JPS6299262A - Steering force control device of power steering device - Google Patents

Steering force control device of power steering device

Info

Publication number
JPS6299262A
JPS6299262A JP23968285A JP23968285A JPS6299262A JP S6299262 A JPS6299262 A JP S6299262A JP 23968285 A JP23968285 A JP 23968285A JP 23968285 A JP23968285 A JP 23968285A JP S6299262 A JPS6299262 A JP S6299262A
Authority
JP
Japan
Prior art keywords
valve
throttle
pressure
steering
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23968285A
Other languages
Japanese (ja)
Other versions
JPH0631001B2 (en
Inventor
Mikio Suzuki
幹夫 鈴木
Katsuyuki Takeuchi
克之 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP23968285A priority Critical patent/JPH0631001B2/en
Publication of JPS6299262A publication Critical patent/JPS6299262A/en
Publication of JPH0631001B2 publication Critical patent/JPH0631001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need to regulate a working range of a varying throttle, by a method wherein a varying throttle, the opening of which is controlled by a gear-generated pressure along with steering of a servo valve, is inserted in the branch passage of a branch flow control valve, and a stationary throttle is situated in series to the varying throttle. CONSTITUTION:A flow rate control valve 61 is formed with a metering orifice 62 and a bypass valve 64, operated according to the front and the rear pressure of the orifice 62, and opened to control a bypass passage 63 communicated to the lower pressure side so as to hold the front and the rear pressure at a specified value. The high pressure side of the flow rate control valve 61 is connected to a branch flow control valve 65, and the valve 65 branches a flow rate Qc into the servo motor side and the reaction force chamber side by means of a control spool 67. A throttle valve 80 has a slide spool 83, and a branch throttle 84 is formed between the spool 83 and a valve hole. A stationary throttle 85 is located in series to the branch flow throttle 84, and controls a flow rate of pressure oil flowing through a branch passage 93.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、車速等に応じた油圧力を供給し、ハンドルト
ルクを車速等に応じて変化させる反力機構を備えた動力
舵取装置の操舵力制御装置に関するものである。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention relates to a power steering device equipped with a reaction force mechanism that supplies hydraulic pressure according to vehicle speed, etc., and changes steering torque according to vehicle speed, etc. The present invention relates to a steering force control device.

〈従来の技術〉 車速等に比例した油圧力を反力機構に導入し、動力舵取
装置の操舵力を車速等に応じて制御するもの、特に反力
機構に導入する油圧力を、動力舵取装置と供給ポンプと
を結ぶ高圧ラインの圧油を利用して制御するものは公知
である。
<Prior art> Hydraulic pressure proportional to the vehicle speed, etc. is introduced into the reaction force mechanism to control the steering force of the power steering device according to the vehicle speed, etc. In particular, the hydraulic pressure introduced into the reaction force mechanism is introduced into the reaction force mechanism. It is known that the control is performed using pressure oil in a high pressure line connecting the intake device and the supply pump.

一般にこの種の制御装置は、操舵圧を必要とする低速走
行時には反力機構に加える油圧力を低(し、逆に操舵圧
をほとんど必要としない高速時には高くする必要がある
In general, this type of control device requires a low hydraulic pressure to be applied to the reaction force mechanism when driving at low speeds, which requires steering pressure, and a high hydraulic pressure at high speeds, when little steering pressure is required.

従来では第11図に示すように反力機構100に加える
油圧力の制御は、ポンプ110から供給され流量制御さ
れた流体を動力舵取装置120と反力機構100に分流
させる分流制御弁130を設けるとともに、この分流流
体を車速等の信号により油槽側への放出量を制御する電
磁制御弁140が設けられている。更に高速走行時にお
ける操舵力変化を高め、るために、操舵圧の増大に伴っ
て反力機構側への分流割合を高めるべく操舵圧応答可変
絞り150を分流通路160中に設けている。
Conventionally, as shown in FIG. 11, the hydraulic pressure applied to the reaction force mechanism 100 is controlled by using a diversion control valve 130 that divides the fluid supplied from the pump 110 and whose flow rate is controlled to the power steering device 120 and the reaction force mechanism 100. In addition, an electromagnetic control valve 140 is provided that controls the amount of this diverted fluid released to the oil tank side based on signals such as vehicle speed. Furthermore, in order to increase the change in steering force during high-speed running, a variable steering pressure response throttle 150 is provided in the diverting passage 160 to increase the proportion of diverted flow toward the reaction force mechanism as the steering pressure increases.

〈発明が解決しようとする問題点〉 かかる可変絞り弁150の一端には、操舵圧が導入され
ていて最大負荷時にはレリーフ設定圧までに達するため
、これに内蔵されたスプリング151のバネ定数は高く
設定されている。これに伴い弁体作動範囲Xがバラツク
と分流制御弁130の可変絞り面積変化も第12図に示
すように大きくなる。従って作動範囲Xの調整が必要と
なり、調整機構を必要とするばかりでなく、組付調整の
煩わしさをともない、コスト高を招く問題がある。
<Problems to be Solved by the Invention> Steering pressure is introduced into one end of the variable throttle valve 150 and reaches the relief setting pressure at maximum load, so the spring constant of the spring 151 built into it is high. It is set. As a result, the valve body operating range X varies and the variable throttle area change of the branch control valve 130 also increases as shown in FIG. 12. Therefore, it is necessary to adjust the operating range X, which not only requires an adjustment mechanism but also involves troublesome assembly and adjustment, leading to a problem of increased costs.

〈問題点を解決するための手段〉 本発明はかかる可変絞り弁の作動範囲Xのバラツキによ
る分流制御弁の流量制御特性のバラツキを少くしようと
するもので、可変絞りと直列に固定絞りを設けたもので
ある。
<Means for Solving the Problems> The present invention aims to reduce variations in the flow rate control characteristics of the branch control valve due to variations in the operating range It is something that

く作用〉 本発明は、固定絞りを可変絞りに対し直列に入れたので
、操舵圧に対する絞り開度にバラツキがあっても分流流
路中の合成絞り抵抗としての変化度は低減され、第10
図に示すようにΔqの変化量が小さくり、分流制御弁の
流量制御特性のバラツキは非常に小さくなり、可変絞り
弁の作動範囲を決定する特別な調整手段は不要となる。
In the present invention, the fixed throttle is connected in series with the variable throttle, so even if there is variation in the throttle opening with respect to the steering pressure, the degree of change as a composite throttle resistance in the branch flow path is reduced.
As shown in the figure, the amount of change in Δq becomes small, the variation in the flow rate control characteristics of the branch control valve becomes very small, and special adjusting means for determining the operating range of the variable throttle valve becomes unnecessary.

このため組付後の調整の必要もなくなる。This eliminates the need for adjustment after assembly.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。。<Example> Embodiments of the present invention will be described below based on the drawings. .

第1図において、11は動力舵取装置の本体をなすハウ
ジング本体、12はハウジング本体11に固着されてい
る弁ハウジングである。このハウジング本体11及び弁
ハウジング12内には一対の軸受13,14を介してピ
ニオン軸(出力軸)21が回転自在に軸承されており、
このピニオン軸21にはこれと交差する方向に摺動可能
なラック軸22のラック歯22aが噛合している。この
ラック軸22は、パワーシリンダ90 (第3図参照)
のピストンと連結され、その両端は所要の操舵リンク機
構を介して操向車輪に連結されている。
In FIG. 1, reference numeral 11 indicates a housing main body forming the main body of the power steering device, and reference numeral 12 indicates a valve housing fixed to the housing main body 11. A pinion shaft (output shaft) 21 is rotatably supported within the housing body 11 and the valve housing 12 via a pair of bearings 13 and 14.
Rack teeth 22a of a rack shaft 22 that is slidable in a direction intersecting the pinion shaft 21 mesh with the pinion shaft 21. This rack shaft 22 is connected to the power cylinder 90 (see Fig. 3).
The piston is connected to the steering wheel, and both ends thereof are connected to the steering wheel via a required steering linkage mechanism.

弁ハウジング12の弁孔内には、サーボ弁30が収納さ
れている。サーボ弁30は、操舵軸としての入力軸23
と一体的に形成したロータリ弁部材31と、このロータ
リ弁部材31の外周に同心的かつ相対的回転可能に嵌合
したスリーブ弁部材32を主要構成部材としている。ロ
ータリ弁部材31は、これと一体の入力軸23に一端を
連結したトーションバー24を介してピニオン軸21に
可撓的に連結されている。
A servo valve 30 is housed in the valve hole of the valve housing 12. The servo valve 30 is connected to the input shaft 23 as a steering shaft.
The main components are a rotary valve member 31 formed integrally with the rotary valve member 31 and a sleeve valve member 32 fitted concentrically and relatively rotatably to the outer periphery of the rotary valve member 31. The rotary valve member 31 is flexibly connected to the pinion shaft 21 via a torsion bar 24 whose one end is connected to an input shaft 23 integral therewith.

また、ロークリ弁部材31の外周には、図示しないが、
その軸方向に伸びる複数のランド部と溝部とが等間隔に
形成されており、これの溝底部より内周部に連通ずる連
通路37が穿設されている。
Further, although not shown, on the outer periphery of the low-pressure valve member 31,
A plurality of land portions and groove portions extending in the axial direction are formed at equal intervals, and a communication passage 37 communicating from the groove bottom to the inner peripheral portion is bored.

入力軸23に前記内周部と弁ハウジング12内の低圧室
38とを連通ずる通路39が設けられている。一方スリ
ーブ弁部材32の内周にも、その軸方向に延びる複数の
ランド部と溝部が等間隔に形成され、各溝部よりスリー
ブ弁部材32の外周に開口する分配穴40.41が設け
られている。供給ポート35より供給される圧力流体は
、サーボ弁が中立状態であればランド部両側の溝部に均
等に流れ、連通路37及び通路39を経て低圧室38よ
り排出ポート36に流出する。この場合、両分配ポー1
−33.34は低圧で等しい圧力となっているためパワ
ーシリンダ90は作動されない。
The input shaft 23 is provided with a passage 39 that communicates the inner peripheral portion with the low pressure chamber 38 within the valve housing 12 . On the other hand, a plurality of lands and grooves extending in the axial direction are formed at equal intervals on the inner circumference of the sleeve valve member 32, and distribution holes 40, 41 are provided that open from each groove to the outer circumference of the sleeve valve member 32. There is. When the servo valve is in the neutral state, the pressure fluid supplied from the supply port 35 flows equally into the grooves on both sides of the land portion, and flows out from the low pressure chamber 38 to the discharge port 36 via the communication passage 37 and the passage 39. In this case, both distribution ports 1
-33.34 is a low pressure and the pressure is equal, so the power cylinder 90 is not operated.

サーボ弁30が中立状態から偏位すれば、一方の分配穴
40又は41には供給ポート35より圧油が供給され、
他方の分配穴41又は40にパワーシリンダ90から排
出された流体が流入し、連通路37、通路39、低圧室
38を経て排出ポート36に放出されるようになってい
る。
When the servo valve 30 deviates from the neutral state, pressure oil is supplied to one distribution hole 40 or 41 from the supply port 35,
Fluid discharged from the power cylinder 90 flows into the other distribution hole 41 or 40 and is discharged to the discharge port 36 via the communication passage 37, passage 39, and low pressure chamber 38.

反力機構は次の通りである。ロータリ弁部材31のビニ
オン軸21側の端部には第2図に示すように半径方向に
両側に突出する突起部50が形成されており、この突起
部50と対応するピニオン軸21には突起部50を入力
軸23の軸線回りに微少角度旋回可能に遊嵌する嵌合溝
51が形成されている。
The reaction force mechanism is as follows. At the end of the rotary valve member 31 on the pinion shaft 21 side, as shown in FIG. A fitting groove 51 is formed into which the part 50 is loosely fitted so as to be able to rotate at a slight angle about the axis of the input shaft 23.

ビニオン軸21には前記突起部50をはさんでその両側
に挿通穴53が形成され、この挿通穴53にそれぞれプ
ランジャ54が摺動可能に挿通されている。このプラン
ジャ54はその後方に形成された反力室55に導入され
る油圧力によって前方へ突出され、前記突起部50をそ
の両側より挟持するとともにその前進端はプランジャ5
4に形成された大径部54aによって規制されている。
Insertion holes 53 are formed in the pinion shaft 21 on both sides of the protrusion 50, and plungers 54 are slidably inserted into each of the insertion holes 53. This plunger 54 is projected forward by hydraulic pressure introduced into a reaction force chamber 55 formed behind it, and holds the protrusion 50 from both sides thereof, and its forward end is connected to the plunger 55.
It is regulated by a large diameter portion 54a formed in 4.

57は車速等に応した油圧力を導入するボート、58は
通路、59はこの通路58と前記反力室55とを連通ず
る環状溝である。
57 is a boat for introducing hydraulic pressure according to the vehicle speed, 58 is a passage, and 59 is an annular groove that communicates the passage 58 with the reaction force chamber 55.

なお、上記構成の反力機構は、突起部50の両側に設け
られたプランジャ54にて突起部50を回転させる方向
に油圧力を作用させるものであるが、プランジャを半径
方向より押圧するラジアル方式であるいは軸方向に押圧
するスラスト方式のものでもよい。
The reaction force mechanism configured as described above applies hydraulic pressure in the direction of rotating the protrusion 50 by the plungers 54 provided on both sides of the protrusion 50, but it is a radial type in which the plunger is pressed from the radial direction. Alternatively, a thrust type that presses in the axial direction may be used.

第3図において、61は自動車エンジンによって駆動さ
れる供給ポンプ60からの吐出圧油の流量QOを一定流
量Qcに制御する流量制御弁である。この流量制御弁6
1は、メータリングオリフィス62と、このメータリン
グオリフィス62の前後圧に応じて作動され、この前後
圧を常に一定に保持するように低圧側に通じたバイパス
通路63を開口制御するバイパス弁64によって構成さ
れている。尚、供給ポンプ60が定速モータ駆動式の一
定流量を吐出するものである場合には前記流量制御弁6
1は不用である。
In FIG. 3, 61 is a flow control valve that controls the flow rate QO of pressure oil discharged from the supply pump 60 driven by the automobile engine to a constant flow rate Qc. This flow control valve 6
1 includes a metering orifice 62 and a bypass valve 64 that is operated according to the front and rear pressure of the metering orifice 62 and controls the opening of a bypass passage 63 communicating with the low pressure side so as to keep this front and rear pressure constant. It is configured. In addition, when the supply pump 60 is a constant speed motor-driven type that discharges a constant flow rate, the flow rate control valve 6
1 is unnecessary.

65は前記流量制御弁61の高圧側と供給通路66を介
して接続する分流制御弁(フローデバイダ)である。こ
の分流制御弁65は、前記流量QCを制御スプール67
によりサーボ弁30側の通路45への流量Qqと、反力
室55側の通路46への流量QRとに分流する。
Reference numeral 65 denotes a flow divider that is connected to the high pressure side of the flow rate control valve 61 via a supply passage 66 . This flow control valve 65 controls the flow rate QC to a control spool 67.
Accordingly, the flow is divided into a flow rate Qq to the passage 45 on the servo valve 30 side and a flow rate QR to the passage 46 on the reaction force chamber 55 side.

80は可変絞り弁である。この絞り弁80は、通路91
を介して導入されるギヤ発生圧力Pcとスプリング82
の撥力との圧力バランスに基づいて摺動される摺動スプ
ール83を有し、この摺動スプール83と弁孔との間で
分流絞り84を形成している。この分流絞り84は、初
期状態において固定絞りとして機能し、その後ギヤ発生
圧力P。による摺動スプール83の変位に伴い絞り開口
面積が変化する可変絞りとして機能する。この分流絞り
84と直列に固定絞り85が設けられ、分岐通路93を
流れる圧油の流量を制御するようになっている。この分
岐通路93はその一端を供給通路66ならびに制御スプ
ール67に形成された小孔95を介して分流制御弁65
の前部室96と連通し、また他端は前記制御スプール6
7に形成された連通孔97ならびに98を介して分流制
御弁65の後部室99と連通している。従って絞り弁8
0の分流絞り84の絞り開口面積が変化することにより
分流制御弁65の前後室95.99の圧力バランスが変
化し、サーボ弁30側の通路45への流量QCと、反力
室56側の通路46への流MQpとの分流割合を変更す
るようになっている。なお、69はバランス用のスプリ
ングである。
80 is a variable throttle valve. This throttle valve 80 has a passage 91
Gear generation pressure Pc introduced via the spring 82
The valve has a sliding spool 83 that slides based on the pressure balance with the repelling force of the valve, and a flow dividing restriction 84 is formed between the sliding spool 83 and the valve hole. This branching throttle 84 functions as a fixed throttle in the initial state, and then the gear generated pressure P. It functions as a variable aperture whose aperture area changes as the sliding spool 83 is displaced. A fixed throttle 85 is provided in series with this branch throttle 84 to control the flow rate of the pressure oil flowing through the branch passage 93. This branch passage 93 has one end connected to the supply passage 66 and the control spool 67 through a small hole 95 formed in the branch control valve 67.
The other end communicates with the front chamber 96 of the control spool 6.
It communicates with a rear chamber 99 of the branch control valve 65 through communication holes 97 and 98 formed in the valve 7 . Therefore, the throttle valve 8
By changing the aperture area of the 0 branch flow restrictor 84, the pressure balance between the front and rear chambers 95.99 of the branch flow control valve 65 changes, and the flow rate QC to the passage 45 on the servo valve 30 side and the flow rate QC on the reaction force chamber 56 side change. The ratio of the flow divided into the flow MQp to the passage 46 is changed. In addition, 69 is a spring for balance.

また反力室55側の通路46には車速等に応じて制御さ
れる電磁制御弁70が介挿されている。
Further, an electromagnetic control valve 70 that is controlled according to vehicle speed and the like is inserted in the passage 46 on the side of the reaction force chamber 55.

この電磁制御弁70は、第4図に示すようにバルブ本体
7Iとこのバルブ本体71の内孔内に摺動可能に装嵌さ
れたスプール72と、コンピュータ等によって制御され
るソレノイド制御回路(囲路)から車速信号■に応じた
電流■が供給されるソレノイド73とを備えている。ス
プール72は通常スプリング74により下降端に保持さ
れ、分流制御弁65ならびにタンクに通じる通路76.
77間を小孔78のみにて連通している。しかしてソレ
ノイド73に通電されると、その電流値■に応じてスプ
ール72はスプリング74に抗して変位して通路76.
77を小孔78ならびにスリット79を介して連通させ
るようになっている。
As shown in FIG. 4, the electromagnetic control valve 70 consists of a valve body 7I, a spool 72 slidably fitted into the inner hole of the valve body 71, and a solenoid control circuit (surrounded by The solenoid 73 is supplied with a current (2) according to the vehicle speed signal (2) from the vehicle speed signal (4). The spool 72 is normally held at its lower end by a spring 74 and is connected to a diverter control valve 65 and a passageway 76 leading to the tank.
77 are communicated only through a small hole 78. When the solenoid 73 is energized, the spool 72 is displaced against the spring 74 according to the current value (2), and the passage 76.
77 are communicated through small holes 78 and slits 79.

なお、第3図において90はパワーシリンダ、94は通
路46内が所定圧以上になると圧力を逃す安全用レリー
フ弁である。
In FIG. 3, 90 is a power cylinder, and 94 is a safety relief valve that releases pressure when the pressure inside the passage 46 exceeds a predetermined pressure.

次に上記構成の動作について説明する。供給ポンプ60
より吐出された圧油の流lQoを流量制御弁61にて一
定流lQcに制御する。こ′の一定流量Qcに制御され
た圧油は分流制御弁65によって第5図に示す分流特性
でもってサーボ弁30側と反力室56側に対してそれぞ
れ流量Qa、QRとに分流される。低速状態では第6図
に示すようにソレノイド73に大きな電流Iが供給され
、これによって電磁制御弁70のスプール72が大きく
変位し、スリット79を全開状態にする。従って通路4
6側に分流された圧油はタンクにドレーンされ、反力油
圧PRはほとんど発生しない。
Next, the operation of the above configuration will be explained. supply pump 60
A flow rate control valve 61 controls the flow lQo of the pressure oil discharged from the pump to a constant flow lQc. This pressurized oil controlled to a constant flow rate Qc is divided by the flow control valve 65 into flow rates Qa and QR toward the servo valve 30 side and the reaction force chamber 56 side, respectively, with the flow flow characteristics shown in FIG. . In the low speed state, as shown in FIG. 6, a large current I is supplied to the solenoid 73, which causes the spool 72 of the electromagnetic control valve 70 to largely displace, thereby fully opening the slit 79. Therefore passage 4
The pressure oil diverted to the 6 side is drained into the tank, and almost no reaction oil pressure PR is generated.

このためハンドル操作により入力軸23が回転されると
、プランジャ54は容易に押し戻され、これによりスリ
ーブ弁部材32とロータリ弁部材31とが相対回転され
、マニアルトルクTMに対するギヤ発生圧力pcの変化
は第9図の低速、据切の曲線で示す特性となり、軽快な
ハンドル操作ができる。
Therefore, when the input shaft 23 is rotated by operating the handle, the plunger 54 is easily pushed back, whereby the sleeve valve member 32 and the rotary valve member 31 are rotated relative to each other, and the change in the gear generation pressure pc with respect to the manual torque TM is The characteristics are shown by the low-speed, stationary curve in Figure 9, and the steering wheel can be operated easily.

その後車速が増加すると、第6図に示すようにその車速
信号Vの増加に従い、電磁制御弁70のソレノイド73
に供給される制御電流値■が低下する。これによりスプ
ール72が変位してスリット79の開度が小さくなり、
その結果タンクへ戻される油圧の流量が制限され、反力
油圧PRが高められる。この圧力油圧PRの上昇に伴い
、突起部50に対するプランジャ54の押圧力が増大し
、それだけハンドルが重くなる。
When the vehicle speed increases thereafter, as shown in FIG. 6, the solenoid 73 of the electromagnetic control valve 70
The control current value ■ supplied to decreases. As a result, the spool 72 is displaced and the opening degree of the slit 79 becomes smaller.
As a result, the flow rate of the hydraulic pressure returned to the tank is restricted, and the reaction hydraulic pressure PR is increased. As the pressure oil pressure PR increases, the pressing force of the plunger 54 against the protrusion 50 increases, and the handle becomes heavier accordingly.

一方ハンドルを操作すると、サーボ弁30側に通じる通
路45にギヤ発生圧力pcが発生する。
On the other hand, when the handle is operated, gear generation pressure pc is generated in the passage 45 leading to the servo valve 30 side.

このギヤ発生圧力PCにより絞り弁80の分流絞り84
の絞り開口面積Sは第7図に示すように次第に増大し、
摺動スプール83がストロークエンドに到達すると一定
となる。これにより、絞り弁80の分流絞り84と固定
絞り85を介して流体は分流制御弁65に流入する。か
かる分流絞り85と固定絞り85は直列に設けられてい
るので、合成された流量抵抗の変化率は分流絞り84単
体の変化率に対して小さくなる。その結果分流制御弁6
5の前後室96.99の圧力バランスの変化も小さくな
り分流弁の流量特性変化を小さくする。
This gear generated pressure PC causes the flow restriction 84 of the throttle valve 80 to
The diaphragm aperture area S gradually increases as shown in FIG.
When the sliding spool 83 reaches the stroke end, it becomes constant. As a result, the fluid flows into the diverter control valve 65 via the diverter restrictor 84 and fixed restrictor 85 of the throttle valve 80 . Since the dividing throttle 85 and the fixed throttle 85 are provided in series, the rate of change in the combined flow resistance is smaller than the rate of change of the dividing throttle 84 alone. As a result, the flow control valve 6
Changes in the pressure balance between the front and rear chambers 96 and 99 of No. 5 are also reduced, thereby reducing changes in flow rate characteristics of the flow dividing valve.

分流特性としては第5図に示すようにギヤ発生圧の増大
に伴い分流制量Q、を減じるとともに反力室側への分流
流(t Q Rを増加することとなり、この分流流ff
i Q Rの増大により反力油圧PRはギヤ発生圧力p
cに応じて上昇する。この反力油圧P9は第8図から明
らかなごとく低速、据切状態ではその上昇度合は低く、
高速になるに従って急激に上昇する傾向となる一方、マ
ニアルトルクTMに対するギヤ発生圧力pcの変化特性
は第9図に示すようになる。特に可変絞りと直列に固定
絞りを設けた構成であるので、可変絞りの作動範囲にバ
ラツキがあってもそのバラツキの影響は固定絞りによっ
て吸収され、低速時にはマニアルトルクT Mに対する
ギヤ発生圧力pcが低く、高速時にはハンドルを切込ん
で行くに従い重めとなり、手ごたえ感のある操舵フィー
リングが得られる。
As shown in Fig. 5, as shown in Fig. 5, the shunt characteristics reduce the shunt restriction amount Q, and increase the shunt flow (t Q R) toward the reaction force chamber side, and this shunt flow ff
i Q Due to the increase in R, the reaction oil pressure PR becomes the gear generation pressure p
It rises according to c. As is clear from Fig. 8, this reaction oil pressure P9 rises only at a low rate at low speed and in the stationary state.
The gear generation pressure pc tends to increase rapidly as the speed increases, and the change characteristics of the gear generation pressure pc with respect to the manual torque TM are as shown in FIG. 9. In particular, since the configuration has a fixed throttle in series with the variable throttle, even if there is variation in the operating range of the variable throttle, the effect of the variation is absorbed by the fixed throttle, and at low speeds, the gear generation pressure pc relative to the manual torque TM is reduced. It is low, and at high speeds, it becomes heavier as you turn the steering wheel, giving you a responsive steering feel.

〈発明の効果〉 上記詳述したように本発明装置は、供給ポンプより供給
通路を介して供給される圧油をサーボ弁側に供給すると
ともにこの圧油の一部を前記供給通路より分岐する分岐
通路を介して反力室側に分流する分流制御弁を設け、こ
の分流制御弁の分岐通路にサーボ弁の操舵に伴うギヤ発
生圧力にて開度の制御される可変絞りを介挿し且つこれ
と直列に固定絞りを設けた構成であるため、可変絞りの
バネ定数が高いことによる作動範囲のバラツキがあって
も、分流特性の変化としては大幅にこれを低減すること
ができる。これによって作動範囲の特別な調整手段は必
要としないので機構の簡素化、組付の容易化を図ること
ができる。更に高速走行状態においてはマニアルトルク
に対するギヤ発生圧力の特性の傾きを小さくしてパワー
アシストを少くすることができ、これによって高速走行
時にはハンドルを切込んで行くに従って手ごたえ感のあ
る操舵フィーリングが得られる効果を有する。
<Effects of the Invention> As detailed above, the device of the present invention supplies pressure oil supplied from the supply pump via the supply passage to the servo valve side, and branches a part of this pressure oil from the supply passage. A diversion control valve is provided that diverts the flow to the reaction chamber side via a branch passage, and a variable throttle whose opening degree is controlled by the gear generated pressure accompanying the steering of the servo valve is inserted in the branch passage of this diversion control valve. Since the fixed diaphragm is provided in series with the variable diaphragm, even if there is variation in the operating range due to the high spring constant of the variable diaphragm, this can be significantly reduced as a change in the shunt characteristics. This eliminates the need for special adjustment means for the operating range, making it possible to simplify the mechanism and facilitate assembly. Furthermore, when driving at high speeds, it is possible to reduce the slope of the characteristic of gear generation pressure relative to manual torque, thereby reducing power assist, which provides a responsive steering feel as you turn the steering wheel. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は動力舵取
装置の断面図、第2図は第1図のn−n線断面矢視図、
第3図は本発明の油圧系統図、第4図は電磁制御弁の断
面図、第5図は分流制御弁の分流特性を示す図、第6図
は電磁制御弁の制御特性を示す図、第7図は絞り弁の制
御特性を示す図、第8図は反力油圧の変化特性を示す図
、第9図はギヤ発生圧力の変化特性を示す図、第10図
は固定絞りを分流路中に入れた場合の流量制御特性を示
す図、第11図、第12図は従来装置を示すもので、第
11図は油圧系統図、第12図は弁体作動範囲Xのバラ
ツキによる分流制御弁の可変絞り面積変化を示す図であ
る。 21・・・ビニオン軸、23・・・入力軸、30・・・
サーボ弁、50・・・突起部、54・・・プランジャ、
55・・・反力室、65・・・分流制御弁、70・・・
電磁制御弁、80・・・絞り弁、84・・・分流絞り、
85・・・可変絞り、86・・・固定絞り。
The drawings show an embodiment of the present invention, and FIG. 1 is a sectional view of the power steering device, FIG. 2 is a sectional view taken along line nn in FIG. 1, and FIG.
FIG. 3 is a hydraulic system diagram of the present invention, FIG. 4 is a sectional view of the electromagnetic control valve, FIG. 5 is a diagram showing the diversion characteristics of the diversion control valve, and FIG. 6 is a diagram showing the control characteristics of the electromagnetic control valve. Figure 7 is a diagram showing the control characteristics of the throttle valve, Figure 8 is a diagram showing the change characteristics of the reaction oil pressure, Figure 9 is a diagram showing the change characteristics of the gear generated pressure, and Figure 10 is a diagram showing the change characteristics of the fixed throttle valve. Figures 11 and 12 are diagrams showing the flow rate control characteristics when the valve is inserted into the valve, and Figures 11 and 12 show conventional devices. Figure 11 is a hydraulic system diagram, and Figure 12 is flow control due to variations in the valve body operating range X. It is a figure which shows the variable throttle area change of a valve. 21... Binion shaft, 23... Input shaft, 30...
Servo valve, 50... protrusion, 54... plunger,
55... Reaction force chamber, 65... Diversion control valve, 70...
Electromagnetic control valve, 80... Throttle valve, 84... Diversion throttle,
85...Variable aperture, 86...Fixed aperture.

Claims (1)

【特許請求の範囲】[Claims] (1)入力軸と出力軸との相対回転に基づいて作動され
パワーシリンダへの圧油を給排するサーボ弁と、車速等
に応じてハンドルトルクを変化させる反力機構と、この
反力機構の圧力室に通じる通路上に設けられ、車速等に
応じて前記反力室に発生する圧油を制御する電磁制御弁
を備えた動力舵取装置の操舵力制御装置において、供給
ポンプより供給通路を介して供給される圧油を前記サー
ボ弁側に供給するとともにこの圧油の一部を前記供給通
路より分岐する分岐通路を介して前記反力室側に分流す
る分流制御弁を設け、この分流制御弁の分岐通路にサー
ボ弁の操舵に伴うギヤ発生圧力にて開度調整される可変
絞りを介挿し、この可変絞りの下流側にこれと直列に固
定絞りを設けたことを特徴とする動力舵取装置の操舵力
制御装置。
(1) A servo valve that is operated based on the relative rotation between the input shaft and the output shaft to supply and discharge pressure oil to the power cylinder, a reaction force mechanism that changes the steering wheel torque according to vehicle speed, etc., and this reaction force mechanism In a steering force control device for a power steering device, which is equipped with an electromagnetic control valve that is installed on a passage leading to a pressure chamber and controls pressure oil generated in the reaction force chamber according to vehicle speed, etc., the supply passage is connected to a supply pump. A flow control valve is provided to supply pressure oil supplied through the servo valve side to the servo valve side and to divert a part of this pressure oil to the reaction force chamber side via a branch passage branching from the supply passage. A variable throttle whose opening degree is adjusted by gear-generated pressure associated with the steering of the servo valve is inserted in the branch passage of the branch control valve, and a fixed throttle is provided downstream of the variable throttle in series with the variable throttle. Steering force control device for power steering device.
JP23968285A 1985-10-25 1985-10-25 Steering force control device for power steering device Expired - Lifetime JPH0631001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23968285A JPH0631001B2 (en) 1985-10-25 1985-10-25 Steering force control device for power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23968285A JPH0631001B2 (en) 1985-10-25 1985-10-25 Steering force control device for power steering device

Publications (2)

Publication Number Publication Date
JPS6299262A true JPS6299262A (en) 1987-05-08
JPH0631001B2 JPH0631001B2 (en) 1994-04-27

Family

ID=17048341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23968285A Expired - Lifetime JPH0631001B2 (en) 1985-10-25 1985-10-25 Steering force control device for power steering device

Country Status (1)

Country Link
JP (1) JPH0631001B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901812A (en) * 1988-11-16 1990-02-20 General Motors Corporation Variable effort steering system
WO2005023624A1 (en) * 2003-08-13 2005-03-17 Thyssenkrupp Presta Steertec Gmbh Retroactive device
US20170184351A1 (en) * 2014-07-04 2017-06-29 Mitsubishi Electric Corporation Refrigerant distributor, and heat pump device having the refrigerant distributor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901812A (en) * 1988-11-16 1990-02-20 General Motors Corporation Variable effort steering system
WO2005023624A1 (en) * 2003-08-13 2005-03-17 Thyssenkrupp Presta Steertec Gmbh Retroactive device
US20170184351A1 (en) * 2014-07-04 2017-06-29 Mitsubishi Electric Corporation Refrigerant distributor, and heat pump device having the refrigerant distributor

Also Published As

Publication number Publication date
JPH0631001B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
KR950015024B1 (en) Power steering system with hydraulic reaction
JPH0645343B2 (en) Steering force control device for power steering device
US4805714A (en) Power steering system with hydraulic reaction
JPS6299262A (en) Steering force control device of power steering device
JPH0619426Y2 (en) Steering force control device for power steering device
JPH0631004B2 (en) Steering force control device for power steering device
JPH07121703B2 (en) Steering force control device for power steering device
JPS61275062A (en) Steerability control device for power steering device
JPH0255260B2 (en)
JPH0624959B2 (en) Steering force control device for power steering device
JPH0624302Y2 (en) Steering force control device for power steering device
JPH0811538B2 (en) Steering force control device for power steering device
JPH0628378Y2 (en) Steering force control device for power steering device
JPS61191470A (en) Steering force control device of power steering gear
JPH0624301Y2 (en) Steering force control device for power steering device
JPH0619420Y2 (en) Steering force control device for power steering device
JPS62139755A (en) Steering force control device for power steering apparatus
JPS62221970A (en) Steering force controller for power steering gear
JPH02261981A (en) Control valve
JPH0232543Y2 (en)
JPH036546Y2 (en)
JPS61287863A (en) Steering force control device in power steering device
JPS61218481A (en) Steering force controller for power steering
JPS6325175A (en) Steering force control device for power steering device
JPS62225465A (en) Steering force control device of power steering device