JPS6320314B2 - - Google Patents

Info

Publication number
JPS6320314B2
JPS6320314B2 JP59034743A JP3474384A JPS6320314B2 JP S6320314 B2 JPS6320314 B2 JP S6320314B2 JP 59034743 A JP59034743 A JP 59034743A JP 3474384 A JP3474384 A JP 3474384A JP S6320314 B2 JPS6320314 B2 JP S6320314B2
Authority
JP
Japan
Prior art keywords
catalyst electrode
cation exchange
exchange membrane
water
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59034743A
Other languages
Japanese (ja)
Other versions
JPS60181292A (en
Inventor
Juko Fujita
Ikuo Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP59034743A priority Critical patent/JPS60181292A/en
Publication of JPS60181292A publication Critical patent/JPS60181292A/en
Publication of JPS6320314B2 publication Critical patent/JPS6320314B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 本発明は電気化学セルの製造法、さらに詳しく
は、触媒電極をカチオン交換膜に一体に接合して
なるカチオン交換膜を電解質とする電気化学セル
の製造法に関するものであり、その目的とすると
ころは、集電性を犠性にすることなく触媒電極の
孔中での水の滞溜を防止することによつて、電気
化学セルの電気化学反応をより遠く進ませんとす
るにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrochemical cell, and more particularly, to a method for manufacturing an electrochemical cell using a cation exchange membrane formed by integrally bonding a catalyst electrode to a cation exchange membrane as an electrolyte. The purpose is to prevent the electrochemical reaction in the electrochemical cell from proceeding further by preventing water accumulation in the pores of the catalytic electrode without sacrificing current collection. There it is.

触媒電極をカチオン交換膜に一体に接合したカ
チオン交換膜を電解質とする電気化学セルには、
大別すると電解装置と燃料電池とがある。電解装
置には、水電解装置,水電解反応を利用する湿度
センサー,同じく水電解反応を利用する除湿装
置,塩酸電解装置,空気から酸素を分離する装
置,あるいは水素を含む混合ガスから水素を分離
する装置などがある。燃料電電池には、水素―酸
素燃料電池,メタノール―酸素燃料電池,ヒドラ
ジン―酸素燃料電池、あるいは水素―塩素燃料電
池などがある。
An electrochemical cell uses a cation exchange membrane, in which a catalyst electrode is integrally bonded to a cation exchange membrane, as an electrolyte.
Broadly speaking, there are electrolyzers and fuel cells. Electrolysis devices include water electrolysis devices, humidity sensors that use water electrolysis reactions, dehumidifiers that also use water electrolysis reactions, hydrochloric acid electrolysis devices, devices that separate oxygen from air, or devices that separate hydrogen from mixed gases containing hydrogen. There are devices that do this. Fuel cell types include hydrogen-oxygen fuel cells, methanol-oxygen fuel cells, hydrazine-oxygen fuel cells, and hydrogen-chlorine fuel cells.

これらの電気化学セルはカチオン交換膜に水が
供給され、イオン伝導をつかさどるイオン種は水
素イオンである。また触媒電極上では気体を発生
する反応か気体を消費する反応おいずれかが起つ
ている。このように気体が関与する反応の場合、
多孔性である触媒電極の孔中に水が滞溜すると一
般に反応が阻害される。特に上述のすべての電気
化学セルに共通していることは、カソード側で水
の生成反応が起るということであり、この生成水
を速やかに除去することが肝要である。
In these electrochemical cells, water is supplied to a cation exchange membrane, and the ionic species responsible for ion conduction is hydrogen ions. Further, on the catalyst electrode, either a reaction that generates gas or a reaction that consumes gas occurs. In the case of reactions involving gases like this,
When water accumulates in the pores of a porous catalyst electrode, the reaction is generally inhibited. Particularly, what is common to all the electrochemical cells mentioned above is that a water production reaction occurs on the cathode side, and it is important to quickly remove this produced water.

触媒電極の孔中に滞溜する水を除去する方法の
ひとつは気体を触媒電極に供給して電気化学反応
を起させるタイプの電気化学セルの場合には、供
給気体をなるべく乾燥し、しかも供給量を大きく
するという方法である。しかし、この方法は、供
給気体を乾燥するわけにはいかない場合、あるい
は気体を外部から供給しないタイプの電気化学セ
ルの場合には適用不可能である。
One way to remove water accumulated in the pores of the catalyst electrode is to dry the supplied gas as much as possible in the case of an electrochemical cell that supplies gas to the catalyst electrode to cause an electrochemical reaction. The method is to increase the amount. However, this method is not applicable in cases where the supplied gas cannot be dried or in the case of electrochemical cells of the type where the gas is not supplied externally.

もうひとつの方法としては、触媒電極の背面,
換言すると触媒電極のカチオン交換膜と反対側の
面に、多孔性ポリ4フツ化エチレン膜を接合する
方法が有効である。ところが多孔性ポリ4フツ化
エチレン膜を触媒電極の全面に接合すると、集電
体と触媒電極との接触方法がむずかしくなるし、
カチオン交換膜への水の供給が阻害されるという
問題が出てくる。
Another method is to
In other words, it is effective to bond a porous polytetrafluoroethylene membrane to the surface of the catalyst electrode opposite to the cation exchange membrane. However, when a porous polytetrafluoroethylene membrane is bonded to the entire surface of the catalyst electrode, the contact method between the current collector and the catalyst electrode becomes difficult;
A problem arises in that the supply of water to the cation exchange membrane is inhibited.

本発明は、触媒電極が部分的に露出するよう
に、フツ素樹脂の水もしくは有機溶媒懸濁液を触
媒電極表面に塗着し、フツ素樹脂の多孔層を形成
することによつて、上述の如き問題を解決せんと
するものである。すなわちかかる方法を採用する
と、触媒電極の露出部に集電体としての金属網,
エキスパンデツトメタルあるいは金属もしくはカ
ーボンの多孔体を接触することによつて容易に集
電できるし、この触媒電極の露出部からカチオン
交換膜への水の供給がおこなわれるし、しかも触
媒電極の孔中に滞溜する水はフツ素樹脂の多孔層
部から蒸発していく。
In the present invention, a water or organic solvent suspension of a fluororesin is applied to the surface of the catalyst electrode so that the catalyst electrode is partially exposed, thereby forming a porous layer of the fluororesin. It aims to solve problems such as: In other words, when such a method is adopted, a metal mesh as a current collector is placed on the exposed part of the catalyst electrode.
Current can be easily collected by contacting an expanded metal or a porous body of metal or carbon, water is supplied to the cation exchange membrane from the exposed part of the catalyst electrode, and the pores of the catalyst electrode are The water that remains inside evaporates from the porous layer of fluororesin.

触媒電極の露出部の形状は、いかなる形状でも
かまわない。
The exposed portion of the catalyst electrode may have any shape.

触媒電極とカチオン交換膜との接合方法として
は、従来公知の方法、例えば、触媒金属を無電解
メツキ法でカチオン交換膜に付着させる方法、あ
るいは触媒金属と結着剤とてのフツ素樹脂との混
合物をカチオン交換膜にホツトプレスする方法な
どが適用できる。
The catalytic electrode and the cation exchange membrane can be bonded using conventionally known methods, such as attaching the catalytic metal to the cation exchange membrane by electroless plating, or bonding the catalytic metal and a fluororesin as a binder. A method such as hot-pressing a mixture of these onto a cation exchange membrane can be applied.

触媒電極表面に、フツ素樹脂の多孔層を形成す
る方法としては、触媒電極表面に型紙をおき、そ
の上からポリ4フツ化エチレンの水懸濁液,4フ
ツ化エチレン―6フツ化プロピレンポリマーの水
懸濁液もしくは有機溶媒懸濁液,あるいはこれら
の懸濁液の混合懸濁液、さらにはこれらの懸濁液
に4フツ化エチレン―エチレンコポリマーの粉末
を分散させたものを塗着し、乾燥することによつ
て、水もしくは有機溶媒を揮散させる方法が有効
である。あるいは塗着工程に、加圧工程あるいは
加熱工程を加えてもよい。また、触媒表面にフツ
素樹脂の多孔層を形成したものをあらかじめ用意
し、これをカチオン交換膜に一体に接合してもよ
い。
A method for forming a porous layer of fluororesin on the surface of the catalyst electrode is to place a paper pattern on the surface of the catalyst electrode, and then apply an aqueous suspension of polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene polymer, etc. An aqueous suspension or an organic solvent suspension, or a mixed suspension of these suspensions, or a dispersion of tetrafluoroethylene-ethylene copolymer powder in these suspensions is applied. An effective method is to volatilize the water or organic solvent by drying. Alternatively, a pressurizing process or a heating process may be added to the coating process. Alternatively, a catalyst having a porous layer of fluororesin formed on the surface of the catalyst may be prepared in advance, and this may be integrally joined to the cation exchange membrane.

以下本発明の一実施例について詳述する。 An embodiment of the present invention will be described in detail below.

実施例: まず、パーフロロカーボンにスルフオン酸基を
導入したカチオン交換膜を用意し、これからの直
径が80mmの円状カチオン交換膜を切出す。次に、
触媒電極としては白金ブラツク粉末とポリ4フツ
化エチレンの水懸濁液との混合物にアセトンを加
えて泥状にしたものをロールプレスにかけてシー
ト状にしたものを用意し、このシートから直径が
70mmの円状の触媒電極を切出す。
Example: First, a cation exchange membrane is prepared by introducing sulfonic acid groups into perfluorocarbon, and a circular cation exchange membrane with a diameter of 80 mm is cut from it. next,
The catalyst electrode was prepared by adding acetone to a mixture of platinum black powder and an aqueous suspension of polytetrafluoroethylene to form a slurry, which was then roll-pressed to form a sheet.
Cut out a 70mm circular catalyst electrode.

次に前記直径80mmの円状カチオン交換膜の上に
前記直径が70mmの触媒電極を同心円状に載置し、
これを110℃の温度、500Kg/cm2の圧力でホツトプ
レスすると、両者が一体化したカチオン交換膜―
触媒電極接合体が得られる。
Next, the catalyst electrode with a diameter of 70 mm is placed concentrically on the circular cation exchange membrane with a diameter of 80 mm,
When this is hot pressed at a temperature of 110℃ and a pressure of 500Kg/cm 2 , the cation exchange membrane is made into one.
A catalyst electrode assembly is obtained.

次に、この触媒電極の側に直径が60mmの円い穴
のあいた型紙をおき、ポリ4フツ化エチレンの水
懸濁液を吹きつけ、直径が60mmの円状の吹付け面
を形成する。これを80℃で1時間真空乾燥し、さ
らに100Kg/cm2でプレスする。
Next, a paper pattern with a circular hole of 60 mm in diameter is placed on the side of this catalyst electrode, and a water suspension of polytetrafluoroethylene is sprayed onto it to form a circular sprayed surface with a diameter of 60 mm. This was vacuum dried at 80°C for 1 hour and further pressed at 100Kg/cm 2 .

かくして、カチオン交換膜―触媒電極―ポリ4
フツ化エチレン多孔層接合体が得られる。この接
合体は第1図に示される。1がカチオン交換膜で
あり、2が触媒電極であり、3がポリ4フツ化エ
チレン多孔層である。
Thus, the cation exchange membrane-catalyst electrode-poly4
A fluorinated ethylene porous layer assembly is obtained. This assembly is shown in FIG. 1 is a cation exchange membrane, 2 is a catalyst electrode, and 3 is a polytetrafluoroethylene porous layer.

なお、この接合体を電気化学セルとして使用す
る際には、前記触媒電極はカソードとして働き、
アノードはカチオン交換膜の前記触媒電極とは反
対側の面に別途適当な方法で接合する。
Note that when this conjugate is used as an electrochemical cell, the catalyst electrode acts as a cathode,
The anode is separately bonded to the surface of the cation exchange membrane opposite to the catalyst electrode using a suitable method.

次にこの接合体を用いて、空気から酸素を分離
する装置を製作した。この断面構造を第2図に示
す。第2図において、1〜3は本発明にかかるカ
チオン交換膜―触媒電極―ポリ4フツ化エチレン
多孔層接合体であり、1はカチオン交換膜,2は
上述の方法によるカソードとしての触媒電極,3
はポリ4フツ化エチレン多孔層である。カチオン
交換膜1とカソードとしての触媒電極2とポリ4
フツ化エチレン多孔層3とは一体に接合されてい
て、カソードとしての触媒電極2は周辺部におい
てポリ4フツ化エチレン多孔層3に被覆されずに
露出している。白金メツキ付チタン網からなるカ
ソード集電体4はカソードとしての触媒電極2の
周辺部において電気的に接続している。5はカソ
ード端子板である。
Next, using this conjugate, they created a device that separates oxygen from air. This cross-sectional structure is shown in FIG. In FIG. 2, 1 to 3 are a cation exchange membrane-catalyst electrode-polytetrafluoroethylene porous layer assembly according to the present invention, 1 is a cation exchange membrane, 2 is a catalyst electrode as a cathode by the above-mentioned method, 3
is a polytetrafluoroethylene porous layer. Cation exchange membrane 1, catalyst electrode 2 as cathode and poly 4
It is integrally joined to the polytetrafluoroethylene porous layer 3, and the catalyst electrode 2 as a cathode is exposed at the peripheral portion without being covered by the polytetrafluoroethylene porous layer 3. A cathode current collector 4 made of a platinum-plated titanium mesh is electrically connected to the periphery of the catalyst electrode 2 as a cathode. 5 is a cathode terminal plate.

一方カチオン交換膜1の他面には、酸化イリジ
ウムとポリ4フツ化エチレンとの混合物からなる
アノードとしての触媒電極6が別途接合されてい
る。7はアノード集電体,8はアノード端子板で
ある。9はポリプロピレン製のセルホルダーであ
り、空気導入口10から空気が供給され、空気排
気口11から余剰の空気および脱酸素された空気
が排出される。水は水供給口12から供給され、
13は酸素導出口である。
On the other hand, a catalyst electrode 6 as an anode made of a mixture of iridium oxide and polytetrafluoroethylene is separately bonded to the other surface of the cation exchange membrane 1. 7 is an anode current collector, and 8 is an anode terminal plate. Reference numeral 9 denotes a cell holder made of polypropylene, into which air is supplied through an air inlet 10 and surplus air and deoxygenated air are discharged through an air exhaust port 11. Water is supplied from the water supply port 12,
13 is an oxygen outlet.

カソード端子板5とアノード端子板8との間に
直流の電圧が印加されると、カソードとしての触
媒電極2で、空気中の酸素だけが選択的に還元さ
れると同時に水が生成し、アノードとしての触媒
電極6で酸素が発生する。カソードとしての触媒
電極2で生成した水は主として、ポリ4フツ化エ
チレン多孔層3を通して蒸発し、脱酸素された空
気とともに空気排出口11から外部に排出され
る。
When a DC voltage is applied between the cathode terminal plate 5 and the anode terminal plate 8, only oxygen in the air is selectively reduced at the catalytic electrode 2 serving as a cathode, and at the same time water is generated, and the anode Oxygen is generated at the catalytic electrode 6. Water produced at the catalyst electrode 2 serving as a cathode is mainly evaporated through the polytetrafluoroethylene porous layer 3 and is discharged to the outside from the air outlet 11 together with deoxidized air.

比較例: 上述の実施例で得られた空気から酸素を分離す
る装置をAとし、実施例において、ポリ4フツ化
エチレン多孔層3がない従来の装置をBとし、そ
れぞれの装置に1.2Vの定電圧を印加した際の酸
素の発生量の経時変化を調べたところ第3図に示
す通りとなつた。
Comparative example: The device for separating oxygen from air obtained in the above example is designated as A, and the conventional device without the polytetrafluoroethylene porous layer 3 in the example is designated as B, and each device is supplied with a voltage of 1.2V. The change over time in the amount of oxygen generated when a constant voltage was applied was investigated, and the results were as shown in FIG.

すなわち第3図から、本発明の装置Aの場合に
は酸素の発生量は時間の経過とともに変化しなか
つたのに対し、従来の装置Bの場合には、時間と
ともに酸素発生量が低下した。これは明らかに、
本発明装置Aの場合にはカソードとしての触媒電
極の孔中に水が滞溜せずに蒸発するために、酸素
の拡散が阻害されずに、一定の電流が絶えず、流
れているのに対し、従来型装置Bの場合には、時
間の経過とともに水の滞溜が起り電流が徐々に小
さくなつたからに他ならない。これは明らかにポ
リ4フツ化エチレン多孔層の有無の差に起因す
る。
That is, from FIG. 3, in the case of device A of the present invention, the amount of oxygen generated did not change over time, whereas in the case of conventional device B, the amount of oxygen generated decreased with time. This is clearly
In the case of device A of the present invention, water evaporates without accumulating in the pores of the catalyst electrode serving as the cathode, so that oxygen diffusion is not inhibited and a constant current continues to flow. In the case of conventional device B, this is simply because water accumulates over time and the current gradually decreases. This is clearly due to the difference in the presence or absence of the polytetrafluoroethylene porous layer.

以上詳述せる如く、本発明はすぐれたカチオン
交換膜を電解質とする電気化学セルを提供するも
ので、その工業的価値極めて大である。
As detailed above, the present invention provides an electrochemical cell using an excellent cation exchange membrane as an electrolyte, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例にかかるカチオン
交換膜―触媒電極―ポリ4フツ化エチレン多孔層
接合体の形状を示す斜視図、第2図は第1図に示
した接合体を用いた空気から酸素を分離する装置
の概略断面図である。第3図は本発明の一実施例
にかかる空気から酸素を分離装置Aおよび従来型
装置Bの酸素発生量の経時変化を示す。 1……カチオン交換膜、2……カソードとして
の触媒電極、3……ポリ4フツ化エチレン多孔
層、4……カソード集電体、5……カソード端子
板、6……アノードとしての触媒電極、7……ア
ノード集電体、8……アノード端子板、9……セ
ルホルダー、10……空気導入口、11……空気
排出口、12……水供給口、13……酸素導出
口。
FIG. 1 is a perspective view showing the shape of a cation exchange membrane-catalyst electrode-polytetrafluoroethylene porous layer assembly according to one embodiment of the present invention, and FIG. 2 is a perspective view showing the shape of the assembly shown in FIG. 1. 1 is a schematic cross-sectional view of an apparatus for separating oxygen from saturated air; FIG. FIG. 3 shows changes over time in the amount of oxygen generated by the apparatus A for separating oxygen from air according to an embodiment of the present invention and the conventional apparatus B. FIG. 1... Cation exchange membrane, 2... Catalyst electrode as cathode, 3... Polytetrafluoroethylene porous layer, 4... Cathode current collector, 5... Cathode terminal plate, 6... Catalyst electrode as anode. , 7... Anode current collector, 8... Anode terminal plate, 9... Cell holder, 10... Air inlet, 11... Air outlet, 12... Water supply port, 13... Oxygen outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒電極を一体に接合してなるカチオン交換
膜を電解質とする電気化学セルにおいて、前記触
媒電極の電極表面が部分的に露出するようにフツ
素樹脂の水もしくは有機溶媒懸濁液を塗布したの
ち、水もしくは有機溶媒を揮散せしめ、フツ素樹
脂の多孔層を形成せしめることを特徴とする電気
化学セルの製造法。
1. In an electrochemical cell using a cation exchange membrane formed by integrally bonding catalyst electrodes as an electrolyte, a suspension of fluororesin in water or an organic solvent is applied so that the electrode surface of the catalyst electrode is partially exposed. A method for producing an electrochemical cell, which is characterized in that water or an organic solvent is then volatilized to form a porous layer of fluororesin.
JP59034743A 1984-02-24 1984-02-24 Manufacture of electrochemical cell Granted JPS60181292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59034743A JPS60181292A (en) 1984-02-24 1984-02-24 Manufacture of electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59034743A JPS60181292A (en) 1984-02-24 1984-02-24 Manufacture of electrochemical cell

Publications (2)

Publication Number Publication Date
JPS60181292A JPS60181292A (en) 1985-09-14
JPS6320314B2 true JPS6320314B2 (en) 1988-04-27

Family

ID=12422799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59034743A Granted JPS60181292A (en) 1984-02-24 1984-02-24 Manufacture of electrochemical cell

Country Status (1)

Country Link
JP (1) JPS60181292A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867963A3 (en) * 1997-03-25 2002-09-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JPS60181292A (en) 1985-09-14

Similar Documents

Publication Publication Date Title
Uchida et al. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE‐loaded carbon on the catalyst layer of polymer electrolyte fuel cells
US3899354A (en) Gas electrodes and a process for producing them
US4876115A (en) Electrode assembly for use in a solid polymer electrolyte fuel cell
US5395705A (en) Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
KR100448168B1 (en) A preparing method of Membrane-Electrode-Gasket Assembly for fuel cell
JP4522502B2 (en) Gas diffusion electrodes for polymer membrane fuel cells
US6416898B1 (en) Fuel cell comprising an inorganic glass layer
KR101931890B1 (en) Membrane electrode assembly
Lobato et al. Optimisation of the Microporous Layer for a Polybenzimidazole‐Based High Temperature PEMFC–Effect of Carbon Content
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
CA2238189A1 (en) New polymer material for electrolytic membranes in fuel cells
JPH09199138A (en) Manufacture of electrode for fuel cell or electrode electrolytic film bonding body, and electrode for fuel cell
GB2316801A (en) Gas diffusion electrodes based on poly(vinylidene fluoride)carbon blends
WO1996031913A1 (en) Fuel cell with solid polymer electrolytes
GB2316802A (en) Gas diffusion electrodes based on polyethersulfone Carbon blends
JPH07254419A (en) Electrode for polyelectrolyte type electrochemical cell and its manufacture
JPH0349992B2 (en)
NL8600884A (en) METHOD FOR MANUFACTURING AN ANODE-CONTAINING NICO2O4 CATALYST FOR THE ELECTROLYSIS OF POTASSIUM HYDROXIDE SOLUTIONS
CA1261300A (en) Circulating electrolyte electrochemical cell having gas depolarized cathode with hydrophobic barrier layer
JP2004335252A (en) Electrode catalyst for fuel cell, and its manufacturing method
WO2014096793A1 (en) Fuel cells and method of operation
JPH08111226A (en) Solid polyelectrolyte type electrochemistry cell and its preparation
JP4403634B2 (en) Composite catalyst for solid polymer electrolyte fuel cell.
JPS6320314B2 (en)
JPH08130019A (en) Manufacture of electrode for polymer solid-electrolytic electrochemical cell