which contains >=1wt.% alloy components in total and is hardly dehydrogenatable is subjected to the dehydrogenation treatment after alloy component adjustment. The molten steel is put into the reduced pressure vessel in which <=200Torr is maintained in this dehydrogenation treatment. The powder of the oxidizing agent or powder for refining which is previously dried by heating at about >=400 deg.C to <=0.05wt.% moisture sticking thereto or contained therein is top-blown or blown to the surface or inside of such molten steel. The decarburization reaction is thereby accelerated and the gas-metal boundary area is increased, by which the dehydrogenation reaction of the molten steel is effectively accelerated and the hydrogen in the molten steel is decreased down to about <=1ppm.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶鋼中の脱水素反応を促進する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for promoting dehydrogenation reaction in molten steel.

(従来の技術) 溶鋼中の(H)溶解度は第8図に示すように1600℃
で26.8ppmと高く、これを低水素化する為には、
次の2つの条件が必要になる。
(Prior art) The solubility of (H) in molten steel is 1600°C as shown in Figure 8.
The hydrogen content is as high as 26.8 ppm, and in order to reduce the hydrogen content,
The following two conditions are required.

■ 減圧(真空) ガス−メタル界面におけるガス側の水素分圧(PHz)
を低くすると第9図に示すようにこれと平衡する溶鋼中
の(H)tJm度は低下する。
■ Reduced pressure (vacuum) Hydrogen partial pressure on the gas side at the gas-metal interface (PHZ)
As shown in FIG. 9, when the value of tJm is lowered, the degree of (H)tJm in the molten steel that is in equilibrium with this decreases.

この時、到達(H)t!度を低下することができる。At this time, reach (H)t! degree can be lowered.

■ 反応界面積 脱H反応はガス−メタルの界面で起こり、この界面積が
大きい程脱H反応速度は速くなる。
(2) Reaction interfacial area The dehydrogenation reaction occurs at the gas-metal interface, and the larger the interfacial area, the faster the dehydrogenation reaction rate.

また減圧(真空)条件下では溶鋼中の気泡を拡大できる
ので脱H反応促進に効果的である。
Further, under reduced pressure (vacuum) conditions, the bubbles in the molten steel can be expanded, which is effective in promoting the deH reaction.

従って効果的に低H化するには、ガス−メタル界面積を
極力大きクシ(脱H速度を向上させて)高真空処理する
(気泡の攪拌力増大と到達(H)値を低くする)ことが
肝要である。
Therefore, in order to effectively reduce H, it is necessary to increase the gas-metal interface area as much as possible (improve the dehydrogenation rate) and perform high vacuum treatment (increase the stirring force of bubbles and lower the attained (H) value). is essential.

(発明が解決しようとする問題点) しかしながら、ガスメタル界面積のうち溶鋼の自由表面
は設備条件により決定されるので、これを増大すること
は難しい。そこで溶鋼にガスを導入する方法が一般的に
採用されているが、多量のガスを導入すると真空度が悪
化するので導入ガス量も無条件に増大できない。また真
空排気能力を増強して真空度を確保する等の設備改善も
必要になって(る、この例としてRHにおけるものにつ
いて説明する。
(Problems to be Solved by the Invention) However, since the free surface of molten steel in the gas-metal interfacial area is determined by equipment conditions, it is difficult to increase it. Therefore, a method of introducing gas into molten steel is generally adopted, but since introducing a large amount of gas deteriorates the degree of vacuum, the amount of introduced gas cannot be increased unconditionally. Additionally, equipment improvements such as increasing the evacuation capacity to ensure the degree of vacuum are also required (as an example of this, we will explain the equipment at RH).

現在2507ONの溶鋼を処理する場合の環流Arガス
量は約160 ON1/n+in、真空度は0.3To
rrで処理を行っている。これを脱H促進を目的に環流
Arガス量を3000(〜5000)Nl上近傍の真空
槽側壁にはスプラッシュが多量に付着し、操業を阻害す
ることもあった。そこで真空度を従来レベル(0,3T
orr)にするため、真空排気能力を増強させたが、ス
プラッシュを軽減させることはできなかった。
When currently processing 2507ON molten steel, the amount of circulating Ar gas is approximately 160ON1/n+in, and the degree of vacuum is 0.3To.
Processing is performed using rr. In order to promote dehydrogenation, the amount of refluxed Ar gas was increased to 3,000 (~5,000 Nl), and a large amount of splash adhered to the side wall of the vacuum chamber near the top, sometimes interfering with the operation. Therefore, the degree of vacuum was set to the conventional level (0.3T).
Although the vacuum pumping capacity was increased to reduce the amount of water splash (orr), it was not possible to reduce the amount of splash.

この時の脱H速度は約10 X 10−’ (see−
’)、到達H値は1.5 ppn+で環流Ar11を増
加させると、脱H速度が若干良くなり(12X 10−
’C5ec−9)、到達H値は1.3 ppmとなった
。しかし平均的にlppm以下とすることは難しい。
The dehydrogenation rate at this time is approximately 10 x 10-' (see-
'), the reached H value was 1.5 ppn+, and by increasing the reflux Ar11, the dehydrogenation rate improved slightly (12X 10-
'C5ec-9), the achieved H value was 1.3 ppm. However, it is difficult to reduce the amount to 1 ppm or less on average.

即ち、このRHの例において問題となるのはArガスを
多量に導入すると、■真空度が悪化することと共に、■
局部的に導入したArガスによりスプラッシュが増大す
ることである。これに対して、■の問題については設備
増強という対策があるが、■の問題については対策がな
い。
In other words, the problem in this RH example is that when a large amount of Ar gas is introduced, (1) the degree of vacuum deteriorates, and (2)
Splash is increased by the locally introduced Ar gas. On the other hand, there is a countermeasure for the problem (■) by increasing equipment, but there is no countermeasure for the problem (■).

本発明はかかる問題点を解決できる“溶鋼の脱水素促進
方法を提供せんとするものである。
The present invention aims to provide a method for promoting dehydrogenation of molten steel that can solve these problems.

(問題点を解決するための手段) 本発明者等は上記した問題点を解決するために種々研究
・実験を行った結果、次の点に改良点を見い出した。
(Means for Solving the Problems) The present inventors conducted various studies and experiments in order to solve the above-mentioned problems, and as a result, they found the following improvements.

■Arガス増量分(例えば1400Nil /akin
 )よりも少ないガス量を溶鋼内部から発生させる。
■Increased amount of Ar gas (e.g. 1400Nil/akin)
) is generated from inside the molten steel.

■溶鋼内から発生させるガス気泡径を小さく微細気泡と
させる。■溶鋼内部から発生させる気泡は溶鋼内及び溶
鋼表面全体から均一に発生させる。
■Reducing the diameter of gas bubbles generated from within molten steel into fine bubbles. ■Bubbles generated from inside the molten steel are generated uniformly from within the molten steel and from the entire surface of the molten steel.

しかして、この■〜■の改良ができれば、■により真空
度悪化が軽減でき、■により単位ガス量当たりのガス−
メタル界面積を増大させることができ、さらに■により
局部的な溶鋼のスプラッシュは減少し、極めて操業が安
定する。
Therefore, if these improvements can be made, the deterioration of the degree of vacuum can be reduced due to ■, and the gas per unit amount of gas can be reduced due to ■.
The metal interfacial area can be increased, and local molten steel splash is reduced due to (1), making the operation extremely stable.

そこで本発明では、合金成分を合計で1重量%以上含有
する溶鋼に対して合金成分調整後に脱水素処理を施すに
際し、あらかじめ400℃以上の温度で加熱乾燥させて
付着又は含有水分量を0.05重量%以下とした酸化剤
粉体あるいは精錬用粉体を、200 Torr以下の減
圧容器内に入れた溶鋼の表面に上吹又は溶鋼内部に吹込
むことにより脱炭反応を促進させてガス−メタル界面積
を増大させることを要旨としているのである。
Therefore, in the present invention, when dehydrogenating molten steel containing 1% by weight or more of alloy components in total after adjusting the alloy components, the molten steel is heated and dried at a temperature of 400° C. or higher in advance to reduce adhesion or water content to 0. The decarburization reaction is promoted by blowing oxidizer powder or refining powder containing 0.05% by weight or less onto the surface of molten steel placed in a vacuum vessel at 200 Torr or less or into the molten steel, thereby promoting the decarburization reaction. The gist of this is to increase the metal interfacial area.

次に本発明方法について詳細に分量する。Next, the method of the present invention will be explained in detail.

l)添加方法 例えば鉄及び/又はMnの酸化物等の酸化剤粉体又は金
属の炭酸塩を含む精錬用粉体の添加は、溶鋼内に侵入、
分散させてCO生生成色なる様に添加させるのが特徴で
ある。とりわけ溶鋼自由表面直下では、溶鋼内に比べて
静鉄圧が低いので脱C反応旦十〇=COにおいてPCO
(Co分圧)を低くさせて反応を促進させることができ
る。
l) Addition method: For example, the addition of oxidizer powders such as iron and/or Mn oxides or refining powders containing metal carbonates may penetrate into the molten steel.
The feature is that it is added in a dispersed manner so that the color of CO is produced. In particular, directly below the free surface of molten steel, the static iron pressure is lower than in the molten steel, so PCO
(Co partial pressure) can be lowered to promote the reaction.

従って添加方法としては溶鋼表面上方から前記粉体を上
吹し、侵入、分散させるのがよい。
Therefore, it is preferable to add the powder by blowing the powder from above the surface of the molten steel to penetrate and disperse it.

しかし、溶鋼内への粉体吹込の場合においては、静鉄圧
が大きい所においても粉体の分散が十分できればCOO
成核形成効果が発揮できる。
However, in the case of powder injection into molten steel, if the powder can be sufficiently dispersed even in areas where static iron pressure is large, COO
A nucleation effect can be exerted.

2)粉体上吹 上吹にすると静鉄圧の低い溶鋼表面直下で脱C反応を促
進でき、PCO及びPl(!を最も低い条件の設定がで
きる。また、上吹にすると粉体の溶鋼中への侵入後の分
散が容易となる。
2) Top blowing of the powder allows the decarbonization reaction to be promoted directly below the surface of the molten steel where the static iron pressure is low, allowing the setting of the lowest PCO and Pl (!) conditions. Dispersal after infiltration becomes easier.

上吹に供するランスとしては、(a)ストレートノズル
を有する単孔ランスに限らず、(bl例えば特開昭59
−35615号公報に記す特殊4孔ノズルを有するラン
ス、等のいずれでもよいが、粉体が溶鋼表面に到達する
だけでは不十分であり、溶鋼内に侵入し、分散させるこ
とが望ましい。
The lance used for top blowing is not limited to (a) a single-hole lance with a straight nozzle;
Although any lance having a special four-hole nozzle described in Japanese Patent No. 35615 may be used, it is not enough for the powder to just reach the surface of the molten steel, and it is desirable that the powder penetrate into the molten steel and be dispersed.

3)粉体吹込 吹込法では前記上吹の効果が若干劣る。粉体が吹込ガス
中にとじこめられたり、粉体相互の凝集が生じるためで
あるが、分割投入にくらべると溶鋼中でのCO生生成色
しての作用や、微細CO気泡の形成効果は高い。
3) In the powder blowing method, the effect of the above-mentioned top blowing is slightly inferior. This is due to the powder being trapped in the blown gas and mutual agglomeration of the powder, but compared to split charging, the effect of coloring CO production in molten steel and the formation of fine CO bubbles are higher. .

吹込に供するノズルとしては、(a)常時はガスのみが
流れ、(b)必要に応じ粉体が供給できる構造にしてお
く。粉体を溶鋼内に添加するだけでは不十分であり、粉
体がWI鋼内に分散するようにさせるのが望ましい。
The nozzle used for blowing has a structure in which (a) only gas flows at all times, and (b) powder can be supplied as needed. It is not sufficient to simply add powder into the molten steel; it is desirable to have the powder dispersed within the WI steel.

4)粉体中の水分 酸化剤粉体又は精錬用粉体は通常の使用条件下で大気中
の水分又はその他の水分源を吸収又は付着する。従って
その粉体が付着及び含有する水分量は、脱H目的に使用
する場合極力少ない方が良いが、これを皆無にすること
も極めて難しい。許容量としては脱Cする方法により異
なるが、上吹法では0.1重量%以下であれば(H)≦
1 ppmを達成できるが、吹込法では0.5重量%以
下で(H)≦1 ppmが可能である。
4) Moisture in the Powder The oxidizer powder or refining powder absorbs or deposits atmospheric moisture or other sources of moisture under normal conditions of use. Therefore, it is preferable that the amount of water attached to and contained in the powder be as small as possible when used for the purpose of dehydrogenation, but it is extremely difficult to completely eliminate this amount. The allowable amount varies depending on the decarbonization method, but in the top blowing method, if it is 0.1% by weight or less, (H)≦
1 ppm can be achieved, but the blowing method can achieve (H)≦1 ppm at 0.5% by weight or less.

そこで本発明では0.05重量%以下とした。Therefore, in the present invention, the content is set to 0.05% by weight or less.

ところで粉体中の水分含有量を0.05重量%以下にす
る為の加熱乾燥温度を400℃以上にしたのは、付着水
分のみならず、含有水分(水和物)をも除去させるため
である。
By the way, the reason why the heating and drying temperature was set at 400°C or higher in order to reduce the moisture content in the powder to 0.05% by weight or less was to remove not only the attached moisture but also the contained moisture (hydrate). be.

なお、400℃以下では水分含有量を0.05重量%以
下にするのに相当の乾燥時間を要する。
Note that at temperatures below 400°C, it takes a considerable amount of drying time to reduce the water content to 0.05% by weight or less.

5)粉体の粒度 粉体の粒度は溶鋼中でCO生生成色して作用させる為に
はその数が多いことが望ましく、かつ溶鋼に分散させる
のが好ましい。CO生生成色多量に存在させるとそれだ
けCOO成機会が増え、またCO生生成色微細化させれ
ばそれだけ生成するCOガスの気泡は微細になる。
5) Particle Size of Powder It is desirable that the number of particles of the powder is large in order to cause CO to form and color in molten steel, and it is preferable to disperse it in the molten steel. The larger the amount of CO-generated color, the more opportunities for COO formation will increase, and the finer the CO-generated color, the finer the bubbles of CO gas will be.

しかして、脱H反応はこのガス−溶鋼の界面で起こり、
同じCOO生量の場合、その生成気泡を細かくする程界
面積は大きくなる。従って、微細なCO気泡を形成させ
るとそれだけ脱H速度を大きくできる。
Therefore, the dehydrogenation reaction occurs at this gas-molten steel interface,
For the same amount of COO, the finer the bubbles are, the larger the interfacial area becomes. Therefore, the more fine CO bubbles are formed, the higher the dehydrogenation rate can be.

粉体の粒度が大きい場合、生成するco気泡は大きく、
ガス−溶鋼界面積の増大効果が少ない。一方、粉体の粒
度が細かすぎる場合、溶鋼内に侵入する際互いに接触し
集合体を形成し易くなると共に、粉体のもつ運動エネル
ギーの絶対量が少なくなり、溶鋼内に侵入し難くなる為
結果的にはガス−メタル界面積増大の効果が低下する。
When the particle size of the powder is large, the co bubbles generated are large;
The effect of increasing the gas-molten steel interface area is small. On the other hand, if the particle size of the powder is too fine, it will be easier to contact each other and form aggregates when entering the molten steel, and the absolute amount of kinetic energy of the powder will decrease, making it difficult for the powder to penetrate into the molten steel. As a result, the effect of increasing the gas-metal interface area is reduced.

従って添加する方法や条件により最適な粒度範囲がある
Therefore, there is an optimum particle size range depending on the adding method and conditions.

粉体上吹の場合には最大でl am程度、最小でも0.
05mm程度の範囲で用いることが望ましい。
In the case of powder top blowing, the maximum is approximately 1 am, and the minimum is 0.
It is desirable to use it within a range of about 0.05 mm.

また、粉体吹込の場合には細かい方の領域では集合する
ために使い難く最大1111程度、最小でも0.2 m
程度は必要であった。
In addition, in the case of powder injection, it is difficult to use because it collects in small areas, and the maximum is about 1111, and the minimum is 0.2 m.
The degree was necessary.

6)真空度 粉体の溶鋼中への侵入、分散が十分であっても真空度が
良い程脱Cは促進される。つまり圧力が低ければ低い程
脱C促進に有利である。
6) Degree of Vacuum Even if the penetration and dispersion of the powder into the molten steel is sufficient, the better the degree of vacuum, the more the decarbonization will be promoted. In other words, the lower the pressure, the more advantageous it is to promote decarbonization.

実際には粉体を使う場合、キャリアーガスが必要であり
、そのガスは反応系内の真空度を悪化させるので注意が
必要である。ところが本発明の場合、粉体の溶鋼中への
侵入、分散効果は系の真空度が悪化しても余り変わらず
、脱C促進、脱H促進は維持できる。
In practice, when using powder, a carrier gas is required, and care must be taken as the gas deteriorates the degree of vacuum in the reaction system. However, in the case of the present invention, the penetration and dispersion effect of powder into molten steel does not change much even if the vacuum degree of the system deteriorates, and the promotion of C and H removal can be maintained.

しかし200Torr以上に悪化すると上吹した粉体が
溶鋼到達前後に失速して飛散し、また吹込粉体の場合も
同時に吹込んだキャリアーガスが十分拡大せず粉体を集
合させることとなった。
However, when the temperature deteriorated to 200 Torr or more, the top-blown powder stalled and scattered before and after reaching the molten steel, and in the case of blown powder, the carrier gas blown at the same time did not expand sufficiently and caused the powder to aggregate.

従って本発明では200Torr以下の°減圧条件で用
いるのが良く、勿論高真空程良い。
Therefore, in the present invention, it is preferable to use the pressure reduction condition of 200 Torr or less, and of course, the higher the vacuum, the better.

7)合金成分の合計が1重量%以上 かかる如く特定したのは、成分調整時に合金鉄から(H
)ピックアップがあり、特に低H化すべき鋼種のうちで
低H化が難しいものに限定したからである。
7) Specifying that the total amount of alloy components is 1% by weight or more is when adjusting the components from ferroalloy to (H
) This is because it is limited to steel types that are particularly difficult to lower H among the steel types that should be lowered.

(実 施 例) 以下本発明方法の実施例について説明する。(Example) Examples of the method of the present invention will be described below.

その1)取鍋を用いた実施例 第1図に示すように取鍋3に入れた溶鋼(2TON、C
=0.1重量%、Mn=1.5重量%、1600℃)に
場面間高さ400mのところから上吹ランス1を用いて
鉄鉱石粉体を上吹した(本発明l)。真空槽2内の圧力
は20Torrで、取鍋3底部よりArガスにて溶鋼4
を攪拌した。鉄鉱石の供給速度は約0.2 kg/5i
n−を一定とし、底吹Arガス量は約1〜31 /ak
in−tとした。しかして、鉄鉱石粉体上吹後約20分
での脱炭量は約0.05重量%であった。
Part 1) Example using a ladle As shown in Figure 1, molten steel (2TON, C
= 0.1% by weight, Mn = 1.5% by weight, 1600° C.), iron ore powder was top-blown from a height of 400 m using top-blowing lance 1 (invention 1). The pressure inside the vacuum chamber 2 is 20 Torr, and the molten steel 4 is heated with Ar gas from the bottom of the ladle 3.
was stirred. The iron ore supply rate is approximately 0.2 kg/5i
When n- is constant, the amount of bottom-blown Ar gas is approximately 1 to 31/ak.
It was set as in-t. The amount of decarburization approximately 20 minutes after top blowing of the iron ore powder was approximately 0.05% by weight.

この時の脱H挙動は、初期(H) =2.8 ppmの
ものが20分後にはQ、32pp+w迄到達した。
The dehydration behavior at this time was that the initial (H) = 2.8 ppm reached Q, 32 pp+w after 20 minutes.

同じ装置を用いて酸素ガスを上吹して脱Cさせた場合及
び鉄鉱石粒を上方から分割添加した場合の比較実験の結
果と共に前記本発明1の結果を下記第1表及び第2図、
第3図に示す。
The results of the present invention 1 are shown in Table 1 and Figure 2 below, together with the results of a comparative experiment in which decarbonization was performed by blowing oxygen gas upward using the same device, and in which iron ore grains were added in portions from above.
It is shown in Figure 3.

また同じ装置を使って鉄鉱石粉体を第1図に一点鎖線で
示すように溶鋼4の表面からの深さ150龍にて吹込み
脱Cさせた(本発明2)、この時上記第1表に示すよう
に本発明1より脱H効果は若干劣るものの比較l及び比
較2にくらべ脱H効果の高いことが明らかである。
Further, using the same device, iron ore powder was blown into the molten steel 4 at a depth of 150 mm from the surface as shown by the dashed line in Fig. 1 to decarbonize it (Invention 2). As shown in the table, although the dehydrogenation effect is slightly inferior to Invention 1, it is clear that the dehydrogenation effect is higher than Comparison 1 and Comparison 2.

従って本発明の詳細説明で述べたように溶鋼に酸素源を
添加し、強制的に脱C反応を生ぜしめ、脱H促進を図る
場合においても本発明のように酸化剤粉体を上吹又は吹
込む方法は、特に脱H効果が高い。しかも、従来到達(
H)≦1 ppmが容易に得難い状況下にあって本発明
で容易に得られることも明らかであり、第9図に示す1
600℃における水素溶解度約4 ppmの約1/10
を得ることができた。
Therefore, as described in the detailed description of the present invention, even when an oxygen source is added to molten steel to forcibly cause a decarbonization reaction to promote dehydrogenation, the oxidizer powder is top-blown or The blowing method has a particularly high dehydrogenation effect. Moreover, the conventional attainment (
It is also clear that the present invention can easily obtain H)≦1 ppm in situations where it is difficult to obtain H)≦1 ppm, as shown in FIG.
Approximately 1/10 of the hydrogen solubility of approximately 4 ppm at 600°C
was able to obtain.

その2)RHを用いた実施例 第4図に示すように取鍋3に入れた溶鋼(250TON
 5C=0.07重量%、M n = 1.4重量%、
1600℃)をRHで処理するに際し、その真空槽2′
にてランス−場面間高さ600Ioのところから上吹ラ
ンス■を用いて鉄鉱石粉体を上吹した(本発明3)。真
空槽2°内の圧力は約0゜8Torrで、RH環流Ar
ガスは160 ONI!/n+in一定とし、R)l処
理を20分実施した時の脱clは約0.06重量%であ
った。この時の脱H挙動は、初期[H) =4.2 p
ptsのものが0.8 ppHl迄到達した。
Part 2) Example using RH As shown in Figure 4, molten steel (250 TON) was placed in a ladle 3.
5C = 0.07% by weight, M n = 1.4% by weight,
1600℃), the vacuum chamber 2'
The iron ore powder was top-blown using a top-blowing lance (3) from a height of 600 Io between the lance and the scene (invention 3). The pressure inside the vacuum chamber 2° is approximately 0°8 Torr, and the RH reflux Ar
Gas is 160 ONI! /n+in was constant and the R)l treatment was carried out for 20 minutes, and the amount of Cl removed was about 0.06% by weight. The dehydrogenation behavior at this time is initial [H) = 4.2 p
pts reached 0.8 ppHl.

同じRHを用いて酸素ガスを真空槽側壁から斜め上吹し
た場合及び鉄鉱石塊を上方から分割投入した場合の比較
実験と共に本発明3の結果を下記第2表に示す。
The results of Invention 3 are shown in Table 2 below, together with comparative experiments in which oxygen gas was blown obliquely upward from the side wall of the vacuum chamber using the same RH and in which iron ore lumps were charged in portions from above.

また、同じRHを使って鉄鉱石粉体を溶鋼表面からの深
さ約200mmにて第4図の吹込羽口5を通して吹込み
脱Cさせた(本発明4)。この時の脱H効果は上記第2
表に示すように本発明3とほぼ同じものであり、比較3
、比較4、にくらべいずれも高い脱H効果を呈した。
Further, using the same RH, iron ore powder was decarbonized by blowing through the blowing tuyere 5 shown in FIG. 4 at a depth of about 200 mm from the surface of the molten steel (Invention 4). The dehydrogenation effect at this time is the second
As shown in the table, it is almost the same as Invention 3, and Comparative 3
, Comparison 4, and Comparison 4, all exhibited higher dehydrogenation effects.

以上のように本発明は、取鍋固溶鋼の脱H促進に限らす
RHの如き溶鋼を循環させた場合における真空槽での脱
H促進にも非常に効果的であり、容易に(H)≦1 p
pII+が溶製できる極めて優れた脱H法である。
As described above, the present invention is very effective not only for promoting the dehydrogenation of solid solution steel in a ladle, but also for promoting the dehydrogenation in a vacuum chamber when circulating molten steel such as RH, and easily converts (H) ≦1p
This is an extremely excellent dehydrogenation method that can produce pII+.

更に実施例その2)においても酸素ガスや固体酸化剤を
ただ添加するだけの場合に得られる脱H促進結果にくら
べ本発明3、本発明4が(H)?i度1 ppmの壁を
破る極めて特徴ある脱C方法であることが判る。
Furthermore, in Example No. 2), the present invention 3 and the present invention 4 have (H) It can be seen that this is a very unique C removal method that breaks the 1 ppm barrier.

その3)粉体の水分 第1図に示す取鍋3に入れた溶鋼(2TON 、、C=
0.1重量%、Mn=1.7重量%、1600℃)を用
いて固体の酸化剤中の水分が脱H挙動に与える影響を示
す実験を実施した。
Part 3) Moisture of powder Molten steel (2TON,,C=
An experiment was conducted to show the effect of water in a solid oxidant on the dehydrogenation behavior.

その結果を第5図に示す。本発明法の上吹法や吹込法を
用いた場合、酸化剤中の水分が0.05重量%以下であ
れば到達(H)≦1 ppmが得られた。
The results are shown in FIG. When the top blowing method or the blowing method of the present invention was used, if the water content in the oxidizing agent was 0.05% by weight or less, H≦1 ppm was obtained.

本発明lで使用した酸化剤中の水分量は約0.02重量
%のものであり、本発明2で使用した酸化剤中の水分量
も約0.02重量%のものであった。
The water content in the oxidizing agent used in Invention 1 was about 0.02% by weight, and the water content in the oxidizing agent used in Invention 2 was also about 0.02% by weight.

従って、固体酸化剤を添加(投入)する場合においても
本発明法の酸化剤粉体上吹法及び粉体吹込法は酸化剤に
含まれる水分に対する制約条件がゆるいと言える。この
理由は本発明法の場合、上吹又は吹込む酸化剤粉体の各
微細粒が各々酸素供給源となりかつ微細CO気泡形成の
生成核となる為、付着した水分は効率よ(微細CO気泡
と共に除去されるものと考える。
Therefore, even when a solid oxidizing agent is added (introduced), it can be said that the oxidizing agent powder top blowing method and the powder blowing method of the present invention have less restrictive conditions on the moisture contained in the oxidizing agent. The reason for this is that in the case of the method of the present invention, each fine particle of the top-blown or blown oxidizing agent powder becomes an oxygen supply source and a generation nucleus for the formation of fine CO bubbles, so that the attached moisture is removed efficiently (fine CO bubbles). It is assumed that it will be removed along with the

しかし、この付着又は含有水分は第5図に示すように少
ない方が好ましい。
However, as shown in FIG. 5, it is preferable that this attached or contained moisture be small.

その4)真空度 第1図に示す取鍋3に入れた溶鋼(2TON 、 C=
0.1重量%、Mn=1.5重量%、1600℃)を用
いて固体の酸化剤を用いた時の脱H速度に与える真空度
の影響を示す実験を実施した。その結果を第6図に示す
Part 4) Vacuum degree Molten steel (2TON, C=
An experiment was conducted to show the influence of the degree of vacuum on the dehydrogenation rate when using a solid oxidizing agent (Mn = 1.5 wt%, 1600° C.). The results are shown in FIG.

本発明1はkg # 30 X 10−’(sec−り
で最も大き(、次いで本発明3のkH#19xlO−’
(sec−’)、更に比較2の分設法kH″42.8X
 10−’(sec伺)の順となった。
Invention 1 is the largest in kg # 30
(sec-'), and further comparison 2 separation method kH''42.8X
The order was 10-' (sec).

本実施例において明らかなように本発明のうち、上吹法
は200Torr以下の真空度条件下において高い脱H
速度を維持できることが判る。
As is clear from this example, the top-blowing method of the present invention provides high dehydrogenation under vacuum conditions of 200 Torr or less.
It turns out that the speed can be maintained.

このことからも本発明の記載する酸化剤粉体上吹法又は
吹込法が優れた脱H促進法であることが明らかである。
From this, it is clear that the oxidizing agent powder top-blowing method or blowing method described in the present invention is an excellent method for promoting deH removal.

その5)底吹Arガス 第1図に示す取鍋3に入れた溶鋼(2TON、C=0.
1重量%、M n =0.8重量%、Cr−0,7重量
%、1600℃)に鉄鉱石粉体を上吹した。この時の実
施条件はその1)の本発明1と同じであるが、ArPi
l拌をしない時の結果を第7図の中の・印で示す(本発
明5)。
Part 5) Bottom-blown Ar gas Molten steel (2TON, C=0.
1% by weight, Mn = 0.8% by weight, Cr-0.7% by weight, 1600°C) was overblown with iron ore powder. The implementation conditions at this time are the same as those of the present invention 1 in Part 1), but ArPi
The results obtained without stirring are shown by the * mark in FIG. 7 (Invention 5).

なお、第7図に示す・印等の場合の条件は下記第3表に
示す如(である。
Note that the conditions for the cases marked with * in FIG. 7 are as shown in Table 3 below.

この時の脱H挙動は初期(H) =2.5 ppmのも
のが、20分後0.78ppa+まで低下した。
The dehydrogenation behavior at this time was initially (H) = 2.5 ppm, which decreased to 0.78 ppa+ after 20 minutes.

すなわち、底吹Ar攪拌がなくても、本発明法の上吹法
を使えば(H)≦1 pp+sとすることができること
が明らかになったが、底吹Arガス攪拌を併用すると更
に脱H促進効果が高められる。
In other words, it became clear that (H)≦1 pp+s can be achieved by using the top blowing method of the present invention even without bottom blowing Ar gas stirring, but when combined with bottom blowing Ar gas stirring, H can be further removed. The promotion effect is enhanced.

また、そのl)の本発明2にて記載した実施結果は、鉄
鉱石粉体を吹込む方法によるArガス攪拌の効果が相剰
効果として表れている。そして本発明2の条件中、底吹
Arガス攪拌を停止した場合(本発明6)では、初期(
H) =2.8 ppmのものが、1.Oppra迄到
達した。
In addition, the implementation results described in the present invention 2 of 1) show that the effect of Ar gas stirring by the method of injecting iron ore powder appears as a complementary effect. Among the conditions of present invention 2, when the bottom-blown Ar gas stirring is stopped (present invention 6), the initial (
H) = 2.8 ppm is 1. It reached Oppra.

その6)CaCOz上吹 第1図に示すように取鍋3に入れた溶鋼(2TON 、
 C=0.1重量%、Mn=1.2重量%、Cr=0.
7重量%、1600℃)にランス−場面間高さ400龍
のところから上吹ランスlを用いてCaCO5粉体を上
吹した(本発明7)。真空槽2内の圧力は2QTorr
で取鍋底部よりArガスにて溶鋼4を攪拌した。
Part 6) CaCOz top blowing As shown in Figure 1, molten steel (2TON,
C=0.1% by weight, Mn=1.2% by weight, Cr=0.
7% by weight, 1600° C.) using a top blowing lance from a lance-to-scene height of 400 mm (Invention 7). The pressure inside the vacuum chamber 2 is 2QTorr
The molten steel 4 was stirred with Ar gas from the bottom of the ladle.

CaCO3粉体の供給速度は約0.2 kg/m1n−
を一定とし、底吹Arガス量は約1〜3Nβ/m1n−
tとした。CaCO5粉体上吹粉体上吹公約20分量は
約0.02重量%であった。
The feeding rate of CaCO3 powder is approximately 0.2 kg/m1n-
is constant, and the bottom-blown Ar gas amount is approximately 1 to 3Nβ/m1n-
It was set as t. The amount of CaCO5 powder topblown powder was about 20% by weight.

この時の脱H挙動は初期(H) =3:1 ppmのも
のが20分後に1.1 ppm 、25分後には1 p
pm以下となった。これは、前記第1表の本発明2にく
らべて若干劣るものの、溶鋼中の(C)を余り低下させ
ずに粉体の熱分解により発生するCO□気泡が脱H促進
に有効に作用すると共にCO,+C=2GOによるCO
□は溶鋼の脱Cを引きおこす。
The dehydrogenation behavior at this time is that the initial (H) = 3:1 ppm becomes 1.1 ppm after 20 minutes, and 1 p after 25 minutes.
It became below pm. Although this is slightly inferior to Invention 2 in Table 1 above, the CO□ bubbles generated by thermal decomposition of the powder act effectively to promote deH without significantly reducing the (C) in the molten steel. CO with +C=2GO
□ causes decarbonization of molten steel.

CaC0,粉体は大気中の水分吸着(吸収)をし難く、
用いる粉体の水分管理が容易であるので脱H促進効果も
高い。
CaC0, powder is difficult to adsorb (absorb) moisture in the atmosphere,
Since the moisture content of the powder used is easy to control, the effect of promoting dehydrogenation is also high.

(発明の効果) 以上説明したように本発明は、合金成分を合計で1重量
%以上含有する溶鋼に対して合金成分調整後に脱水素処
理を施すに際し、あらかじめ400℃以上の温度で加熱
乾燥させて付着又は含有水分量を0.05重量%以下と
した酸化剤粉体あるいは精錬用粉体を、200 Tor
r以下の減圧容器内に入れた溶鋼の表面に上吹又は溶鋼
内部に吹込むことにより脱炭反応を促進させてガス−メ
タル界面積を増大させる方法である為、従来方法にあっ
た問題点をすべて解決でき脱水素を効果的に促進させる
ことができる。
(Effects of the Invention) As explained above, the present invention provides a method for dehydrogenating molten steel containing 1% by weight or more of alloy components in advance by heating and drying the steel at a temperature of 400° C. or higher after adjusting the alloy components. Oxidizer powder or refining powder with a water content of 0.05% by weight or less is heated to 200 Torr.
This method increases the gas-metal interface area by promoting the decarburization reaction by blowing onto the surface of the molten steel placed in a reduced pressure vessel below r or into the molten steel, so it has problems with conventional methods. All of these problems can be solved and dehydrogenation can be effectively promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の第1実施例を示す説明図、第2図
、第3図及び第7図は精錬時間と水素濃度値との関係図
、第4図は本発明方法の第2実施例を示す説明図、第5
図は酸化剤中の水分量と到達水素濃度値との関係図、第
6図は真空度と脱水素速度係数との関係図、第8図は純
鉄中の水素溶解度を示す図面、第9図は1600℃にお
ける水素の溶解度を示す図面である。 1はランス、2.2゛は真空槽、4は溶鋼。 H1図 第2図        第3図 第7図         第8図 jfft斌11tIi41i(分) 第9図 CPH,)  cmm%)
FIG. 1 is an explanatory diagram showing the first embodiment of the method of the present invention, FIGS. 2, 3, and 7 are relationship diagrams between refining time and hydrogen concentration value, and FIG. 4 is a diagram showing the second embodiment of the method of the present invention. Explanatory diagram showing the example, No. 5
The figure shows the relationship between the amount of water in the oxidizing agent and the hydrogen concentration reached, Figure 6 shows the relationship between the degree of vacuum and the dehydrogenation rate coefficient, Figure 8 shows the hydrogen solubility in pure iron, and Figure 9 shows the relationship between the degree of vacuum and the dehydrogenation rate coefficient. The figure shows the solubility of hydrogen at 1600°C. 1 is a lance, 2.2 is a vacuum chamber, and 4 is a molten steel. Figure H1 Figure 2 Figure 3 Figure 7 Figure 8 jfft 11tIi41i (min) Figure 9 CPH,) cm%)

Claims (2)

【特許請求の範囲】[Claims] (1)合金成分を合計で1重量%以上含有する溶鋼に対
して合金成分調整後に脱水素処理を施すに際し、あらか
じめ加熱乾燥させて付着又は含有水分量を0.05重量
%以下とした酸化剤粉体あるいは精錬用粉体を、200
Torr以下の減圧容器内に入れた溶鋼の表面に上吹又
は溶鋼内部に吹込むことにより脱炭反応を促進させてガ
ス−メタル界面積を増大させることを特徴とする溶鋼の
脱水素促進方法。
(1) When dehydrogenating molten steel containing 1% by weight or more of alloy components in total after adjusting the alloy components, an oxidizing agent that is heated and dried in advance to reduce the adhesion or water content to 0.05% by weight or less Powder or refining powder, 200
A method for promoting dehydrogenation of molten steel, which comprises blowing onto the surface of molten steel placed in a reduced pressure vessel of Torr or less or blowing into the interior of the molten steel to promote decarburization reaction and increase the gas-metal interface area.
(2)溶鋼表面に前記粉体を上吹するに際し、溶鋼内に
不活性ガスを導入しながら、あるいは溶鋼表面上に沸き
出したガスに目がけて粉体を上吹することを特徴とする
特許請求の範囲第1項記載の溶鋼の脱水素促進方法。
(2) When top-blowing the powder onto the surface of the molten steel, the powder is top-blown while introducing an inert gas into the molten steel or toward the gas boiling up on the surface of the molten steel. A method for promoting dehydrogenation of molten steel according to claim 1.
JP3519587A 1987-02-17 1987-02-17 Method for promoting dehydrogenation of molten steel Expired - Lifetime JPH07100813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3519587A JPH07100813B2 (en) 1987-02-17 1987-02-17 Method for promoting dehydrogenation of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3519587A JPH07100813B2 (en) 1987-02-17 1987-02-17 Method for promoting dehydrogenation of molten steel

Publications (2)

Publication Number Publication Date
JPS63203718A true JPS63203718A (en) 1988-08-23
JPH07100813B2 JPH07100813B2 (en) 1995-11-01

Family

ID=12435078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3519587A Expired - Lifetime JPH07100813B2 (en) 1987-02-17 1987-02-17 Method for promoting dehydrogenation of molten steel

Country Status (1)

Country Link
JP (1) JPH07100813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504674A (en) * 2020-04-10 2020-08-07 南京钢铁股份有限公司 Method for evaluating vacuum dehydrogenation capacity of RH refining furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412141B1 (en) * 2013-03-28 2014-06-25 현대제철 주식회사 Method for manufacturing molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504674A (en) * 2020-04-10 2020-08-07 南京钢铁股份有限公司 Method for evaluating vacuum dehydrogenation capacity of RH refining furnace

Also Published As

Publication number Publication date
JPH07100813B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US3046107A (en) Decarburization process for highchromium steel
AU695201B2 (en) Process for vacuum refining of molten steel
US3169058A (en) Decarburization, deoxidation, and alloy addition
US4961784A (en) Method of smelting reduction of chromium raw materials and a smelting reduction furnace thereof
JPS63203718A (en) Method for accelerating dehydrogenation of molten steel
US4004920A (en) Method of producing low nitrogen steel
US4001009A (en) Process for the manufacture of steels with a high chromium content
US3305352A (en) Process of producing alloys
JP6726777B1 (en) Method for producing low carbon ferromanganese
JPH0146563B2 (en)
JPH05311231A (en) Refining method of high purity steel using circulating type vacuum degassing device
US4436553A (en) Process to produce low hydrogen steel
US3374088A (en) Method for producing low silicon ferromanganese alloys
JPS62116752A (en) Manufacture of low-or medium-carbon ferroalloy
KR19990049607A (en) Method for manufacturing ultra low carbon molten steel under atmospheric pressure
JP3800866B2 (en) Hot metal desiliconization method
JP3118606B2 (en) Manufacturing method of ultra-low carbon steel
JP3731220B2 (en) Method for decarburizing and refining Cr-containing molten steel
JPH06145763A (en) Reduced pressure and vacuum degassing method of molten steel
JP3067636B2 (en) Copper removal from molten iron
JP2005139545A (en) Molten iron dephosphorization method
CN115896398A (en) Production method for improving castability of aluminum deoxidized double-refined steel
JPH05287361A (en) Method for melting extremely low carbon steel
JPH06279830A (en) Production of low nitrogen steel
JPH0219417A (en) Production of low-nitrogen steel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term