JPS6320265A - Flow divider - Google Patents

Flow divider

Info

Publication number
JPS6320265A
JPS6320265A JP16199186A JP16199186A JPS6320265A JP S6320265 A JPS6320265 A JP S6320265A JP 16199186 A JP16199186 A JP 16199186A JP 16199186 A JP16199186 A JP 16199186A JP S6320265 A JPS6320265 A JP S6320265A
Authority
JP
Japan
Prior art keywords
pressure
valve
reaction force
spool valve
outlet port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16199186A
Other languages
Japanese (ja)
Other versions
JPH085398B2 (en
Inventor
Mikio Suzuki
幹夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP16199186A priority Critical patent/JPH085398B2/en
Publication of JPS6320265A publication Critical patent/JPS6320265A/en
Publication of JPH085398B2 publication Critical patent/JPH085398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a subflow of a relatively large flow amount to an antipressure chamber passage when the servo valve side is at a low pressure, and to stabilize the flow dividing property, by froming a taper surface at the throttle of an outlet port at the servo valve side of the flow divider, at a valve housing side. CONSTITUTION:A taper surface 82 to form a throttle part A is formed at the valve housing 80 of an outlet port at the servo valve side, that is, the first outlet port 18, and a pressure receiving surface 83 t receive the high pressure side pressure P1 of a pressure chamber 86b is formed at a spool valve 67. In this case, a taper surface 84 may be furnished at the valve housing 80 side also at an anti-pressure chamber side passage B of an outlet, that is, the second outlet port 69.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、反力機構を備えた動力舵取装置のサーボ弁側
と反力室側とに圧力流体を分流制御するフローデバイダ
に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a flow divider that divides and controls pressure fluid between a servo valve side and a reaction chamber side of a power steering device equipped with a reaction force mechanism. be.

〈従来の技術〉 一般に車速等に応じて操舵力を変化させる反力機構を備
えた動力舵取装置においては、供給ポンプからの吐出圧
油の流量を一定流量fこ制御し、この圧フコ流体を分流
制御弁によりサーボ弁側と反力室・1とに一定の流量割
合で分流している。この二゛ローデバイダは第4図で示
すように、弁ハウジニグ80の内孔65a内において移
動可能なスブーヤ弁釘を有し、この弁ハウジング□□□
Eこは供給ポンプからの一定流量の圧力流体を入口ポー
トより導入し、サーボ弁側へ流量を流す第1の出「〕ポ
ート68と反力室側へ流量を流す第2の出口ポート69
とが形成され、前記入口ポートより導入された圧力P1
の圧力流体をスプール弁67側に形成されたテーパ面8
1による絞り部Aを介して第1の出口ポート68#こ流
出し、また、オリフィスよりスプール弁67の軸穴を通
って反力室側通路Bを介して第2の出口ポート691こ
流出し、スプール弁67の両端に設けられている圧力室
ならびにスプリングの圧力バランスtこてスプール弁6
7を摺動させ、第1.2の出口ポート68、691こ一
定割合で流量を分流する構造である。
<Prior art> In general, in a power steering device equipped with a reaction force mechanism that changes steering force according to vehicle speed, etc., the flow rate of pressure oil discharged from a supply pump is controlled to a constant flow rate f, and this pressure fluid is The flow is divided into the servo valve side and the reaction force chamber 1 at a constant flow rate by the flow control valve. As shown in FIG. 4, this two-low divider has a subya valve nail that is movable within the bore 65a of the valve housing 80, and this valve housing □□□
A first outlet port 68 introduces a constant flow rate of pressure fluid from the supply pump through the inlet port and allows the flow to flow to the servo valve side, and a second outlet port 69 allows the flow to flow to the reaction force chamber side.
is formed, and the pressure P1 introduced from the inlet port
The tapered surface 8 formed on the spool valve 67 side
1 flows out from the first outlet port 68# through the throttle part A, and also flows out from the orifice through the shaft hole of the spool valve 67 and through the reaction force chamber side passage B to the second outlet port 691. , pressure balance between the pressure chambers and springs provided at both ends of the spool valve 67
7 is slid, and the flow rate is divided at a constant rate between the first and second outlet ports 68 and 691.

〈発明が解決しようとする問題点〉 上記従来のフローデバイダでは、サーボ弁側の第1の出
口ポート68における絞り部Aは、スプール弁67に形
成したテーパ面81と弁ハウジング80のエツジ部との
間で形成される。そのためハンドルの中立状態で高速走
行時のようにサーボ弁側か低圧で反力室側が高圧のとき
スプール弁67はサーボ弁側と反力室側との間で圧力を
分離させるため、絞り部Bの開口面積を制限するようI
こ作動する。この際、絞り部Aが前述したようにスプー
ル弁のテーパ面と弁ハウジングのエツジとで形成されて
いる関係上、絞り部Aの最小絞り面積の部位を境にして
その上流側は高圧に、下流側は低圧となる。従って前記
テーパ面81の一部(Di −DQ間)に低圧側圧力が
作用(ル弁67は第4図1こおいて左方に変位され、反
力室側通路Bを開き勝手にして圧力バランスし、第2の
出口ポート69に多めの流量が分流される。
<Problems to be Solved by the Invention> In the conventional flow divider described above, the constricted portion A in the first outlet port 68 on the servo valve side is connected to the tapered surface 81 formed on the spool valve 67 and the edge portion of the valve housing 80. formed between. Therefore, when the servo valve side has low pressure and the reaction force chamber side has high pressure, such as when driving at high speed with the steering wheel in the neutral state, the spool valve 67 separates the pressure between the servo valve side and the reaction force chamber side. I so as to limit the opening area of
This works. At this time, since the throttle part A is formed by the tapered surface of the spool valve and the edge of the valve housing as described above, the pressure is high on the upstream side of the minimum throttle area of the throttle part A. The pressure on the downstream side is low. Therefore, a low pressure side pressure acts on a part of the tapered surface 81 (between Di and DQ) (the valve 67 is displaced to the left in FIG. Balanced, a higher flow rate is diverted to the second outlet port 69.

この傾向はギヤ発生圧力の上昇により絞り部Aの隙間が
増大し、ギヤ発生圧方円が圧力P1と等しくなるまで続
く、従って反力室側流量φはギヤ発生圧力用に対し第3
図の特性となり、流量変動による操舵力のフィーリング
が悪くなる。
This tendency increases as the gear generation pressure increases, increasing the gap in the throttle section A, and continues until the gear generation pressure square becomes equal to the pressure P1. Therefore, the flow rate on the reaction force chamber side φ is the third for the gear generation pressure.
As shown in the figure, the steering force feels worse due to flow rate fluctuations.

く問題点を解決するための手段〉 本発明は、上記フローデバイダ特性の不安定現象を解消
したものであり、その構成は、入口ポートより導入する
圧力流体を弁ハウジングの内孔内において移動可能なス
プール弁によって反力機構を備えた動力舵取装置のサー
ボ弁側と反力室側とに一定の流量で分流する2つの出口
ポートを備えたフローデバイダにおいて、前記サーボ弁
側の出口ポートの弁ハウジングに絞り部を形成するテー
パ面を設け、スプール弁に反力室側の圧力変化に伴うス
プール弁の変位に拘らず高圧側圧力が全面に付与される
受圧面を形成したものである。
Means for Solving the Problems> The present invention solves the unstable phenomenon of the flow divider characteristics described above, and its configuration allows the pressure fluid introduced from the inlet port to move within the inner hole of the valve housing. In a flow divider equipped with two outlet ports that divide a constant flow rate into a servo valve side and a reaction force chamber side of a power steering device equipped with a reaction force mechanism using a spool valve, the outlet port on the servo valve side is The valve housing is provided with a tapered surface forming a constricted portion, and the spool valve is formed with a pressure receiving surface to which high pressure side pressure is applied to the entire surface regardless of displacement of the spool valve due to pressure changes on the reaction force chamber side.

く作 用〉 本発明は、スプール弁の変位に拘らずサーボ弁側出口ポ
ートの絞り部において、スプール弁に形成した受圧面全
面に常に高圧側圧力が付与され、サーボ弁側か低圧であ
っても反力室側通路を開く方向のスプール弁の変位を抑
制する。
Function> The present invention is such that regardless of the displacement of the spool valve, high pressure side pressure is always applied to the entire pressure receiving surface formed on the spool valve at the throttle part of the servo valve side outlet port, and the servo valve side is low pressure. Also suppresses the displacement of the spool valve in the direction of opening the reaction chamber side passage.

〈実施例〉 以下本発明の実施例を第1図及び第2図により説明する
。第1図において、ωは自動車エンジンによって駆動さ
れる供給ポンプである。61は前記供給ポンプ(イ)か
らの吐出圧油の流量QOを一定流量Qに制御する流量制
御弁である。この流量制御弁61はメータリングオリフ
ィス62と、このメータリングオリフィス62の前後圧
に応じて作動され、この前後圧を常に一定に保持するよ
う低圧側に通じたバイパス通路63を開口制御するバイ
パス弁64によって構成されている。
<Example> An example of the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 1, ω is a supply pump driven by an automobile engine. Reference numeral 61 denotes a flow rate control valve that controls the flow rate QO of the pressure oil discharged from the supply pump (a) to a constant flow rate Q. The flow rate control valve 61 is a metering orifice 62 and a bypass valve that is operated according to the front and rear pressure of the metering orifice 62 and controls the opening of a bypass passage 63 communicating with the low pressure side so as to keep this front and rear pressure constant at all times. 64.

田は前記流量制御弁61の高圧側と接続するフローデバ
イダである。このフローデバイダ65は前記供給ポンプ
ωからの一定流量Qの圧力流体をサーボ弁30側への流
量ψとプランジャ別を有する反力機構の反力室56側へ
の流量部とに分流する。尚、15はパワーシリンダであ
す、70は反力室56側の流量部を車速等に応じて制御
して反力油圧PBfe制御する電磁制御弁を示す。
A flow divider is connected to the high pressure side of the flow control valve 61. The flow divider 65 divides a constant flow rate Q of pressure fluid from the supply pump ω into a flow rate ψ toward the servo valve 30 and a flow rate toward the reaction force chamber 56 side of the reaction force mechanism having a separate plunger. Note that 15 is a power cylinder, and 70 is an electromagnetic control valve that controls the flow rate part on the reaction force chamber 56 side in accordance with the vehicle speed and the like to control the reaction oil pressure PBfe.

本発明によるフローデバイダ65の構成は、弁ハウジン
グ(資)に供給ポンプωからの一定流量Qの圧力流体を
導入する入口ポート部と、サーボ弁(9)側へ流量ψを
流す第1の出口ポート68と、反力室56側へ流量部を
流す第2の出口ポート69とを有している。また、弁ノ
ーウジング80の内孔65cL内にスプール弁67が入
口ポート85と第1、第2の出ロポート絽、(至)間に
諺いて摺動可能に嵌合されている。前記内孔6511に
圧力室86a186b、 86Cを形成している。圧力
室86gはスプール弁67に設けられた連通路87を介
して圧力室86にと連通し、また圧力室86bはオリフ
ィス66並びにスプール弁67の軸穴部を介して圧力室
86’に連通している。従って、スプール弁67はこの
オリフィス66の前後圧並びにスプリング襲の押圧力の
バランスによって移動し、第1、第2の出口ポート68
.69より一定の割合で流量ψ、QRjこ分流するよう
構成されている。
The flow divider 65 according to the present invention has an inlet port portion that introduces a constant flow rate Q of pressure fluid from a supply pump ω into the valve housing (capital), and a first outlet that allows a flow rate ψ to flow toward the servo valve (9) side. It has a port 68 and a second outlet port 69 that allows the flow portion to flow toward the reaction force chamber 56 side. Further, a spool valve 67 is slidably fitted in the inner hole 65cL of the valve nose 80 between the inlet port 85 and the first and second outlet ports. Pressure chambers 86a186b and 86C are formed in the inner hole 6511. The pressure chamber 86g communicates with the pressure chamber 86 through a communication passage 87 provided in the spool valve 67, and the pressure chamber 86b communicates with the pressure chamber 86' through the orifice 66 and the shaft hole of the spool valve 67. ing. Therefore, the spool valve 67 moves depending on the balance between the back and forth pressure of the orifice 66 and the pressing force of the spring, and the spool valve 67 moves between the first and second outlet ports 68.
.. 69, the flow rate ψ, QRj is divided at a constant rate.

さらに、第2図で示すように、サーボ弁側の出口ポート
、すなわち第1の出口ポート68の弁ハウジング80J
こ絞り部Aを形成するテーパ面82を設け、スプール弁
67には圧力室86bの高圧側圧力P1を受ける受圧面
83が形成されている。尚反力室側の出口ポート、すな
わち、第2の出口ポート69の反力室側通路Bにおいて
も弁ハウジング80側1こテーパ面84を設けてもよい
Further, as shown in FIG. 2, the valve housing 80J of the outlet port on the servo valve side, that is, the first outlet port 68
A tapered surface 82 forming the constricted portion A is provided, and the spool valve 67 is formed with a pressure receiving surface 83 that receives the high pressure side pressure P1 of the pressure chamber 86b. Note that the outlet port on the reaction force chamber side, that is, the reaction force chamber side passage B of the second outlet port 69 may also be provided with a single taper surface 84 on the valve housing 80 side.

本発明は上記の通りの構造であるから、入力ポート85
から圧力室86b に導入された圧力貫の圧力流体の一
部は連通路87を介してスプール弁67の一端側の圧力
室86αに導かれると同時にスプール弁67Jこ穿けら
れたオリフィス66より軸穴簡を介して他方の圧力室8
6Cに導かれる。従って、圧力室86α、86Cの差圧
とスプリング891こよる圧力バランスにてスプール弁
67を摺動させ、第1の出口ポート68には絞り部Aを
介して、また第2の出口ポート69には反力室側通路B
を介して一定割合で流量を分流する。
Since the present invention has the structure as described above, the input port 85
A part of the pressure fluid introduced from the pressure chamber 86b into the pressure chamber 86b is guided to the pressure chamber 86α on one end side of the spool valve 67 via the communication passage 87, and at the same time, is introduced into the shaft hole from the orifice 66 bored in the spool valve 67J. the other pressure chamber 8 through the
Guided by 6C. Therefore, the spool valve 67 is slid by the differential pressure between the pressure chambers 86α and 86C and the pressure balance caused by the spring 891, and the spool valve 67 is connected to the first outlet port 68 through the throttle part A and to the second outlet port 69. is reaction chamber side passage B
The flow rate is diverted at a constant rate through the

そこで、サーボ弁30側が低圧(中立状態)で反力室5
6何が高圧(高速走行状態)のときの圧力Pl > P
GIこおいて、スプール弁67には低圧側圧力が作用し
てスプール弁67を反力室側通路Bを開き勝手に変位さ
せる作用面が存在せず、スプール弁671こはアンバラ
ンスが生じ難くなり、反力室側通路Bに流量を多めに分
流することが抑制される。また、反力室側の圧力変化t
こ伴うスプール弁67の変位に拘らず受圧面83には常
に全面に高圧側の圧力P1が作用され、ギヤ発生圧力P
GIこよりスプール弁67が左右されることがなく所定
割合の分流作用を行うものである。
Therefore, when the pressure on the servo valve 30 side is low (neutral state), the reaction force chamber 5
6 What is the pressure Pl at high pressure (high speed running state) > P
In the GI case, there is no working surface that allows the low pressure side pressure to act on the spool valve 67 and displace the spool valve 67 freely to open the reaction force chamber side passage B, and the spool valve 671 is less likely to be unbalanced. Therefore, it is suppressed that a large amount of flow is diverted to the reaction force chamber side passage B. Also, the pressure change t on the reaction force chamber side
Regardless of the accompanying displacement of the spool valve 67, the high pressure side pressure P1 is always applied to the entire surface of the pressure receiving surface 83, and the gear generated pressure P1 is always applied to the entire surface of the pressure receiving surface 83.
The spool valve 67 is not influenced by the GI and performs a flow diversion action at a predetermined rate.

〈発明の効果〉 以上のように本発明tこよるフローデバイダは、サーボ
弁側の出口ポートの絞り部を弁ハウジング側にテーパ面
を形成したものであるから、サーボ弁側か低圧のときの
低圧側圧力がスプール弁に作用してスプール弁を反力室
側通路が開き勝手になる方向へ変位させることがなくな
り、反力室通路へ多めの流量の分流を防止する。また、
前記絞り部のスプール弁には高圧側圧力を全面で受ける
受圧面が形成されるので、反力室側の圧力変化に伴うス
プール弁の変位に拘らず常に高圧側圧力が全面に作用し
、ギヤ発生圧力によりスプール弁が変位することがなく
なり、 フローデバイダ特性の不安定現象が解消され、またパワ
ーステアリングのフィーリングと向上する効果がある。
<Effects of the Invention> As described above, the flow divider according to the present invention has a constricted part of the outlet port on the servo valve side formed with a tapered surface on the valve housing side. The low-pressure side pressure does not act on the spool valve to displace the spool valve in the direction in which the reaction force chamber side passage opens easily, and a large flow rate is prevented from being diverted to the reaction force chamber passage. Also,
Since the spool valve of the throttle part is formed with a pressure receiving surface that receives the high pressure side pressure on the entire surface, the high pressure side pressure always acts on the entire surface regardless of the displacement of the spool valve due to pressure changes on the reaction force chamber side, and the gear The spool valve is no longer displaced by the generated pressure, the unstable phenomenon of flow divider characteristics is eliminated, and the feeling of power steering is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフローデバイダを適用した動力舵取装
置の圧力流体回路図、第2図は本発明によるフローデバ
イダの要部断面図、第3図は従来のフローデバイダの特
性図、第4図は従来のフローデバイダの要部断面図であ
る。 65・・・フローデバイダ、67・・争スプール弁、銘
・・会第1の出口ポート、691111・第2の出口ポ
ート、(資)・・9弁ハウジング、82・・−テーパ面
、83・・・受圧面、δ・・・入日ポート。
Fig. 1 is a pressure fluid circuit diagram of a power steering device to which the flow divider of the present invention is applied, Fig. 2 is a sectional view of main parts of the flow divider of the present invention, Fig. 3 is a characteristic diagram of a conventional flow divider, FIG. 4 is a sectional view of a main part of a conventional flow divider. 65... Flow divider, 67... Fighting spool valve, name... First outlet port, 691111, Second outlet port, (capital)... 9 valve housing, 82...-Tapered surface, 83... ...Pressure receiving surface, δ...Sun entry port.

Claims (1)

【特許請求の範囲】[Claims] 入口ポートより導入する圧力流体を弁ハウジングの内孔
内において移動可能なスプール弁によつて反力機構を備
えた動力舵取装置のサーボ弁側と反力室側とに一定の流
量で分流する2つの出口ポートを備えたフローデバイダ
において、前記サーボ弁側の出口ポートの弁ハウジング
に絞り部を形成するテーパ面を設け、スプール弁に反力
室側の圧力変化に伴うスプール弁の変位に拘らず高圧側
圧力が全面に付与される受圧面を形成したことを特徴と
するフローデバイダ。
Pressure fluid introduced from the inlet port is divided at a constant flow rate into the servo valve side and the reaction force chamber side of a power steering device equipped with a reaction force mechanism by a movable spool valve within the inner hole of the valve housing. In a flow divider equipped with two outlet ports, the valve housing of the outlet port on the servo valve side is provided with a tapered surface forming a constriction part, and the spool valve is provided with a tapered surface that forms a constriction part to prevent displacement of the spool valve due to pressure changes on the reaction force chamber side. A flow divider characterized by forming a pressure receiving surface to which high pressure side pressure is applied to the entire surface.
JP16199186A 1986-07-11 1986-07-11 Flow divider Expired - Lifetime JPH085398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16199186A JPH085398B2 (en) 1986-07-11 1986-07-11 Flow divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16199186A JPH085398B2 (en) 1986-07-11 1986-07-11 Flow divider

Publications (2)

Publication Number Publication Date
JPS6320265A true JPS6320265A (en) 1988-01-27
JPH085398B2 JPH085398B2 (en) 1996-01-24

Family

ID=15745959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16199186A Expired - Lifetime JPH085398B2 (en) 1986-07-11 1986-07-11 Flow divider

Country Status (1)

Country Link
JP (1) JPH085398B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483466A (en) * 1987-09-28 1989-03-29 Kayaba Industry Co Ltd Vane pump
JPH0567578U (en) * 1992-02-25 1993-09-07 豊田工機株式会社 Shunt valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483466A (en) * 1987-09-28 1989-03-29 Kayaba Industry Co Ltd Vane pump
JPH0567578U (en) * 1992-02-25 1993-09-07 豊田工機株式会社 Shunt valve

Also Published As

Publication number Publication date
JPH085398B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US4420934A (en) Automotive vehicle hydraulic system
US4311161A (en) Valve system in power steering systems
JPH0316305B2 (en)
US4768605A (en) Apparatus for use in a power steering system
US4852462A (en) Operating noise-free fluid flow distributor circuit for variable assist power steering system
EP0379124A3 (en) Torque-generating steering device with load-sensing capability
US5474145A (en) Hydraulic power steering apparatus
JPS6320265A (en) Flow divider
JPH042576A (en) Steering force control system for power steering
US5822988A (en) Flow control device of a power steering apparatus
JP3237457B2 (en) Flow control device in power steering device
JP2569367Y2 (en) Flow control valve
JP2606718B2 (en) Variable solenoid throttle valve
JPH0316306B2 (en)
JPS598043Y2 (en) flow control valve
JPH1067332A (en) Power steering device
JP2556168Y2 (en) Flow control valve for power steering device
JPS6143988Y2 (en)
JP2639536B2 (en) Speed-sensitive power steering device
JPS6143989Y2 (en)
JPH0631001B2 (en) Steering force control device for power steering device
JPS6335898Y2 (en)
JP3596431B2 (en) Flow control device in power steering device
JPS58149859A (en) Flow controller of power steering
JPS58221769A (en) Flow controller for power steering