JPS6320317B2 - - Google Patents

Info

Publication number
JPS6320317B2
JPS6320317B2 JP6218881A JP6218881A JPS6320317B2 JP S6320317 B2 JPS6320317 B2 JP S6320317B2 JP 6218881 A JP6218881 A JP 6218881A JP 6218881 A JP6218881 A JP 6218881A JP S6320317 B2 JPS6320317 B2 JP S6320317B2
Authority
JP
Japan
Prior art keywords
silver
copper
plated
plating
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6218881A
Other languages
Japanese (ja)
Other versions
JPS57177988A (en
Inventor
Satoshi Suzuki
Shoji Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6218881A priority Critical patent/JPS57177988A/en
Publication of JPS57177988A publication Critical patent/JPS57177988A/en
Publication of JPS6320317B2 publication Critical patent/JPS6320317B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、銅又は銅合金材に銀又は銀合金をメ
ツキした銀メツキ銅材の製造方法に関するもの
で、特に耐食性、電気接続性及び半田接合性の優
れた銀メツキ銅材を得るためのものである。 一般に、銅又は銅合金材に銀又は銀合金をメツ
キした銀メツキ銅材は、電気接続性及び半田接続
性が優れているところから種々の用途に用いら
れ、特に電子機器に多量に使用されている。この
ような銀メツキ銅材は、銅又は銅合金材を常法に
より浸漬又は/及びカソード還元により、表面を
活性化した後、電気メツキ又は無電解メツキによ
り銀又は銀合金をメツキして造られている。しか
るに、このような銀メツキ銅材は保管中に腐食
し、時間の経過と共に電気接続性及び半田接合性
が低下することがあり、また近年、地金高騰によ
りメツキ銀の節約が強く望まれ、例えば現在使用
されている銀メツキ厚さ2.5μのものを05μまで薄
くすることが要求されている。しかしながら、銀
メツキ層の薄肉化は、素地金属の拡散による保管
中の変色、半田接合性及び電気接続性の低下など
種々の問題を生じ、実用上好ましいものではなか
つた。 素地金属の拡散は、銀メツキに不可避的に出来
るピンホールからの表面拡散が主であり、メツキ
厚が薄くなるほど銀メツキ表面に素地金属が出て
くるのが当然早くなり、変色、半田接合性及び電
気接続性の低下を起す。これに対し、銀メツキ銅
材の変色防止として、6価クロムイオンを含む水
溶液中で銀メツキ銅材をカソード処理する方法が
知られている。この処理により銀メツキ銅材の耐
食性は向上するも、銀表面に生成したクロム皮膜
が本来重要な電気接続性及び半田接合性を著しく
劣化させるため、電子機器等に使用する銀メツキ
銅材には適用できなかつた。 本発明はこれに鑑み、種々検討の結果、耐食
性、電気接続性及び半田接合性の優れた銀メツキ
銅材の製造方法を開発したもので、銅又は銅合金
材を活性化処理した後、銀又は銀合金をメツキを
行なう銀メツキ銅材の製造において、銀又は銀合
金メツキを行なつた後、6価クロムイオンを含む
水溶液中でカソード処理し、しかる後圧延又は引
抜加工を加えることを特徴とするものである。 即ち本発明は、常法に従い銅又は銅合金材を浸
漬又は/及びカソード還元により表面を活性化し
た後、電気メツキ又は無電解メツキにより銀又は
銀合金をメツキし、これを6価クロムイオンを含
む水溶液中でカソード処理することにより、ピン
ホールを埋めて耐食性を改善し、しかる後、圧延
又は引抜加工を加えて電気接続性及び半田接続性
を向上せしめたものである。 銀メツキ浴には通常のシアン化物浴、硝酸浴、
チオシアン化物浴等を用い、銀合金メツキ浴には
通常のAg―Cu,Ag―In,Ag―Sb,Ag―Pb,
Ag―Zn等を用いて、常法に従つて銀又は銀合金
をメツキする。また6価クロムイオンを含む水溶
液としては、三酸化クロム,クロム酸ナトリウ
ム,重クロム酸ナトリウム,クロム酸カリウム,
重クロム酸カリウム等から選択される何れか1種
又は2種以上を、6価クロムの濃度として
100ppm以上、特に1000〜50000ppm含む水溶液を
用い、これに銀メツキ銅材を浸漬して陰極として
電気処理を行なう。電解条件は電流密度0.05A/
dm2以上、電解時間2秒以上で、特に電流密度
0.1〜0.5A/dm2、電解時間5〜30秒の範囲内で
行なうことが望ましく、液温は常温でもよい。 このようにして、銀又は銀合金をメツキした
後、6価クロムイオンを含む水溶液中でカソード
処理した銀メツキ銅材は、耐食性を向上するも電
気接続性及び半田接合性が著しく劣化する。本発
明は、このカソード処理した銀メツキ銅材を圧延
又は引抜加工することにより、耐食性を劣化させ
ることなく、電気接続性及び半田接合性を改善し
たもので、圧延又は引抜加工により表面に付着し
たクロメート被膜が除去されるも、ピンホールな
どから部分的に露出した銅又は銅合金材にはクロ
メート被膜が残るものと考えられる。 圧延又は引抜加工では、加工率約5%以上の加
工を行なうことが望ましく、このような加工によ
り、耐食性を劣化させることなく電気接続性及び
半田接合性を改善するばかりか、銀メツキ銅材の
機械的強度、メツキ層の密着性及び耐摩耗性を向
上し、結晶を均一化して表面光沢を良好にするこ
とができる。 以下本発明を実施例について詳細に説明する。 実施例 (1) タフピツチ銅板をアルカリ性水溶液中で1分間
カソード処理(電流密度2.5A/dm2)して脱脂
し、続いて10%H2SO4中で1分間浸漬して表面
を活性化した後、ただちに水洗し、厚さ0.5μの銀
メツキを施した。銀メツキは、下記(イ)の条件で銀
ストライクメツキした後、下記(ロ)の条件で銀厚メ
ツキを行なつた。 (イ) メツキ液 AgCN 3g/ KCN 60g/ 電流密度 10A/dm2 メツキ時間 5秒 (ロ) メツキ液 AgCN 39g/ KCN 100g/ KOH 10g/ K2CO3 25g/ 電流密度 1A/dm2 メツキ時間 50秒 このようにして得られた銀メツキ銅板につい
て、下記の条件で処理した後、温度70℃、相対湿
度95%の恒温恒湿槽内に500時間装入し、表面層
へ拡散して酸化したCuの酸化量を測定した。そ
の結果を第1表に示す。 尚、Cuの酸化量として、酸化膜を0.1NKCl溶
液中で0.1mA/cm2の陰極電流密度によりカソード
還元を行ない、その還元電位の経時変化により還
元電気量を求め、酸化膜厚さを算出した。 (A) そのまま (B) 2%重クロム酸ナトリウム水溶液によりカソ
ード処理(電流密度0.5A/dm2、処理時間10
秒) (C) Aを圧延加工(加工率10%) (D) Bを圧延加工(加工率10%)
The present invention relates to a method for producing a silver-plated copper material in which copper or a copper alloy material is plated with silver or a silver alloy, and in particular, to obtain a silver-plated copper material with excellent corrosion resistance, electrical connectivity, and solderability. It is. In general, silver-plated copper material, which is copper or copper alloy material plated with silver or silver alloy, is used for various purposes due to its excellent electrical connectivity and solder connectivity, and is especially used in large quantities in electronic devices. There is. Such silver-plated copper materials are made by activating the surface of copper or copper alloy materials by dipping and/or cathodic reduction in a conventional manner, and then plating silver or silver alloys by electroplating or electroless plating. ing. However, such silver-plated copper materials corrode during storage, and electrical connectivity and solderability may deteriorate over time.In addition, in recent years, due to the rise in metal prices, there is a strong desire to save on plated silver. For example, it is required that the currently used silver plating thickness of 2.5μ be reduced to 0.5μ. However, reducing the thickness of the silver plating layer is not preferred in practice, as it causes various problems such as discoloration during storage due to diffusion of the base metal, and deterioration of solder bondability and electrical connectivity. Diffusion of base metal is mainly through surface diffusion through pinholes that inevitably occur in silver plating, and the thinner the plating thickness, the faster the base metal comes out on the silver plating surface, resulting in discoloration and poor solderability. and a decrease in electrical connectivity. On the other hand, in order to prevent discoloration of silver-plated copper materials, a method is known in which silver-plated copper materials are subjected to cathode treatment in an aqueous solution containing hexavalent chromium ions. Although this treatment improves the corrosion resistance of silver-plated copper materials, the chromium film formed on the silver surface significantly deteriorates the originally important electrical connectivity and solderability, so silver-plated copper materials used in electronic devices etc. It could not be applied. In view of this, and as a result of various studies, the present invention has developed a method for producing silver-plated copper material with excellent corrosion resistance, electrical connectivity, and solderability. Or, in the production of silver-plated copper materials in which silver alloy is plated, after plating with silver or silver alloy, cathode treatment is performed in an aqueous solution containing hexavalent chromium ions, and then rolling or drawing is applied. That is. That is, in the present invention, after activating the surface of copper or copper alloy material by immersion and/or cathodic reduction according to the conventional method, silver or silver alloy is plated by electroplating or electroless plating, and this is coated with hexavalent chromium ions. By cathodic treatment in an aqueous solution containing pinholes, corrosion resistance is improved by filling pinholes, and then rolling or drawing is added to improve electrical connectivity and solder connectivity. Silver plating baths include regular cyanide baths, nitric acid baths,
Using a thiocyanide bath etc., the silver alloy plating bath is usually Ag-Cu, Ag-In, Ag-Sb, Ag-Pb,
Silver or silver alloy is plated using Ag-Zn etc. according to a conventional method. In addition, aqueous solutions containing hexavalent chromium ions include chromium trioxide, sodium chromate, sodium dichromate, potassium chromate,
One or more selected from potassium dichromate, etc. as the concentration of hexavalent chromium.
An aqueous solution containing 100 ppm or more, particularly 1,000 to 50,000 ppm is used, and a silver-plated copper material is immersed in the solution to serve as a cathode for electrical treatment. Electrolysis conditions are current density 0.05A/
dm 2 or more, electrolysis time 2 seconds or more, especially current density
It is desirable to conduct the electrolysis at a rate of 0.1 to 0.5 A/dm 2 and an electrolysis time of 5 to 30 seconds, and the liquid temperature may be room temperature. In this way, a silver-plated copper material that is cathodically treated in an aqueous solution containing hexavalent chromium ions after being plated with silver or a silver alloy has improved corrosion resistance, but its electrical connectivity and solderability are significantly deteriorated. The present invention improves electrical connectivity and solderability without deteriorating corrosion resistance by rolling or drawing this cathodically treated silver-plated copper material. Even if the chromate film is removed, it is thought that the chromate film remains on the copper or copper alloy material that is partially exposed through pinholes or the like. In rolling or drawing processing, it is desirable to perform processing at a processing rate of approximately 5% or more. Such processing not only improves electrical connectivity and solderability without deteriorating corrosion resistance, but also improves the properties of silver-plated copper materials. Mechanical strength, adhesion and abrasion resistance of the plating layer can be improved, crystals can be made uniform, and surface gloss can be improved. The present invention will be described in detail below with reference to examples. Example (1) A tough pitch copper plate was degreased by cathodic treatment (current density 2.5 A/dm 2 ) for 1 minute in an alkaline aqueous solution, and then immersed in 10% H 2 SO 4 for 1 minute to activate the surface. After that, it was immediately washed with water and silver plated to a thickness of 0.5μ. For silver plating, silver strike plating was performed under the following conditions (a), and then silver thick plating was performed under the following conditions (b). (B) Plating liquid AgCN 3g/ KCN 60g/ Current density 10A/dm 2 plating time 5 seconds (B) Plating liquid AgCN 39g/ KCN 100g/ KOH 10g/ K 2 CO 3 25g/ Current density 1A/dm 2 plating time 50 The silver-plated copper plate thus obtained was treated under the following conditions and then placed in a constant temperature and humidity chamber at a temperature of 70°C and a relative humidity of 95% for 500 hours to cause oxidation by diffusion into the surface layer. The amount of Cu oxidation was measured. The results are shown in Table 1. As for the amount of Cu oxidation, the oxide film was cathodically reduced in a 0.1 NKCl solution with a cathode current density of 0.1 mA/ cm2 , and the amount of reduced electricity was determined from the change in reduction potential over time, and the oxide film thickness was calculated. did. (A) As is (B) Cathode treatment with 2% sodium dichromate aqueous solution (current density 0.5A/dm 2 , treatment time 10
seconds) (C) Rolling A (processing rate 10%) (D) Rolling process B (processing rate 10%)

【表】 第1表から明らかなように、2%重クロム酸ナ
トリウム水溶液中でカソード処理したものは、素
地銅の拡散による銅の酸化がかなり抑制されてい
ることが判る。 次に上記処理材(A,B,C,D)について接
触抵抗と半田濡れ性を測定、その結果を第2表に
示す。 尚、接触抵抗は、直径5mmの銀棒を250gの荷
重で処理材に押当てた際の接触抵抗を測定した。
また半田濡れ性はMIL法に準じ、25%ロジンフ
ラツクスを塗布した処理材を235℃の温度に保持
した共晶半田浴中に3秒間浸漬して取出し、表面
の濡れ面積を比較した。
[Table] As is clear from Table 1, it can be seen that the oxidation of copper due to diffusion of the base copper is considerably suppressed in the cathode-treated samples in a 2% aqueous sodium dichromate solution. Next, the contact resistance and solder wettability of the treated materials (A, B, C, D) were measured, and the results are shown in Table 2. The contact resistance was measured by pressing a silver bar with a diameter of 5 mm against the treated material with a load of 250 g.
In addition, solder wettability was determined according to the MIL method by immersing a treated material coated with 25% rosin flux in a eutectic solder bath maintained at a temperature of 235°C for 3 seconds, then taking it out, and comparing the wetted surface area.

【表】 第2表から明らかなように、2%重クロム酸ナ
トリウム水溶液中でカソード処理したものは、銅
の拡散・酸化が著しく抑制されるも、電気接続性
及び半田接合性が著しく悪くなつているのに対
し、これに圧延加工を加えたものは、電気接続性
及び半田接合性が著しく改善されていることが判
る。 実施例 (2) 実施例(1)において、タフピツチ銅板の代りに6
5/35黄銅板を用い、同様にして脱脂及び活性化し
た後、下記の条件でAg―Sb合金を0.5μの厚さに
メツキした。 メツキ液AgCN 15g/ KCN 50g/ 酒石酸アンチモニルカリ 50g/ 酒石酸カリナトリウム 50g/ KOH 7g/ 液 温 20℃ 電流密度 1A/dm2 メツキ時間 5秒 このようにして得られたAg―Sb合金メツキ銅
材について、実施例(1)と同様の条件で処理した
後、同様の方法によりCuの酸化量測定と接触抵
抗及び半田濡れ性を測定した。その結果を第3表
に示す。
[Table] As is clear from Table 2, although copper diffusion and oxidation were significantly suppressed when cathodically treated in a 2% sodium dichromate aqueous solution, electrical connectivity and solderability deteriorated significantly. On the other hand, it can be seen that the electrical connectivity and solder bondability of the material that was subjected to rolling processing were significantly improved. Example (2) In Example (1), instead of the tough pitch copper plate, 6
A 5/35 brass plate was degreased and activated in the same manner, and then plated with Ag-Sb alloy to a thickness of 0.5μ under the following conditions. Plating liquid AgCN 15g/KCN 50g/potassium antimonyl tartrate 50g/potassium sodium tartrate 50g/KOH 7g/Liquid temperature 20℃ Current density 1A/dm 2Plating time 5 seconds Ag-Sb alloy plated copper material thus obtained After processing under the same conditions as in Example (1), the amount of Cu oxidation, contact resistance, and solder wettability were measured in the same manner. The results are shown in Table 3.

【表】 第3表から明らかなように、65/35黄銅にAg―
Sb合金メツキしたものも実施例(1)と全く同様の
傾向が得られ、6価クロムイオン水溶液中でカソ
ード処理した後、圧延加工を加えたものは、素地
金属の拡散・酸化が抑制され、しかも電気接続性
及び半田濡れ性が著しく改善されていることが判
る。 このように本発明によれば、厚さの薄い銀又は
銀合金メツキした銅又は銅合金材に不可避的に起
るピンホールからの拡散・酸化を抑制して、耐食
性を向上すると共に、電気接続性及び半田接合性
が優れ、長期保管においても電気接続性及び半田
接合性の低下しない銀メツキ銅材を製造し得るも
ので、工業上顕著な効果を奏するものである。
[Table] As is clear from Table 3, 65/35 brass with Ag-
The same tendency as in Example (1) was obtained for the Sb alloy plated material, and the material that was cathodically treated in an aqueous hexavalent chromium ion solution and then rolled was suppressed from diffusion and oxidation of the base metal. Furthermore, it can be seen that electrical connectivity and solder wettability are significantly improved. As described above, according to the present invention, diffusion and oxidation from pinholes that inevitably occur in thin silver or silver alloy plated copper or copper alloy materials are suppressed, improving corrosion resistance and improving electrical connection. It is possible to produce a silver-plated copper material which has excellent properties in terms of solderability and solderability, and whose electrical connectivity and solderability do not deteriorate even during long-term storage, and has a significant industrial effect.

Claims (1)

【特許請求の範囲】[Claims] 1 銅又は銅合金材を活性化処理した後、銀又は
銀合金メツキを行なう銀メツキ銅材の製造におい
て、銀又は銀合金メツキを行なつた後、6価クロ
ムイオンを含む水溶液中でカソード処理し、しか
る後圧延又は引抜加工を加えることを特徴とする
銀メツキ銅材の製造方法。
1. In the production of silver-plated copper materials in which copper or copper alloy materials are activated and then plated with silver or silver alloys, cathode treatment is performed in an aqueous solution containing hexavalent chromium ions after silver or silver alloy plating is performed. A method for producing a silver-plated copper material, which is characterized in that the material is then subjected to rolling or drawing.
JP6218881A 1981-04-24 1981-04-24 Manufacture of silver plated copper material Granted JPS57177988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6218881A JPS57177988A (en) 1981-04-24 1981-04-24 Manufacture of silver plated copper material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6218881A JPS57177988A (en) 1981-04-24 1981-04-24 Manufacture of silver plated copper material

Publications (2)

Publication Number Publication Date
JPS57177988A JPS57177988A (en) 1982-11-01
JPS6320317B2 true JPS6320317B2 (en) 1988-04-27

Family

ID=13192908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6218881A Granted JPS57177988A (en) 1981-04-24 1981-04-24 Manufacture of silver plated copper material

Country Status (1)

Country Link
JP (1) JPS57177988A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9102062D0 (en) * 1991-01-31 1991-03-13 Otter Controls Ltd Improvements relating to conductors for switching applications
US7631798B1 (en) * 2008-10-02 2009-12-15 Ernest Long Method for enhancing the solderability of a surface

Also Published As

Publication number Publication date
JPS57177988A (en) 1982-11-01

Similar Documents

Publication Publication Date Title
JP3417395B2 (en) Lead frame for semiconductor device, method of manufacturing the same, and semiconductor device using the same
JPH0224037B2 (en)
JPH0329879B2 (en)
JPH08250865A (en) Method for improving further reliability of electronic housing by preventing formation of metallic whisker on sheetutilized for manufacture of the electronic housing
JPS60106993A (en) Solderable palladium-nickel coating and manufacture
US3616280A (en) Nonaqueous electroplating solutions and processing
US3554881A (en) Electrochemical process for the surface treatment of titanium,alloys thereof and other analogous metals
US3989606A (en) Metal plating on aluminum
JP2006233245A (en) Product composed of magnesium or magnesium alloy and method for producing the same
US3622470A (en) Continuous plating method
US3573008A (en) Composite metal article of copper material with a coat of nickel and tin
JPS6142796B2 (en)
US20050123784A1 (en) Terminal having surface layer formed of Sn-Ag-Cu ternary alloy formed thereon, and part and product having the same
JPS625999B2 (en)
Pushpavanam et al. Rhodium—Electrodeposition and applications
JPS6320317B2 (en)
KR102295180B1 (en) Ag-Nano Alloy Plating Solution Compositions for Improving of Conductivity and Durability and Plating Methods Using Thereof
JPS63137193A (en) Stainless steel contact material for electronic parts and its production
US2966448A (en) Methods of electroplating aluminum and alloys thereof
JPS5836071B2 (en) Manufacturing method for silver-plated iron and iron alloys
JPH0128106B2 (en)
JPS6389698A (en) Treatment of copper foil
JPS61204393A (en) Production of nickel coated stainless steel strip
JP2537108B2 (en) Copper foil for printed circuit and method of manufacturing the same
US3880730A (en) Electro-galvanic gold plating process