JPS63202880A - Induction heating coil for metal pipe - Google Patents

Induction heating coil for metal pipe

Info

Publication number
JPS63202880A
JPS63202880A JP3404887A JP3404887A JPS63202880A JP S63202880 A JPS63202880 A JP S63202880A JP 3404887 A JP3404887 A JP 3404887A JP 3404887 A JP3404887 A JP 3404887A JP S63202880 A JPS63202880 A JP S63202880A
Authority
JP
Japan
Prior art keywords
coil
metal pipe
edge
induction heating
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3404887A
Other languages
Japanese (ja)
Inventor
石坂 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP3404887A priority Critical patent/JPS63202880A/en
Publication of JPS63202880A publication Critical patent/JPS63202880A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、スリットを形成した金属パイプのエツジの加
熱効率を向上させた金属パイプの誘導加熱コイルに関す
る。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an induction heating coil for a metal pipe that improves the heating efficiency of the edge of the metal pipe in which a slit is formed.

13 、発明の概要 本発明は、スリットを形成した金属パイプのエツジに対
向させて金属パイプの長手方向へ沿って順次にエツジを
誘導加熱する金属パイプの誘導加熱コイルにおいて、 双方のエツジを個別に加熱する第一コイル部と第二コイ
ル部とを前記金属バイブの外周面に沿って夫々設けると
とものに、夫々のコイル部をエツジに対向さH−る主部
とその外側に形成した元部とで閉じた回路に近い形状と
し、主部の幅を小さくかつ元部の幅を大きく設定し、双
方の主部を流れる電流どうしの方向が相互に反対となる
よう構成するとともに、前記金属パイプの円周方向のス
リットを中心とする2/3以内の範囲の外周面に沿って
配設することにより、 金属パイプに生じる誘起電流がエツジで集束して多くの
熱を発生する一方、エツジ以外では分散して発熱量及び
電力消費を抑え、エツジのみが効率良く誘導加熱される
ようにしたものである。
13. Summary of the Invention The present invention provides an induction heating coil for a metal pipe that faces an edge of a metal pipe in which a slit is formed and sequentially inductively heats the edges along the longitudinal direction of the metal pipe. A first coil part and a second coil part to be heated are respectively provided along the outer circumferential surface of the metal vibrator, and each coil part is connected to a main part facing the edge and a main part formed on the outside thereof. The width of the main part is set small and the width of the base part is set large, and the direction of the current flowing through both main parts is opposite to each other. By arranging it along the outer circumferential surface within 2/3 of the circumferential slit of the pipe, the induced current generated in the metal pipe is focused at the edge and generates a lot of heat, while the edge Other parts are dispersed to reduce heat generation and power consumption, so that only the edges are efficiently heated by induction.

C1従来の技術 金属板を曲げ加工することによって形成されたスリット
を何する金属パイプのエツジを、例えば電縫管を製造す
る場合の予熱のように、加熱ずろにはいろいろな手段か
ある。
C1 Prior Art There are various means for heating the edges of metal pipes, such as preheating when manufacturing electric resistance welded pipes, to form slits formed by bending metal plates.

金属バイブのエツジを加熱するには、従来、第8図、第
9図に示す誘導加熱コイルを使用している。
Conventionally, induction heating coils shown in FIGS. 8 and 9 have been used to heat the edge of a metal vibrator.

第8図(a)に示す誘導加熱コイル1は、小径の金属パ
イプ2をその長手方向へ搬送しながらエツジ2aを順次
誘導加熱するものであり、誘導加熱コイルlが金属バイ
ブ2を囲繞するように形成されている。一方、第9図(
a)に示す誘導加熱コイル3は、大径の金属バイブ2を
その長手方向へ搬送しながらエツジ2aを順次誘導加熱
するものであり、一平面上に形成されるとともに金属パ
イプ2のエツジ2aと対向させて使用される。
The induction heating coil 1 shown in FIG. 8(a) sequentially inductively heats the edges 2a of a small-diameter metal pipe 2 while conveying it in its longitudinal direction, so that the induction heating coil 1 surrounds the metal vibrator 2. is formed. On the other hand, Fig. 9 (
The induction heating coil 3 shown in a) sequentially inductively heats the edges 2a of the large-diameter metal vibrator 2 while conveying it in its longitudinal direction. Used facing each other.

曲者を用いた場合は、第8図(b)に示すように誘導加
熱コイルlの各部と対向する位置に、誘導加熱コイルl
を流れる電流の方向と反対方向の誘起電流が流れ、つま
りエツジ2aを流れる電流iと金属バイブ2の周方向へ
流れる電流iとが循環流路を形成して流れ、エツジ2a
を流れる電流iによってエツジ2aが加熱される。円周
方向へ流れる電流iではエツジ2a以外の部分が加熱さ
れてエツジ2aの加熱には使用されないので、電気エネ
ルギーの多くがエツジ2a以外の部分の加熱に使用され
ることとなる。電力をエツジ2aの加熱のために使用す
る電力効率は、コイル効率((バイブに誘起された電力
量/コイルに投入された電力fi x 100月とパイ
プ内効率((エツジでの発熱量/バイブ全体での発熱f
f1)X10Q)との積で与えられ、誘導加熱コイルl
のパイプ内効率は35%〜50%である。なおコイル効
率は75%程度である。
When a bender is used, the induction heating coil l is placed at a position facing each part of the induction heating coil l, as shown in FIG. 8(b).
An induced current flows in the opposite direction to the direction of the current flowing through the edge 2a, that is, the current i flowing through the edge 2a and the current i flowing in the circumferential direction of the metal vibrator 2 form a circulating flow path.
The edge 2a is heated by the current i flowing through the edge 2a. The current i flowing in the circumferential direction heats parts other than the edge 2a and is not used for heating the edge 2a, so that most of the electrical energy is used for heating the parts other than the edge 2a. The power efficiency of using electric power to heat the edge 2a is determined by the coil efficiency ((amount of electric power induced in the vibrator/power input to the coil fi Overall heat generation f
f1)X10Q), and the induction heating coil l
The in-pipe efficiency of is 35% to 50%. Note that the coil efficiency is about 75%.

後背あるいは後者を金属バイブ2の周方向に沿って第8
図(a)の誘導加熱コイル1のように曲げたしのを用い
た場合は、第9図(b)に示すように加熱コイル3の金
属パイプ2の長手方向に延在する導体3c、3dおよび
3eを流れる電流に対応して金属バイブ2の長手方向に
沿って逆方向に流れる誘起電流icか金属パイプ2の円
周に沿ってエツジ方向へ向う電流iaと反対方向へ向う
電流ibとに分岐し、電流iaはエツジ2aを流れてエ
ツジ2aを加熱する循環流路を形成する。対向する他側
のエツジ2aにおいてら同様である。他方の電流ibは
金属パイプ20円周をエツジ2aと反対側に流れて金属
パイプ2の反対側で電流icと合流し、再び円周をエツ
ジ2aと反対側に流れる循環流路を形成する。つまり、
3つの循環流路が形成される。
The back or the latter is placed along the circumferential direction of the metal vibrator 2.
When a bent wire is used as in the induction heating coil 1 of FIG. 9(a), the conductors 3c and 3d of the heating coil 3 extend in the longitudinal direction of the metal pipe 2 as shown in FIG. 9(b). and an induced current ic flowing in the opposite direction along the longitudinal direction of the metal vibrator 2 in response to the current flowing through the metal pipe 2, or a current ia flowing in the edge direction along the circumference of the metal pipe 2 and a current ib flowing in the opposite direction. The current ia flows through the edge 2a and forms a circulating flow path that heats the edge 2a. The same applies to the other opposing edge 2a. The other current ib flows around the circumference of the metal pipe 20 to the side opposite to the edge 2a, merges with the current ic on the opposite side of the metal pipe 2, and forms a circulation flow path that flows around the circumference again to the side opposite to the edge 2a. In other words,
Three circulation channels are formed.

この誘導加熱コイル3を用いた場合においても、誘起電
流がエツジ以外の広い範囲を流れるのでエツジ以外の部
分で多くの電力が消費され、前者と同様にパイプ内効率
は35〜50%、コイル効率は75%程度である。
Even when this induction heating coil 3 is used, the induced current flows in a wide range other than the edges, so much power is consumed in areas other than the edges, and as with the former, the efficiency inside the pipe is 35 to 50%, and the coil efficiency is is about 75%.

第9図(a)に示す誘導加熱コイル3を用いて金属パイ
プ2を誘導加熱した場合の、金属パイプ2の円周方向で
の外周表面P 、Q 、Hの各部の温度変化を誘導加熱
しながら測定したところ、第1θ図に示す結果を得た。
When the metal pipe 2 is induction heated using the induction heating coil 3 shown in FIG. 9(a), the temperature change at each part of the outer peripheral surface P, Q, and H in the circumferential direction of the metal pipe 2 is measured by induction heating. As a result, the results shown in Fig. 1θ were obtained.

図においてP、Q、Rは第9図(a)における金属パイ
プ2の各部P 、Q 、Rと対応する。即ち、Pはエツ
ジ2aの先端、Rは誘起電流icが最も多く流れる部位
、Qはその中間の部位である。図のように、温度上昇が
速いのはP、II、Qの順であるが、コイル終端部を通
過した直後にはP 、Q 、Hの温度が接近することが
わかる。
In the figure, P, Q, and R correspond to the respective parts P, Q, and R of the metal pipe 2 in FIG. 9(a). That is, P is the tip of the edge 2a, R is the region where the most induced current ic flows, and Q is the intermediate region. As shown in the figure, the temperature rises quickly in the order of P, II, and Q, but it can be seen that the temperatures of P, Q, and H approach each other immediately after passing the end of the coil.

D0発明が解決しようとする問題点 従来のようにコイル内効率が低いと、金属パイプのエツ
ジ以外の部分が加熱されて無駄な電気エネルギーを消費
するだけでなく、エツジのみの温度上昇があまり期待で
きず、エツジ以外の部分も昇温してしまうという問題が
ある。
D0 Problems that the invention aims to solve If the efficiency inside the coil is low as in the past, parts of the metal pipe other than the edges are heated, which not only wastes electrical energy, but also increases the temperature only at the edges. However, there is a problem in that parts other than the edges also rise in temperature.

そこで本発明は、斯かる問題を解決した金属パイプの誘
導加熱コイルを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an induction heating coil for metal pipes that solves these problems.

E1問題点を解決するための手段 斯かる目的を達成するための本発明の構成は、円周方向
での一ケ所に長手方向へ伸びるスリットを形成してなる
金属パイプのエツジを、当該金属パイプの長手方向へ順
次加熱する金属パイプの誘導加熱コイルにおいて、−刃
側のエツジを誘導加熱する第一コイル部と他方側のエツ
ジを誘導加熱する第二コイル部とで構成するとともに、
夫々のコイル部を前記金属パイプの外周面に沿ってエツ
ジに対向させる主部とその外側で該主部と一体の槌部と
で閉回路に近い形状に形成し、主部の幅を小さくかつ槌
部の幅を大きく設定し、双方の主部を流れる電流どうし
の方向が相互に反対となるように構成し、かつ金属パイ
プの円周方向のスリットを中心とする1/2以内から多
くても2/3以内の範囲の外周面に沿って配設したこと
を特徴とする。
Means for Solving Problem E1 The structure of the present invention for achieving the above object is to attach the edge of a metal pipe formed with a slit extending in the longitudinal direction at one location in the circumferential direction to the edge of the metal pipe. In the induction heating coil for a metal pipe that sequentially heats the metal pipe in the longitudinal direction, it is composed of a first coil part that induction heats the edge on the -blade side and a second coil part that induction heats the edge on the other side,
Each coil part is formed into a shape close to a closed circuit by a main part facing the edge along the outer circumferential surface of the metal pipe and a mallet part integrated with the main part on the outside thereof, so that the width of the main part is small and The width of the mallet part is set large so that the directions of the currents flowing through both main parts are opposite to each other, and the width of the mallet part is set to be large, and the current flowing through both main parts is configured to be opposite to each other. It is also characterized in that it is arranged along the outer peripheral surface within 2/3 of the range.

F1作用 加熱コイルの隣り合う各部に流れる電流による磁束φが
第2図に示すように各部間で同方向となって互いに強め
合うように作用して金属パイプと交鎖するので第一コイ
ル部、第二コイル部と夫々対向する金属パイプの表面に
は効率良く誘起電流が誘起され、夫々のコイル部が閉回
路に近い形状をしているので夫々の誘起電流が個別に第
一循環流路、第二循環流路を金属パイプの円周方向のス
リットを中心とする多くても2/3以内の範囲に形成し
、誘起電流がスリットの反対側の金属パイプの表面まで
流れるのを防止して電力損失を防止する。夫々のコイル
部において主部の幅が小さくかつ槌部の幅が大きく設定
されているので、夫々の循環流路を流れる誘起電流の密
度もエツジ以外の部分で分散するとともにエツジで集束
する。そのため、エツジ以外の部分では発熱と電力の損
失が少なく、これに対してエツジでは効果的に発熱し、
エツジが集中的に加熱される。更に、第一コイルの主部
を流れる電流の方向と第二コイルの主部を流れる電流の
方向とが相互に反対であるために双方のエツジを流れる
誘起電流どうしの方向も相互に反対であり、近接効果に
よってエツジを流れる誘起電流が集束してエツジの発熱
が促進される。
F1 action The magnetic flux φ due to the current flowing in each adjacent part of the heating coil acts in the same direction between each part and strengthens each other, as shown in Fig. 2, and intersects with the metal pipe, so the first coil part, An induced current is efficiently induced on the surface of the metal pipe facing the second coil section, and since each coil section has a shape close to a closed circuit, each induced current flows individually into the first circulation flow path, A second circulation flow path is formed within at most two-thirds of the circumferential slit of the metal pipe to prevent the induced current from flowing to the surface of the metal pipe on the opposite side of the slit. Prevent power loss. In each coil part, the width of the main part is set to be small and the width of the hammer part is set to be large, so that the density of the induced current flowing through each circulation channel is also dispersed in parts other than the edges and converged at the edges. Therefore, there is less heat generation and power loss in parts other than the edges, whereas the edges generate heat effectively.
The edges are heated intensively. Furthermore, since the direction of the current flowing through the main part of the first coil and the direction of the current flowing through the main part of the second coil are mutually opposite, the directions of the induced currents flowing through both edges are also mutually opposite. , the induced current flowing through the edge is focused due to the proximity effect, promoting heat generation at the edge.

G、実施例 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
G. Examples Hereinafter, the present invention will be explained in detail based on examples shown in the drawings.

第2図は長手方向へ搬送される金属バイブの外周面に対
向させて誘導加熱コイルを配置した第1実施例の正面図
であり、第1図は金属バイブ及び誘導加熱コイルを展開
して示す平面図であり、第3図は金属バイブを流れる誘
起電流の流路を展開して示す平面図である。
FIG. 2 is a front view of the first embodiment in which an induction heating coil is arranged to face the outer peripheral surface of a metal vibrator that is conveyed in the longitudinal direction, and FIG. 1 shows the metal vibrator and induction heating coil developed. FIG. 3 is a plan view showing an expanded flow path of an induced current flowing through a metal vibrator.

第1図のように、誘導加熱コイル6はスリット12に対
して左側のエツジ2aを加熱するための第一コイル部4
と右側のエツジ2aを加熱するための第二コイル部5と
で構成されている。夫々のコイル部4,5は、エツジ2
aと対向さ仕るための主部7と、主部7と一体になって
閉回路に近い四角形状の回路を形成する槌部8,9.1
0とで形成されている。この第一コイル部4と第二コイ
ル部5とは単一の電源13に接続されている。つまり、
第1図中の左方の槌部9が二分割されて電源13に接続
されており、左右の槌部to、ioどうしが直結される
とともに左右の主部7.7どうしが直結部11を介して
接続されて第一コイル部4と第二コイル部5とが一体化
されている。
As shown in FIG. 1, the induction heating coil 6 has a first coil portion 4 for heating the edge 2a on the left side with respect to the slit 12.
and a second coil portion 5 for heating the right edge 2a. Each coil part 4, 5 has an edge 2
a main part 7 for serving opposite to a, and hammer parts 8, 9.1 that form a rectangular circuit close to a closed circuit integrally with the main part 7.
0. The first coil section 4 and the second coil section 5 are connected to a single power source 13. In other words,
The left hammer part 9 in FIG. The first coil part 4 and the second coil part 5 are integrated by being connected through the first coil part 4.

そして、主部7の幅が小さくかつ槌部8〜10の幅が大
きく設定されている。各主部7の幅を夫々Wlとして槌
部8〜IOの幅をW、〜W4とすると、W、=W、=4
.W、、W3= 8W、でWlにくらべてW t 、 
W 4およびW3がはるかに大きくなっている。
The width of the main portion 7 is set to be small, and the width of the hammer portions 8 to 10 is set to be large. If the width of each main part 7 is Wl, and the width of the hammer parts 8 to IO is W, to W4, then W, = W, = 4
.. W,,W3=8W,Wt compared to Wl,
W4 and W3 are much larger.

なお、前記のように主部7どうしを連結部11で接続す
ることにより、双方の主部7を流れる電流どうしの方向
が相互に反対となるように設定されている。かっこの誘
導加熱コイル6は第2図に示すように金属バイブ2の円
周方向のスリット12を中心とする1/2以内から多く
ても2/3以内の範囲の外周面に沿って形成する。
Note that by connecting the main parts 7 with each other through the connecting part 11 as described above, the directions of the currents flowing through both main parts 7 are set to be opposite to each other. The induction heating coil 6 in parentheses is formed along the outer circumferential surface of the metal vibrator 2 within a range of 1/2 to 2/3 at most around the circumferential slit 12 of the metal vibrator 2, as shown in FIG. .

次に、斯かる金属バイブの誘導加熱コイルの作用を説明
する。
Next, the function of the induction heating coil of such a metal vibrator will be explained.

誘導加熱コイル6に電流を流しながら金属バイブ2を矢
印の方向へ搬送してエツジ2aを誘導加熱する。第1図
中、誘導加熱コイル6に矢印方向の電流が流れていると
きには、金属バイブ2のエツジ2a、スリット12.エ
ツジ2aに順にS、N。
The metal vibrator 2 is conveyed in the direction of the arrow while a current is applied to the induction heating coil 6 to heat the edge 2a by induction. In FIG. 1, when the current flows in the direction of the arrow in the induction heating coil 6, the edge 2a of the metal vibrator 2, the slit 12. S and N to edge 2a in order.

Sの磁極が形成されることにより第2図に示すように各
部の磁束φが互いに強め合うように作用する。電流が交
番電流であることから、S、N、S中N 、S 、Nの
繰り返しとなり、その際のお互いに強め合うように作用
する交番交鎖磁束の変化によって金属バイブ2には第3
図に示す誘起電流Iが効率良く誘起される。第一コイル
部4.第二コイル部5は夫々主部7と槌部8〜IOによ
って閉回路に近い回路構成となっているので、第一コイ
ル部4、第二コイル部5が対向する金属パイプ2の表面
には、コイル部を流れる電流の方向と反対方向の電流■
か流れ、第一循環流路21.第二循環流路22を金属パ
イプ2の円周方向のスリット12を中心とする1/2以
内から多くても2/3以内の範囲に形成する。
By forming the S magnetic pole, the magnetic flux φ of each part acts to strengthen each other as shown in FIG. Since the current is an alternating current, S, N, N in S, S, N repeats, and due to the change in alternating alternating magnetic flux that acts to strengthen each other, a third
The induced current I shown in the figure is efficiently induced. First coil part 4. The second coil portion 5 has a circuit configuration close to a closed circuit with the main portion 7 and the mallet portions 8 to IO, respectively, so that the surface of the metal pipe 2 where the first coil portion 4 and the second coil portion 5 face each other is , a current in the opposite direction to the direction of the current flowing through the coil ■
flow, the first circulation channel 21. The second circulation flow path 22 is formed in a range from within 1/2 to at most 2/3 of the slit 12 in the circumferential direction of the metal pipe 2.

第一コイル部4.第二コイル部5の夫々における径部8
〜IOの幅が大きいので、これらと対応する位置r、g
、h、では誘起電流Iの通路も幅が太き(なり、これら
の誘起電流が流れる電流通路の抵抗Rが小さい。発熱損
失はI3Rによって与えられるので、エツジ2a以外で
の発熱が少なくなりエツジ2a以外での電力消費も少な
くなる。これに対し、主部7の幅は小さいのでエツジ2
aでは誘起電流Iが集束して流れ、しかも対向するエツ
ジ2aを流れる誘起電流Iどうしは方向が反対でかつ接
近しているので近接効果によりエツジ2aの先端部によ
り集束して流れるのでエツジ2aは効率良く加熱されろ
First coil part 4. Diameter portion 8 in each of the second coil portions 5
~Since the width of IO is large, the corresponding positions r and g
, h, the path for the induced current I is also wide (and the resistance R of the current path through which these induced currents flows is small. Since the heat loss is given by I3R, the heat generation outside edge 2a is reduced, and the edge Power consumption in areas other than 2a is also reduced.On the other hand, since the width of the main part 7 is small,
At a, the induced current I flows in a concentrated manner, and since the induced currents I flowing through the opposing edges 2a are opposite in direction and are close to each other, the proximity effect causes the induced current I to flow in a concentrated manner at the tip of the edge 2a. Heat efficiently.

また、第−置コイル部4.第二コイル部5によって金属
パイプ2の外表面に誘起電流の第一循環流路2!と第二
循環流路22とが形成されるが、第一コイル部4と第二
コイル部5とが金属パイプ2の円周方向のスリット12
を中心とする1/2以内から多くても2/3以内の範囲
の外周面に沿って形成されているので、これらの循環流
路はエツジ以外では金属パイプ2の円周のスリット12
を中れ、更にエツジ2a以外での誘起電流Iの流路f。
Further, the second coil section 4. The first circulation flow path 2 of the induced current on the outer surface of the metal pipe 2 by the second coil part 5! and a second circulation flow path 22 are formed, but the first coil part 4 and the second coil part 5 are connected to the slit 12 in the circumferential direction of the metal pipe 2.
Since these circulation channels are formed along the outer circumferential surface within a range of 1/2 to 2/3 at most around
In addition, there is a flow path f of the induced current I other than the edge 2a.

g、hの幅が広く電気抵抗が小さくて誘起電流が流れ易
いことから、誘起電流はこれらの循環流路を流れ、スリ
ット12と反対側の外周部にはほとんど流れず、この面
からもエツジ2a以外での発熱損失が少なく、エツジ2
aでの加熱効率が大きい。
Since the widths of g and h are wide and the electric resistance is small, the induced current flows easily, so the induced current flows through these circulation channels and hardly flows to the outer periphery on the opposite side from the slit 12, and the edge does not flow from this side either. Edge 2 has less heat loss in areas other than 2a.
The heating efficiency at point a is high.

前述のように第一コイル部4と第二コイル部5を金属パ
イプ2の円周方向のスリット12を中心とする1/2以
内から多くても2/3以内の範囲に配設したのは、エツ
ジ2a以外での誘起電流の循環流路f、g、hの距離を
できるだけ短かくしてこれらの部分での発熱損失を極力
少なくすることと、スリット12と反対側の外周部へ誘
起電流が分流して流れるのを抑制するために第3図に鎖
線jで示す外周に沿った施路長をできるだけ長くするた
めであって、第一コイル部4および第二コイル部5を金
属パイプ2の外周の273以内の範囲に配設した場合に
は流路jで示す外周への分流は殆ど認められなかったが
、2/3を越えると分流して流路jを流れる誘起電流量
が急速に増えてスリット12と反対側の外周分流の温度
が上昇した。
As mentioned above, the first coil part 4 and the second coil part 5 are arranged in a range from within 1/2 to at most 2/3 of the slit 12 in the circumferential direction of the metal pipe 2. , the distances of the induced current circulation channels f, g, and h other than the edge 2a are made as short as possible to minimize heat loss in these parts, and the induced current is distributed to the outer circumference on the opposite side of the slit 12. This is to make the route length along the outer periphery shown by the chain line j in FIG. When the current was placed within a range of 273, almost no shunt to the outer periphery indicated by flow path j was observed, but when it exceeded 2/3, the amount of induced current that shunted and flowed through flow path j rapidly increased. As a result, the temperature of the outer circumferential branch on the opposite side to the slit 12 rose.

この誘導加熱コイルを用いて第1O図に示したグラフと
同様に金属パイプ2の円周方向での外周表面P、Q、H
の各部の温度変化を測定したところ、第4図のグラフを
得た。図のように誘導加熱コイルを通過したP部の温度
上昇が従来に比べて一段と高いのに対し、Q、Hの温度
上昇は充分に低く赤熱するには至らなかった。斯かる誘
導加熱コイルではコイル内効率が75%であった。
Using this induction heating coil, the outer circumferential surface P, Q, H of the metal pipe 2 in the circumferential direction is measured as shown in the graph shown in FIG.
The graph shown in FIG. 4 was obtained by measuring the temperature change at each part. As shown in the figure, the temperature rise in the P part that passed through the induction heating coil was much higher than in the past, whereas the temperature rise in the Q and H parts was sufficiently low that it did not become red hot. The in-coil efficiency of such an induction heating coil was 75%.

前記の誘導加熱コイル6よりも更にエツジに誘起電流を
集束させるために、次の第2実施例〜第4実施例がある
In order to focus the induced current further on the edge than the induction heating coil 6, the following second to fourth embodiments are available.

第2実施例(第5図参照)の誘導加熱コイルは、第1実
施例で示した誘導加熱コイル6の主部7゜7にその両側
部及び背部を覆う鉄心14を取り付けて金属バイブ2の
エツジ2aの加熱効率の向上を図ったものである。
The induction heating coil of the second embodiment (see FIG. 5) is constructed by attaching an iron core 14 to the main portion 7°7 of the induction heating coil 6 shown in the first embodiment to cover both sides and the back of the metal vibrator 2. This is intended to improve the heating efficiency of the edge 2a.

第3実施例(第6図参照)の誘導加熱コイルは、第一実
施例で示した誘導加熱コイル6の主部7を2ターンとし
たものである。即ち、主部7に代えて主部15.17そ
して主部16.18におきかえ、接続部19〜21で接
続することによって電流が径部8−主部I5→主部16
→主部17→主部18−径部8へと流れるようにしたも
のである。一方のエツジ2aを加熱する主部が主部15
.17又は主部16.18の各2本ずつであって同一方
向へ夫々電流が流れるので、エツジ2aと交鎖する。
The induction heating coil of the third embodiment (see FIG. 6) has two turns in the main portion 7 of the induction heating coil 6 shown in the first embodiment. That is, by replacing the main part 7 with the main part 15.17 and then the main part 16.18 and connecting them at the connecting parts 19 to 21, the current flows from the diameter part 8 to the main part I5 to the main part 16.
→Main part 17 →Main part 18--diameter part 8. The main part that heats one edge 2a is the main part 15.
.. 17 and the main portions 16 and 18, each of which has two currents flowing in the same direction, intersects with the edge 2a.

交番磁束が一層高まりエツジ2aの加熱効率が第1実施
例のものより高い。
The alternating magnetic flux is further increased and the heating efficiency of the edge 2a is higher than that of the first embodiment.

第・1実施例(第7図参照)の誘導加熱コイルは、第1
コイル部4と第二コイル部5とを分離したちのであり、
夫々のコイル部における主部7の下端は夫々の径部lO
と接続し、第二コイル部5の径部9を分割して夫々電源
I3に接続したしのである。斯かる誘導加熱コイル6に
おいては、夫々の主部7に相σに反対方向の電流が流れ
るようにするため、電源13.13を同期させる必要が
ある。
The induction heating coil of the first embodiment (see Fig. 7) is
The coil part 4 and the second coil part 5 are separated,
The lower end of the main portion 7 in each coil portion is located at the respective diameter portion lO.
The diameter portion 9 of the second coil portion 5 is divided and connected to the power source I3, respectively. In such an induction heating coil 6, it is necessary to synchronize the power supplies 13, 13 in order to cause currents in opposite directions to the phase σ to flow in each main portion 7.

ここでは第1〜第4実施例を示したが、第2実施例と第
3実施例とを組み合せたり、第4実施例に第2実施例や
第3実施例あるいはこれら双方を組み合せてコイル内効
率を大きくすることができる。
Although the first to fourth embodiments have been shown here, the second embodiment and the third embodiment may be combined, or the fourth embodiment may be combined with the second embodiment, the third embodiment, or both. Efficiency can be increased.

■」、考案の効果 以上説明したように本発明に係る誘導加熱コイルによれ
ば、第一コイル部と第二コイル部とを金属バイブのエツ
ジに対向させる主部とその外側に設けた径部とで閉回路
に近い形状に成形して金属バイブの円周方向のスリット
を中心とする2/3以内の範囲の外周部に沿って配設す
るとともに、主部の幅を小さくかつ径部の幅を大きく設
定し、双方の主部を流れる7IX流どうしの方向が相互
に反対となるように構成したので、誘導加熱コイルの各
部を流れる電流による磁束が互いに有効に強め合うよう
に作用し、この誘導加熱コイルによって金属バイブに効
率良く誘起電流が誘起され、この誘起電流が夫々エツジ
とエツジの両性側の比較的近い部位で第−循環流路及び
第二循環流路を形成して流れる。この誘起電流はエツジ
では誘導加熱コイルの主部の幅がせまいことおよび対向
する双方のエツジを流れる誘起電流の方向が相互に反対
で近接効果が働くことからエツジの先端部に集束して流
れエツジを効果的に加熱して昇温さ仕る。これに反して
エツジ部以外では誘導加熱コイルの径部の幅が広いのに
対応して誘起電流は広く分散して低い電流密度で流れる
のでエツジ以外の部分では発熱損失が抑制される。また
エツジと反対側の外周部へもほとんど分流して流れるこ
とがないので、この部分での発熱損失も抑制される。こ
の結果、エツジ以外の部分の加熱は最小限に抑えられる
とともに、エツジの加熱が効率良く行なわれ、バイブ内
効率が75%以上に向上する。
■ Effects of the invention As explained above, according to the induction heating coil according to the present invention, the first coil part and the second coil part face the edge of the metal vibrator, and the main part and the diameter part provided on the outside thereof. The metal vibrator is formed into a shape close to a closed circuit and placed along the outer periphery within 2/3 of the circumferential slit of the metal vibrator. Since the width is set large and the directions of the 7IX flows flowing through both main parts are opposite to each other, the magnetic flux caused by the current flowing through each part of the induction heating coil acts to effectively strengthen each other, An induced current is efficiently induced in the metal vibrator by this induction heating coil, and the induced current flows forming a first circulation passage and a second circulation passage at relatively close portions on both sides of the edge, respectively. This induced current is concentrated at the tip of the edge because the width of the main part of the induction heating coil is narrow at the edge, and the directions of the induced current flowing through both opposing edges are opposite to each other, causing a proximity effect. Effectively heats and raises the temperature. On the other hand, in areas other than the edges, the induced current is widely dispersed and flows at a low current density, corresponding to the wide diameter portion of the induction heating coil, so heat loss is suppressed in areas other than the edges. In addition, since almost no flow is diverted to the outer peripheral portion on the opposite side from the edge, heat loss in this portion is also suppressed. As a result, the heating of parts other than the edges is minimized, the edges are heated efficiently, and the efficiency within the vibrator is improved to 75% or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明による金属パイプの誘導加熱コ
イルに係り、第1図〜第3図は第1実施例を示すもので
、第1図は展開して示す誘導加熱コイルの平面図、第2
図は誘導加熱コイルの正面図、第3図は展開して示す金
属パイプに流れる誘起電流の流路の平面図、第4図は金
属パイプの外表面の円周方向の位置と温度との関係を示
すグラフ、第5図は誘導加熱コイルの第2実施例を展開
して示す平面図、第6図は誘導加熱コイルの第3実施例
を展開して示す平面図、第7図は誘導加熱コイルの第4
実施例を展開して示す平面図、第8図(a) 、 (b
)及び第9図(a) 、 (b)は従来の誘導加熱コイ
ル及び金属パイプでの誘起電流の流れを示す斜視図、第
1O図は第9図(a)の誘導加熱コイルによる金属パイ
プの円周方向の位置と温度との関係を示すグラフである
。 2・・・金属パイプ、2a・・・エツジ、4・・・第一
コイル部、5・・・第二コイル部、6・・・誘導加熱コ
イル、7.15.17,1.8・・・主部、8,9.1
0・・・機部、12・・スリット、13・・・電源。 第1図 誘導顎外コイル〔展開して示す平面図(本発明の妊伶1
1)2−一−−全属パイブ       7,15.1
6.17.18−−−一重部2a−−−1ツノ    
  8.9.10−一一一区部4−−−−勇一コイル部
      12−−−一人りヮト5−−−−葛ニコイ
ル部     13−−−−tう凰6−−−−書秀薄7
1Ill悲コイル 第2図 銹1加終コイルの正面図(本発明の実施例1)第3図 金属パイプを展開して示す斗面図(本発明の寛彬例1)
第4図 5IIl加黙コイルの性搬1示、末グラフ(事えnへの
実兄伶12)!<イブの槍し笠イ立! 誘4加熱コイルを展開し工、i、オ平面面(本発明の実
施例2)第8図 t!に#7+o路コイ2v仄びt勇起電7瓦の流れ6子
11斗僕図(従東)(a) 第10図 誘導カロ悲コイルのす生負ヒを示すグラフ(1足東)パ
イプの瑯U旧1! 手続補正書(的。 昭和 。!ト 。月、2日
1 to 6 relate to an induction heating coil for a metal pipe according to the present invention, and FIGS. 1 to 3 show a first embodiment, and FIG. 1 is a plan view of the induction heating coil shown in an expanded state. Figure, 2nd
The figure is a front view of the induction heating coil, Figure 3 is an expanded plan view of the flow path of the induced current flowing through the metal pipe, and Figure 4 is the relationship between the circumferential position of the outer surface of the metal pipe and temperature. 5 is an expanded plan view of the second embodiment of the induction heating coil, FIG. 6 is an expanded plan view of the third example of the induction heating coil, and FIG. 7 is an expanded plan view of the second embodiment of the induction heating coil. 4th coil
8(a) and 8(b) are plan views showing the developed example.
) and FIGS. 9(a) and (b) are perspective views showing the flow of induced current in a conventional induction heating coil and metal pipe, and FIG. It is a graph showing the relationship between circumferential position and temperature. 2... Metal pipe, 2a... Edge, 4... First coil part, 5... Second coil part, 6... Induction heating coil, 7.15.17, 1.8...・Main part, 8, 9.1
0... Machine part, 12... Slit, 13... Power supply. Fig. 1 Inductive extramaxillary coil
1) 2-1--All genus pipes 7,15.1
6.17.18---Single part 2a---1 horn
8.9.10 - 111 Ward Section 4----Yuichi Coil Section 12---Hitori Wato 5----Kuzu Nikoil Section 13---t Uo 6----Shohide Thin 7
Fig. 2 Front view of the coil (Embodiment 1 of the present invention) Fig. 3 A top view showing an expanded metal pipe (Example 1 of the invention)
Fig. 4 5IIl Kamo coil's propensity 1, final graph (true brother 12 to story n)! <Eve's spear and hat stand! Expanding the dielectric 4 heating coil, i, and the horizontal plane (Embodiment 2 of the present invention) Fig. 8 t! To #7 + o road carp 2v and t Yuukiden 7 tile flow 6 child 11 Toboku diagram (Juto) (a) Figure 10 Graph showing the induction coil's output and negative heat (1 foot east) pipe Noro U old 1! Procedural Amendment (Target.Showa.!To.Monday, 2nd

Claims (1)

【特許請求の範囲】 円周方向での一ケ所に長手方向へ伸びるスリットを形成
してなる金属パイプのエッジを、当該金属パイプの長手
方向へ順次加熱する金属パイプの誘導加熱コイルにおい
て、 一方側のエッジを誘導加熱する第一コイル部と他方側の
エッジを誘導加熱する第二コイル部とで構成するととも
に、夫々のコイル部を前記金属パイプの外周面に沿って
エッジに対向させる主部とその外側で該主部と一体の従
部とで閉回路に近い形状に形成し、主部の幅を小さくか
つ従部の幅を大きく設定し、双方の主部を流れる電流ど
うしの方向が相互に反対となるように構成するととも、
前記金属パイプの円周方向のスリットを中心とする2/
3以内の範囲の外周面に沿って配設したことを特徴とす
る金属パイプの誘導加熱コイル。
[Claims] In an induction heating coil for a metal pipe that sequentially heats the edge of a metal pipe in the longitudinal direction of the metal pipe formed by forming a slit extending in the longitudinal direction at one location in the circumferential direction, one side a first coil part that induction heats the edge of the metal pipe and a second coil part that induction heats the edge of the other side, and a main part in which each coil part faces the edge along the outer peripheral surface of the metal pipe On the outside, the main part and the integral slave part are formed into a shape similar to a closed circuit, and the width of the main part is set small and the width of the slave part is set large, so that the directions of the currents flowing through both main parts are mutual. If you configure it so that it is opposite to
2/ centered around the circumferential slit of the metal pipe
An induction heating coil for a metal pipe, characterized in that the induction heating coil is arranged along the outer peripheral surface within a range of 3.
JP3404887A 1987-02-17 1987-02-17 Induction heating coil for metal pipe Pending JPS63202880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3404887A JPS63202880A (en) 1987-02-17 1987-02-17 Induction heating coil for metal pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3404887A JPS63202880A (en) 1987-02-17 1987-02-17 Induction heating coil for metal pipe

Publications (1)

Publication Number Publication Date
JPS63202880A true JPS63202880A (en) 1988-08-22

Family

ID=12403416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3404887A Pending JPS63202880A (en) 1987-02-17 1987-02-17 Induction heating coil for metal pipe

Country Status (1)

Country Link
JP (1) JPS63202880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118882A (en) * 2013-12-19 2015-06-25 高周波熱錬株式会社 Induction heating coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015118882A (en) * 2013-12-19 2015-06-25 高周波熱錬株式会社 Induction heating coil

Similar Documents

Publication Publication Date Title
JPH07119721A (en) Coupling method of wire, pipe, filament and other member
ATE161381T1 (en) ELECTROMAGNETIC INDUCTION RADIATOR
JPS63202880A (en) Induction heating coil for metal pipe
TOPUZ et al. Electromagnetic and thermal analysis of a domestic induction cooker coil
JP2002305074A (en) Induction heating equipment
KR101082879B1 (en) transformer using double-core structure.
JP4555838B2 (en) Induction heating device
JP2614688B2 (en) Transformer for DC resistance welding machine
CN206611605U (en) A kind of water power loop separates load coil
JP2020013635A (en) Induction heating apparatus
JPS57149616A (en) Heat roll device
JP2002043044A (en) Heating coil for induction heating device
KR200246936Y1 (en) Boiler for induction heating equipment
JPS59214194A (en) Induction heating cooking device
JPS625038Y2 (en)
JPS5830703B2 (en) induction heating device
JPS583276Y2 (en) induction heating device
JPS5483142A (en) Induction heater
JP2653959B2 (en) Transformer for DC resistance welding machine
JPS6035985Y2 (en) induction heating device
JPS5960983A (en) Induction heater
JPS63211587A (en) Induction heating coil for metal pipe
JPH07226292A (en) High frequency induction heating coil
CN204045358U (en) Small-sized single-phase energy-economic transformer
Gönendik High-efficiency arrays of inductive coils