JPH0631001B2 - Steering force control device for power steering device - Google Patents
Steering force control device for power steering deviceInfo
- Publication number
- JPH0631001B2 JPH0631001B2 JP23968285A JP23968285A JPH0631001B2 JP H0631001 B2 JPH0631001 B2 JP H0631001B2 JP 23968285 A JP23968285 A JP 23968285A JP 23968285 A JP23968285 A JP 23968285A JP H0631001 B2 JPH0631001 B2 JP H0631001B2
- Authority
- JP
- Japan
- Prior art keywords
- passage
- pressure
- valve
- steering
- control valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Power Steering Mechanism (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、車速に応じた油圧力を供給し、ハンドルトル
クを車速に応じて変化させる反力機構を備えた動力舵取
装置の操舵力制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a steering force of a power steering apparatus that includes a reaction force mechanism that supplies hydraulic pressure according to vehicle speed and changes steering wheel torque according to vehicle speed. The present invention relates to a control device.
<従来の技術> 車速等に比例した油圧力を反力機構に導入し、動力舵取
装置の操舵力を車速等に応じて制御するもの、特に反力
機構に導入する油圧力を、動力舵取装置と供給ポンプと
を結ぶ高圧ラインの圧油を利用して制御するものは公知
である。<Prior Art> A device that controls the steering force of the power steering device according to the vehicle speed by introducing an oil pressure proportional to the vehicle speed into the reaction force mechanism, especially the oil pressure introduced into the reaction force mechanism. It is publicly known that control is performed by using pressure oil in a high-pressure line that connects the intake device and the supply pump.
一般にこの種の制御装置は、操舵圧を必要とする低速走
行時には反力機構に加える油圧力を低くし、逆に操舵圧
をほとんど必要としない高速時には高くする必要があ
る。Generally, in this type of control device, it is necessary to lower the oil pressure applied to the reaction force mechanism during low speed traveling that requires steering pressure, and conversely to increase the steering pressure during high speed where almost no steering pressure is required.
従来では第11図に示すように反力機構100に加える
油圧力の制御は、ポンプ110から供給され流量制御さ
れた流体を動力舵取装置120と反力機構100に分流
させる分流制御弁130を設けるとともに、この分流流
体を車速等の信号により油槽側への放出量を制御する電
磁制御弁140が設けられている。更に高速走行時にお
ける操舵力変化を高めるために、操舵圧の増大に伴って
反力機構側への分流割合を高めるべく操舵圧応答可変絞
り150を分流通路160中に設けている。Conventionally, as shown in FIG. 11, the hydraulic pressure applied to the reaction mechanism 100 is controlled by a flow control valve 130 that divides the fluid, which is supplied from the pump 110 and whose flow rate is controlled, into the power steering device 120 and the reaction mechanism 100. An electromagnetic control valve 140 is provided for controlling the discharge amount of this branched fluid to the oil tank side by a signal such as a vehicle speed. Further, in order to increase the change in steering force during high-speed traveling, a steering pressure response variable throttle 150 is provided in the diversion passage 160 in order to increase the diversion ratio to the reaction force mechanism side as the steering pressure increases.
<発明が解決しようとする問題点> かかる可変絞り弁150の一端には、操舵圧が導入され
ていて最大負荷時にはレリーフ設定圧までに達するた
め、これに内蔵されたスプリング151のバネ定数は高
く設定されている。これに伴い弁体作動範囲xがバラツ
クと分流制御弁130の可変絞り面積変化も第12図に
示すように大きくなる。従って作動範囲xの調整が必要
となり、調整機構を必要とするばかりでなく、組付調整
の煩わしさをともない、コスト高を招く問題がある。<Problems to be Solved by the Invention> Since steering pressure is introduced at one end of the variable throttle valve 150 and reaches the relief set pressure at maximum load, the spring constant of the spring 151 incorporated therein is high. It is set. Along with this, the valve operating range x also varies and the variable throttle area change of the diversion control valve 130 also increases as shown in FIG. Therefore, the operating range x needs to be adjusted, and not only an adjusting mechanism is required, but also the assembling adjustment is troublesome and the cost is increased.
<問題点を解決するための手段> 本発明はかかる可変絞り弁の作動範囲xのバラツキによ
る分流制御弁の流量制御特性のバラツキを少くしようと
するもので、可変絞りと直列に固定絞りを設けたもので
ある。<Means for Solving the Problems> The present invention is intended to reduce the variation in the flow control characteristics of the shunt control valve due to the variation in the operating range x of the variable throttle valve. A fixed throttle is provided in series with the variable throttle. It is a thing.
<作用> 本発明は、固定絞りを可変絞りに対し直列に入れたの
で、操舵圧に対する絞り開度にバラツキがあっても分流
流路中の合成絞り抵抗としての変化度は低減され、第1
0図に示すようにΔqの変化量が小さくり、分流制御弁
の流量制御特性のバラツキは非常に小さくなり、可変絞
り弁の作動範囲を決定する特別な調整手段は不要とな
る。このため組付後の調整の必要もなくなる。<Operation> Since the fixed throttle is inserted in series with the variable throttle in the present invention, even if there is a variation in the throttle opening with respect to the steering pressure, the degree of change as the combined throttle resistance in the shunt flow path is reduced.
As shown in FIG. 0, the amount of change in Δq is small, the variation in the flow control characteristics of the diversion control valve is very small, and no special adjusting means for determining the operating range of the variable throttle valve is required. Therefore, there is no need for adjustment after assembly.
<実施例> 以下本発明の実施例を図面に基づいて説明する。第1図
において、11は動力舵取装置の本体をなすハウジング
本体、12はハウジング本体11に固着されている弁ハ
ウジングである。このハウジング本体11及び弁ハウジ
ング12内には一対の軸受13,14を介してピニオン
軸(出力軸)21が回転自在に軸承されており、このピ
ニオン軸21にはこれと交差する方向に摺動可能なラッ
ク軸22のラック歯22aが噛合している。このラック
軸22は、パワーシリンダ90(第3図参照)のピスト
ンと連結され、その両端は所要の操舵リンク機構を介し
て操向車輪に連結されている。<Examples> Examples of the present invention will be described below with reference to the drawings. In FIG. 1, 11 is a housing main body which is the main body of the power steering apparatus, and 12 is a valve housing fixed to the housing main body 11. A pinion shaft (output shaft) 21 is rotatably supported in the housing body 11 and the valve housing 12 via a pair of bearings 13 and 14, and the pinion shaft 21 slides in a direction intersecting with the pinion shaft 21. The rack teeth 22a of the possible rack shaft 22 mesh with each other. The rack shaft 22 is connected to a piston of a power cylinder 90 (see FIG. 3), and both ends of the rack shaft 22 are connected to steering wheels via a required steering link mechanism.
弁ハウジング12の弁孔内には、サーボ弁30が収納さ
れている。サーボ弁30は、操舵軸としての入力軸23
と一体的に形成したロータリ弁部材31と、このロータ
リ弁部材31の外周に同心的かつ相対的回転可能に嵌合
したスリーブ弁部材32を主要構成部材としている。ロ
ータリ弁部材31は、これと一体の入力軸23に一端を
連結したトーションバー24を介してピニオン軸21に
可撓的に連結されている。A servo valve 30 is housed in the valve hole of the valve housing 12. The servo valve 30 has an input shaft 23 as a steering shaft.
A rotary valve member 31 integrally formed with the rotary valve member 31 and a sleeve valve member 32 concentrically and relatively rotatably fitted to the outer periphery of the rotary valve member 31 are main components. The rotary valve member 31 is flexibly connected to the pinion shaft 21 via a torsion bar 24, one end of which is connected to an input shaft 23 that is integral with the rotary valve member 31.
また、ロータリ弁部材31の外周には、図示しないが、
その軸方向に伸びる複数のランド部と溝部とが等間隔に
形成されており、これの溝底部より内周部に連通する連
通路37が穿設されている。入力軸23に前記内周部と
弁ハウジング12内の低圧室38とを連通する通路39
が設けられている。一方スリーブ弁部材32の内周に
も、その軸方向に延びる複数のランド部と溝部が等間隔
に形成され、各溝部よりスリーブ弁部材32の外周に開
口する分配穴40,41が設けられている。供給ポート
35より供給される圧力流体は、サーボ弁が中立状態で
あればランド部両側の溝部に均等に流れ、連通路37及
び通路39を経て低圧室38より排出ポート36に流出
する。この場合、両分配ポート33,34は低圧で等し
い圧力となっているためパワーシリンダ90は作動され
ない。サーボ弁30が中立状態から偏位すれば、一方の
分配穴40又は41には供給ポート35より圧油が供給
され、他方の分配穴41又は40にパワーシリンダ90
から排出された流体が流入し、連通路37、通路39、
低圧室38を経て排出ポート36に放出されるようにな
っている。Further, although not shown on the outer circumference of the rotary valve member 31,
A plurality of lands extending in the axial direction and the groove are formed at equal intervals, and a communication passage 37 is formed so as to communicate from the groove bottom to the inner peripheral portion. A passage 39 that connects the input shaft 23 with the inner peripheral portion and the low-pressure chamber 38 in the valve housing 12.
Is provided. On the other hand, on the inner circumference of the sleeve valve member 32, a plurality of lands extending in the axial direction and grooves are formed at equal intervals, and distribution holes 40, 41 opening from the respective grooves to the outer circumference of the sleeve valve member 32 are provided. There is. When the servo valve is in the neutral state, the pressure fluid supplied from the supply port 35 flows evenly in the groove portions on both sides of the land portion, and then flows out from the low pressure chamber 38 to the discharge port 36 via the communication passage 37 and the passage 39. In this case, the power cylinder 90 is not operated because both distribution ports 33 and 34 have low pressure and equal pressure. When the servo valve 30 is deviated from the neutral state, pressure oil is supplied to the one distribution hole 40 or 41 from the supply port 35, and the power cylinder 90 is supplied to the other distribution hole 41 or 40.
The fluid discharged from the inlet flows into the communication passage 37, the passage 39,
It is designed to be discharged to the discharge port 36 via the low pressure chamber 38.
反力機構は次の通りである。ロータリ弁部材31のピニ
オン軸21側の端部には第2図に示すように半径方向に
両側に突出する突起部50が形成されており、この突起
部50と対応するピニオン軸21には突起部50を入力
軸23の軸線回りに微少角度旋回可能に遊嵌する嵌合溝
51が形成されている。The reaction force mechanism is as follows. As shown in FIG. 2, the rotary valve member 31 is provided at its end portion on the pinion shaft 21 side with protrusions 50 protruding in both radial directions, and the pinion shaft 21 corresponding to the protrusion 50 has a protrusion. A fitting groove 51 is formed in which the portion 50 is loosely fitted around the axis of the input shaft 23 so as to be pivotable by a small angle.
ピニオン軸21には前記突起部50をはさんでその両側
に挿通穴53が形成され、この挿通穴53にそれぞれプ
ランジャ54が摺動可能に挿通されている。このプラン
ジャ54はその後方に形成された反力室55に導入され
る油圧力によって前方へ突出され、前記突起部50をそ
の両側より挾持するとともにその前進端はプランジャ5
4に形成された大径部54aによって規制されている。
57は車速等に応じた油圧力を導入するポート、58は
通路、59はこの通路58と前記反力室55とを連通す
る環状溝である。Insertion holes 53 are formed on both sides of the pinion shaft 21 so as to sandwich the projection 50, and plungers 54 are slidably inserted into the insertion holes 53, respectively. The plunger 54 is projected forward by the hydraulic pressure introduced into the reaction force chamber 55 formed in the rear of the plunger 54, and holds the protrusion 50 from both sides thereof, and the forward end of the plunger 54 has the forward end.
It is regulated by the large-diameter portion 54a formed in No. 4.
Reference numeral 57 is a port for introducing hydraulic pressure according to the vehicle speed, 58 is a passage, and 59 is an annular groove that connects the passage 58 and the reaction chamber 55.
なお、上記構成の反力機構は、突起部50の両側に設け
られたプランジャ54にて突起部50を回転させる方向
に油圧力を作用させるものであるが、プランジャを半径
方向より押圧するラジアル方式であるいは軸方向に押圧
するスラスト方式のものでもよい。The reaction force mechanism having the above-described structure applies hydraulic pressure in the direction in which the protrusions 50 are rotated by the plungers 54 provided on both sides of the protrusion 50. It may be a thrust type one that is pressed by or in the axial direction.
第3図において、64は自動車エンジンによって駆動さ
れる供給ポンプ60からの吐出圧油の流量QOを一定流
量QCに制御する流量制御弁である。この流量制御弁6
1は、メータリングオリフィス62と、このメータリン
グオリフィス62の前後圧に応じて作動され、この前後
圧を常に一定に保持するように低圧側に通じたバイパス
通路63を開口制御するバイパス弁64によって構成さ
れている。尚、供給ポンプ60が定速モータ駆動式の一
定流量を吐出するものである場合には前記流量制御弁6
1は不用である。In Figure 3, 64 is a flow control valve for controlling the flow rate Q O the discharge pressure oil from the supply pump 60 which is driven by the vehicle engine at a constant flow rate Q C. This flow control valve 6
Reference numeral 1 denotes a metering orifice 62 and a bypass valve 64 which is operated according to the front-rear pressure of the metering orifice 62, and which controls the opening of a bypass passage 63 communicating with the low pressure side so as to keep the front-rear pressure constant. It is configured. If the supply pump 60 discharges a constant flow rate of a constant speed motor drive type, the flow rate control valve 6
1 is unnecessary.
65は前記流量制御弁61の高圧側と第1供給通路66
を介して接続する分流制御弁(フローデバイダ)であ
る。この分流制御弁65は、前記流量QCを制御スプー
ル67によりサーボ弁30側の第2供給通路45への流
量QGと、反力室55側の第2分岐通路46への流量Q
Rとに分流する。Reference numeral 65 denotes the high pressure side of the flow control valve 61 and the first supply passage 66.
It is a diversion control valve (flow divider) connected via. The diverter valve 65, the flow rate Q of the flow rate Q G of the second supply passage 45 of the servo valve 30 side by the flow rate Q C of the control spool 67, into the second branch passage 46 of the reaction chamber 55 side
Divide into R and.
80は可変絞り弁である。この絞り弁80は、通路91
を介して導入されるギヤ発生圧力PGとスプリング82
の撥力との圧力バランスに基づいて摺動される摺動スプ
ール83を有し、この摺動スプール83と弁孔との間で
分流絞り84を形成している。この分流絞り84は、初
期状態において固定絞りとして機能し、その後ギヤ発生
圧力PGによる摺動スプール83の変位に伴い絞り開口
面積が変化する可変絞りとして機能する。この分流絞り
84と直列に固定絞り85が設けられ、第1分岐通路9
3を流れる圧油の流量を制御するようになっている。こ
の分岐通路93はその一端を供給通路66ならびに制御
スプール67に形成された小孔95を介して分流制御弁
65の前部室96と連通し、また他端は前記制御スプー
ル67に形成された連通孔97ならびに98を介して分
流制御弁65の後部室99と連通している。従って絞り
弁80の分流絞り84の絞り開口面積が変化することに
より分流制御弁65の前後室95,99の圧力バランス
が変化し、第1供給通路66と第2供給通路45間の開
度並びに第1分岐通路93と第2分岐通路46間の開度
をそれぞれ調整することにより、サーボ弁30側の第2
供給通路45への流量QGと、反力室56側の第2分岐
通路46への流量QRとの分流割合を変更するようにな
っている。なお、69はバランス用のスプリングであ
る。Reference numeral 80 is a variable throttle valve. This throttle valve 80 has a passage 91
Gear generation pressure P G introduced via the spring and the spring 82
It has a sliding spool 83 that slides on the basis of the pressure balance with the repulsive force, and forms a diversion throttle 84 between the sliding spool 83 and the valve hole. The diversion restrictor 84 functions as a fixed restrictor in the initial state, and thereafter functions as a variable restrictor whose restrictor opening area changes with the displacement of the sliding spool 83 due to the gear-generated pressure P G. A fixed throttle 85 is provided in series with the diversion throttle 84, and the first branch passage 9
The flow rate of the pressure oil flowing through No. 3 is controlled. One end of the branch passage 93 communicates with the front chamber 96 of the diversion control valve 65 via the supply passage 66 and a small hole 95 formed in the control spool 67, and the other end thereof communicates with the control spool 67. The holes 97 and 98 communicate with the rear chamber 99 of the diversion control valve 65. Therefore, the pressure balance between the front and rear chambers 95 and 99 of the diversion control valve 65 changes due to the change of the throttle opening area of the diversion throttle 84 of the throttle valve 80, and the opening degree between the first supply passage 66 and the second supply passage 45 and By adjusting the opening between the first branch passage 93 and the second branch passage 46, the second valve on the servo valve 30 side can be adjusted.
And the flow rate Q G of the supply passage 45, so as to change the shunt ratio between the flow rate Q R of the second branch passage 46 of the reaction force chamber 56 side. In addition, 69 is a balance spring.
また反力室55側の通路46には車速等に応じて制御さ
れる電磁制御弁70が介挿されている。この電磁制御弁
70は、第4図に示すようにバルブ本体71とこのバル
ブ本体71の内孔内に摺動可能に装嵌されたスプール7
2と、コンピュータ等によって制御されるソレノイド制
御回路(図略)から車速信号Vに応じた電流Iが供給さ
れるソレノイド73とを備えている。スプール72は通
常スプリング74により下降端に保持され、分流制御弁
65ならびにタンクに通じる通路76,77間を小孔7
8のみにて連通している。しかしてソレノイド73に通
電されると、その電流値Iに応じてスプール72はスプ
リング74に抗して変位して通路76,77を小孔78
ならびにスリット79を介して連通させるようになって
いる。An electromagnetic control valve 70 controlled according to the vehicle speed or the like is inserted in the passage 46 on the reaction force chamber 55 side. As shown in FIG. 4, the electromagnetic control valve 70 includes a valve body 71 and a spool 7 slidably fitted in an inner hole of the valve body 71.
2 and a solenoid 73 to which a current I corresponding to a vehicle speed signal V is supplied from a solenoid control circuit (not shown) controlled by a computer or the like. The spool 72 is normally held at the lower end by a spring 74, and the small hole 7 is formed between the flow control valve 65 and the passages 76 and 77 leading to the tank.
It communicates only with 8. Then, when the solenoid 73 is energized, the spool 72 is displaced against the spring 74 in accordance with the current value I and the passages 76 and 77 are opened through the small holes 78.
In addition, the slit 79 is used for communication.
なお、第3図において90はパワーシリンダ、94は通
路46内が所定圧以上になると圧力を逃す安全用レリー
フ弁である。In FIG. 3, 90 is a power cylinder, and 94 is a safety relief valve that releases the pressure when the pressure in the passage 46 exceeds a predetermined pressure.
次に上記構成の動作について説明する。供給ポンプ60
より吐出された圧油の流量QOを流量制御弁61にて一
定流量QCに制御する。この一定流量QCに制御された
圧油は分流制御弁65によって第5図に示す分流特性で
もってサーボ弁30側と反力室56側に対してそれぞれ
流量QG,QRとに分流される。低速状態では第6図に
示すようにソレノイド73に大きな電流Iが供給され、
これによって電磁制御弁70のスプール72が大きく変
位し、スリット79を全開状態にする。従って通路46
側に分流された圧油はタンクにドレーンされ、反力油圧
PRはほとんど発生しない。このためハンドル操作によ
り入力軸23が回転されると、プランジャ54は容易に
押し戻され、これによりスリーブ弁部材32とロータリ
弁部材31とが相対回転され、マニアルトルクTMに対
するギヤ発生圧力PGの変化は第9図の低速、据切の曲
線で示す特性となり、軽快なハンドル操作ができる。Next, the operation of the above configuration will be described. Supply pump 60
Controlled to a constant flow rate Q C and the flow rate Q O more discharged pressure oil in the flow control valve 61. Each flow rate Q G to this constant flow rate Q pressure oil is controlled to C is servo valve with a shunt characteristic shown in FIG. 5 by the flow dividing control valve 65 30 side and the reaction force chamber 56 side, is diverted to the Q R It In the low speed state, a large current I is supplied to the solenoid 73 as shown in FIG.
As a result, the spool 72 of the electromagnetic control valve 70 is largely displaced, and the slit 79 is fully opened. Therefore passage 46
Pressure oil is diverted to the side is drained into the tank, reaction-force oil pressure P R is hardly generated. Therefore, when the input shaft 23 is rotated by the handle operation, the plunger 54 is easily pushed back, whereby the sleeve valve member 32 and the rotary valve member 31 are relatively rotated, and the gear generation pressure P G with respect to the manual torque T M is changed. The change has the characteristics shown by the curve of low speed and stationary rotation in FIG. 9, and a light steering wheel operation can be performed.
その後車速が増加すると、第6図に示すようにその車速
信号Vの増加に従い、電磁制御弁70のソレノイド73
に供給される制御電流値Iが低下する。これによりスプ
ール72が変位してスリット79の開度が小さくなり、
その結果タンクへ戻される油圧の流量が制限され、反力
油圧PRが高められる。この圧力油圧PRの上昇に伴
い、突起部50に対するプランジャ54の押圧力が増大
し、それだけハンドルが重くなる。After that, when the vehicle speed increases, the solenoid 73 of the electromagnetic control valve 70 follows the increase of the vehicle speed signal V as shown in FIG.
The control current value I supplied to is reduced. As a result, the spool 72 is displaced and the opening of the slit 79 is reduced,
As a result, the flow rate of the hydraulic pressure returned to the tank is limited and the reaction force hydraulic pressure P R is increased. With increasing pressure hydraulic P R, the pressing force of the plunger 54 is increased relative to the protrusion 50, it is correspondingly handle becomes heavy.
一方ハンドルを操作すると、サーボ弁30側に通じる通
路45にギヤ発生圧力PGが発生する。このギヤ発生圧
力PGにより絞り弁80の分流絞り84の絞り開口面積
Sは第7図に示すように次第に増大し、摺動スプール8
3がストロークエンドに到達すると一定となる。これに
より、絞り弁80の分流絞り84と固定絞り85を介し
て流体は分流制御弁65に流入する。かかる分流絞り8
5と固定絞り85は直列に設けられているので、合成さ
れた流量抵抗の変化率は分流絞り84単体の変化率に対
して小さくなる。その結果分流制御弁65の前後室9
6,99の圧力バランスの変化も小さくなり分流弁の流
量特性変化を小さくする。分流特性としては第5図に示
すようにギャ発生圧の増大に伴い分流制量QGを減じる
とともに反力室側への分流流量QRを増加することとな
り、この分流流量QRの増大により反力油圧PRはギヤ
発生圧力PGに応じて上昇する。この反力油圧PRは第
8図から明らかなごとく低速、据切状態ではその上昇度
合は低く、高速になるに従って急激に上昇する傾向とな
る一方、マニアルトルクTMに対するギヤ発生圧力PG
の変化特性は第9図に示すようになる。特に可変絞りと
直列に固定絞りを設けた構成であるので、可変絞りの作
動範囲にバラツキがあってもそのバラツキの影響は固定
絞りによって吸収され、低速時にはマニアルトルクTM
に対するギヤ発生圧力PGが低く、高速時にはハンドル
を切込んで行くに従い重めとなり、手ごたえ感のある操
舵フィーリングが得られる。On the other hand, when the handle is operated, the gear generation pressure P G is generated in the passage 45 communicating with the servo valve 30 side. This gear generation pressure P G causes the throttle opening area S of the diversion throttle 84 of the throttle valve 80 to gradually increase as shown in FIG.
When 3 reaches the stroke end, it becomes constant. As a result, the fluid flows into the diversion control valve 65 via the diversion throttle 84 of the throttle valve 80 and the fixed throttle 85. This shunt restrictor 8
5 and the fixed throttle 85 are provided in series, the rate of change of the combined flow resistance becomes smaller than the rate of change of the shunt throttle 84 alone. As a result, the front and rear chambers 9 of the diversion control valve 65
The change in the pressure balance of Nos. 6 and 99 is also small, and the change in the flow rate characteristic of the flow dividing valve is small. The shunt characteristics becomes possible to increase the shunt flow rate Q R of the counter force chamber side with reducing the shunt system quantity Q G with increasing gears developed pressure as shown in FIG. 5, the increase of the shunt flow rate Q R The reaction force hydraulic pressure P R increases according to the gear generation pressure P G. The reaction-force oil pressure P R is slow as is evident from FIG. 8, the degree of increase is low in the据切state, whereas tends to rapidly increase with increasing speed, the gear occurs for manual torque T M pressure P G
The change characteristic of is as shown in FIG. In particular, since in the configuration in which a variable throttle in series with the fixed throttle, the influence of the variable throttle actuation thereof variation even if there are variations in the range is absorbed by the fixed throttle, manual torque T M is at low speed
Since the gear generation pressure P G is low, the steering wheel becomes heavier as the steering wheel is cut in at high speeds, and a steering feeling with a feeling of crunch can be obtained.
<発明の効果> 上記詳述したように本発明装置は、供給ポンプとサーボ
弁を接続する供給通路並びに供給通路から分岐して反力
室と接続する分岐通路の途中に設けられ、供給通路と分
岐通路の圧力差に応じて供給通路と分岐通路の開度をそ
れぞれ調整してサーボ弁と反力室に供給される流量割合
を変える分流制御弁と、分流制御弁の上流側の分岐通路
の途中に設けられサーボ弁の操舵に伴うギヤ発生圧力の
上昇に応じて分岐通路の開度を増大して分流制御弁の上
流側の供給通路と分岐通路の圧力差を変える可変絞り
と、この可変絞りと直列に設けられ、分流制御弁の上流
側の供給通路と分岐通路の圧力差を発生させる固定絞り
とを備えた構成であるため、可変絞りのバネ定数が高い
ことによる作動範囲のバラツキがあっても、分流特性の
変化としては大幅にこれを低減することができる。これ
によって作動範囲の特別な調整手段は必要としないので
機構の簡素化、組付の容易化を図ることができる。更に
高速走行状態においてはマニアルトルクに対するギヤ発
生圧力の特性の傾きを小さくしてパワーアシストを少く
することができ、これによって高速走行時にはハンドル
を切込んで行くに従って手ごたえ感のある操舵フィーリ
ングが得られる効果を有する。<Effects of the Invention> As described in detail above, the device of the present invention is provided in the middle of the supply passage that connects the supply pump and the servo valve and the branch passage that branches from the supply passage and connects to the reaction chamber. According to the pressure difference in the branch passage, the flow control valve that adjusts the opening of the supply passage and the branch passage to change the flow rate supplied to the servo valve and the reaction chamber, and the branch passage upstream of the flow control valve A variable throttle provided on the way to change the pressure difference between the supply passage on the upstream side of the diversion control valve and the branch passage by increasing the opening of the branch passage according to the increase in the gear generated pressure due to the steering of the servo valve. Since it is provided in series with the throttle and has a fixed throttle that generates a pressure difference between the supply passage on the upstream side of the diversion control valve and the branch passage, there is variation in the operating range due to the high spring constant of the variable throttle. Even if there is a change in shunt characteristics As a result, this can be greatly reduced. As a result, no special adjustment means for the operating range is required, so that the mechanism can be simplified and the assembly can be facilitated. Furthermore, in high-speed driving conditions, the gradient of the characteristic of the pressure generated by the gear against the manual torque can be reduced to reduce the power assist, which makes it possible to obtain a steering feeling with a feeling of touch as the steering wheel is cut during high-speed driving. Have the effect of being
図面は本発明の実施例を示すもので、第1図は動力舵取
装置の断面図、第2図は第1図のII−II線断面矢視図、
第3図は本発明の油圧系統図、第4図は電磁制御弁の断
面図、第5図は分流制御弁の分流特性を示す図、第6図
は電磁制御弁の制御特性を示す図、第7図は絞り弁の制
御特性を示す図、第8図は反力油圧の変化特性を示す
図、第9図はギヤ発生圧力の変化特性を示す図、第10
図は固定絞りを分流路中に入れた場合の流量制御特性を
示す図、第11図,第12図は従来装置を示すもので、
第11図は油圧系統図、第12図は弁体作動範囲xのバ
ラツキによる分流制御弁の可変絞り面積変化を示す図で
ある。 21……ピニオン軸、23……入力軸、30……サーボ
弁、45……第2供給通路、46……第2分岐通路、5
0……突起部、54……プランジャ、55……反力室、
65……分流制御弁、66……第1供給通路、70……
電磁制御弁、80……可変絞り弁、84……分流絞り、
85……固定絞り、93……第1分岐通路。The drawings show an embodiment of the present invention. FIG. 1 is a sectional view of a power steering apparatus, FIG. 2 is a sectional view taken along the line II-II of FIG.
FIG. 3 is a hydraulic system diagram of the present invention, FIG. 4 is a cross-sectional view of an electromagnetic control valve, FIG. 5 is a diagram showing a diversion characteristic of a diversion control valve, and FIG. 6 is a diagram showing a control characteristic of an electromagnetic control valve. FIG. 7 is a diagram showing the control characteristic of the throttle valve, FIG. 8 is a diagram showing the change characteristic of reaction force hydraulic pressure, FIG. 9 is a diagram showing the change characteristic of gear generation pressure, and FIG.
The figure shows the flow rate control characteristics when a fixed throttle is placed in the branch channel, and FIGS. 11 and 12 show the conventional device.
FIG. 11 is a hydraulic system diagram, and FIG. 12 is a diagram showing changes in variable throttle area of the flow dividing control valve due to variations in the valve body operating range x. 21 ... Pinion shaft, 23 ... Input shaft, 30 ... Servo valve, 45 ... Second supply passage, 46 ... Second branch passage, 5
0 ... Projection, 54 ... Plunger, 55 ... Reaction chamber,
65 ... Flow control valve, 66 ... First supply passage, 70 ...
Electromagnetic control valve, 80 ... Variable throttle valve, 84 ... Shunt throttle,
85: fixed throttle, 93: first branch passage.
Claims (1)
動されパワーシリンダへの圧油の給排を制御するサーボ
弁と、車速に応じてハンドルトルクを変化させる反力機
構と、この反力機構の反力室に通じる通路上に設けら
れ、車速に応じて前記反力室に発生する圧油を制御する
電磁制御弁を備えた動力舵取装置の操舵力制御装置にお
いて、供給ポンプとサーボ弁を接続する供給通路並びに
供給通路から分岐して反力室と接続する分岐通路の途中
に設けられ、供給通路と分岐通路の圧力差に応じて供給
通路と分岐通路の開度をそれぞれ調整してサーボ弁と反
力室に供給される流量割合を変える分流制御弁と、分流
制御弁の上流側の分岐通路の途中に設けられサーボ弁の
操舵に伴うギヤ発生圧力の上昇に応じて分岐通路の開度
を増大して分流制御弁の上流側の供給通路と分岐通路の
圧力差を変える可変絞りと、この可変絞りと直列に設け
られ、分流制御弁の上流側の供給通路と分岐通路の圧力
差を発生させる固定絞りとを備えた動力舵取装置の操舵
力制御装置。1. A servo valve which is operated based on relative rotation between an input shaft and an output shaft to control supply and discharge of pressure oil to and from a power cylinder, and a reaction force mechanism which changes a steering wheel torque according to a vehicle speed. In a steering force control device of a power steering device, which is provided on a passage communicating with a reaction force chamber of a reaction force mechanism and includes an electromagnetic control valve for controlling pressure oil generated in the reaction force chamber according to a vehicle speed, a supply pump Is provided in the middle of a supply passage connecting the servo valve and the supply passage and a branch passage branched from the supply passage and connected to the reaction chamber, and the opening degrees of the supply passage and the branch passage are adjusted according to the pressure difference between the supply passage and the branch passage. Depending on the increase in the pressure generated by the gear, which is provided in the middle of the branch passage upstream of the diversion control valve and the diversion control valve that adjusts to change the flow rate supplied to the servo valve and the reaction chamber. Divergence control by increasing the opening of the branch passage A variable throttle that changes the pressure difference between the upstream supply passage and the branch passage, and a fixed throttle that is provided in series with the variable throttle and that generates a pressure difference between the upstream supply passage and the branch passage of the diversion control valve. Steering force control device for power steering system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23968285A JPH0631001B2 (en) | 1985-10-25 | 1985-10-25 | Steering force control device for power steering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23968285A JPH0631001B2 (en) | 1985-10-25 | 1985-10-25 | Steering force control device for power steering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6299262A JPS6299262A (en) | 1987-05-08 |
JPH0631001B2 true JPH0631001B2 (en) | 1994-04-27 |
Family
ID=17048341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23968285A Expired - Lifetime JPH0631001B2 (en) | 1985-10-25 | 1985-10-25 | Steering force control device for power steering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0631001B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4901812A (en) * | 1988-11-16 | 1990-02-20 | General Motors Corporation | Variable effort steering system |
DE10337376A1 (en) * | 2003-08-13 | 2005-04-14 | Thyssenkrupp Presta Steertec Gmbh | Reaction system |
WO2016002088A1 (en) * | 2014-07-04 | 2016-01-07 | 三菱電機株式会社 | Coolant distributor and heat pump device comprising coolant distributor |
-
1985
- 1985-10-25 JP JP23968285A patent/JPH0631001B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6299262A (en) | 1987-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4676334A (en) | Power steering system with hydraulic reaction | |
CA1044990A (en) | Controller assembly | |
US4488569A (en) | Apparatus with staged pressure differential for controlling fluid flow | |
JPH0645343B2 (en) | Steering force control device for power steering device | |
JP2503574B2 (en) | Vehicle power steering device | |
US4805714A (en) | Power steering system with hydraulic reaction | |
JPH0631001B2 (en) | Steering force control device for power steering device | |
JPH0255260B2 (en) | ||
JPH0619426Y2 (en) | Steering force control device for power steering device | |
JPH0631004B2 (en) | Steering force control device for power steering device | |
JPH0624302Y2 (en) | Steering force control device for power steering device | |
JPS61275062A (en) | Steerability control device for power steering device | |
JPH0619420Y2 (en) | Steering force control device for power steering device | |
JPH0811538B2 (en) | Steering force control device for power steering device | |
JPH0624959B2 (en) | Steering force control device for power steering device | |
JPH0628378Y2 (en) | Steering force control device for power steering device | |
JPH07121703B2 (en) | Steering force control device for power steering device | |
JPH0624956B2 (en) | Steering force control device for power steering device | |
JPH0674051B2 (en) | Steering force control device for power steering device | |
JP2606718B2 (en) | Variable solenoid throttle valve | |
JPS62139755A (en) | Steering force control device for power steering apparatus | |
JPS61287863A (en) | Steering force control device in power steering device | |
JPS61202976A (en) | Steering force control device of power steering device | |
JPS61191470A (en) | Steering force control device of power steering gear | |
JPH0624301Y2 (en) | Steering force control device for power steering device |