JPS6320250B2 - - Google Patents

Info

Publication number
JPS6320250B2
JPS6320250B2 JP54075268A JP7526879A JPS6320250B2 JP S6320250 B2 JPS6320250 B2 JP S6320250B2 JP 54075268 A JP54075268 A JP 54075268A JP 7526879 A JP7526879 A JP 7526879A JP S6320250 B2 JPS6320250 B2 JP S6320250B2
Authority
JP
Japan
Prior art keywords
polyol
foam
oxypropylene
weight
impact energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54075268A
Other languages
Japanese (ja)
Other versions
JPS56816A (en
Inventor
Kazuo Iwasaki
Shigeru Totsune
Yoshio Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP7526879A priority Critical patent/JPS56816A/en
Publication of JPS56816A publication Critical patent/JPS56816A/en
Publication of JPS6320250B2 publication Critical patent/JPS6320250B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は衝撃エネルギー吸収率の優れた衝撃吸
収性ウレタンフオームに関するものである。 ポリウレタンフオームは衝撃エネルギー吸収性
の優れる自動車の内装部材として、アームレス
ト、クラツシユパツド、ダツシユボード等に使用
されており、又近年ポリウレタンフオームを用い
た衝撃吸収用ウレタンバンパーを塔載する自動車
が見られる様になつてきた。 これらに用いられる衝撃エネルギー吸収性ポリ
ウレタンフオームは、高分子量のポリオールと短
鎖のポリオールの混合物に水あるいは不活性気化
剤等の発泡剤、触媒、界面活性剤等の存在下のも
とに有機イソシアネートを反応させて発泡した比
較的低密度の半硬質ウレタンフオームである。し
かし、上記の半硬質フオームを製造する場合、得
られるフオームの独立気泡度が高く、フオームが
収縮したりあるいは発泡時における異常な発熱の
ためにフオーム内部にこげや割れを生じ易く、又
衝撃エネルギー吸収性が低い欠点がある。本発明
は上記フオーム製造時の欠点を解消するとともに
衝撃エネルギー吸収性の大きいポリウレタンフオ
ームを製造する方法に関するものである。 すなわち、本発明はポリオールを発泡剤、触
媒、界面活性剤、などの存在下にイソシアネート
と反応させてポリウレタンフオームを製造するに
あたり、ポリオールとしてポリエーテル型ポリオ
ールにビニル化合物共重合体を10〜30重量%グラ
フト重合したOH価20〜160のポリマーポリオー
ルとOH価130〜350好ましくは130〜200で2〜7
当量のオキシプロピレンを含む2,2′(4ヒドロ
キシフエニル)プロパンの混合物からなり、上記
ポリマーポリオールと2〜7当量のオキシプロピ
レンを含む2,2′(4ヒドロキシフエニル)プロ
パンの重量比が0.3〜2.5であるポリオール混合物
を使用することを特徴とする衝撃エネルギー吸収
性ウレタンフオームの製造方法を提供するもので
ある。 本発明に用いられるポリオールは、ポリエーテ
ル型ポリオールにスチレンおよび/またはアクリ
ロニトリルなどのビニル化合物を10〜30重量%グ
ラフト重合した官能基数2〜6,OH価20〜160
のポリマーポリオールと官能基数2,OH価130
〜350好ましくは130〜200で2〜7当量のオキシ
プロピレンを含む2,2′ビス(4ヒドロキシフエ
ニル)プロパンとの混合物よりなるが、上記ポリ
マーポリオールのOH価が20未満であるフオーム
の圧縮強度が低下し、また160を越える場合はフ
オームの回復率が低下し、圧縮後の外観変化を生
ずる。 上記2〜7当量のオキシプロピレンを含む2,
2′ビス(4ヒドロキシフエニル)プロパンはOH
価が300以上では粘度が高くなり有機ポリイソシ
アネート、触媒、発泡剤等と混合した場合、均一
になりにくく、不均一な反応が起り、得られるフ
オームの物性が劣る。又オキシプロピレンの代り
にオキシエチレンを使用すると得られるジオール
は結晶性が高く、又ポリマーポリオールとの相容
性も悪く、取扱い上不利である。上記ポリオール
の混合割合はポリマーポリオールに対する2〜7
当量のオキシプロピレンを含む2,2′ビス(4ヒ
ドロキシフエニル)プロパンの重量比で、0.3〜
2.5の範囲内にあることが必要である。上記重量
比が0.3未満になると得られたフオームの回復率
が低下し、2.5を越えると得られたフオームの圧
縮強度が低下する。 本発明の半硬質ポリウレタンフオーム生成物の
製造に使われる有機ポリイソシアネートは、通常
のポリウレタンフオームの製造に使用される公知
のものでよく、トリレンジイソシアネート、粗ジ
フエニルメタンジイソシアネート、ヘキサメチレ
ンジイソシアネート、mおよびpキシレンジイソ
シアネート、ポリメチレンポリフエニルポリイソ
シアネートおよびそれらの混合物あるいは、これ
ら有機イソシアネートとポリオールを反応せしめ
て得られる未端イソシアネート基を有するプレポ
リマーも使用できる上記の例示はこれを限定する
ものではない。 使用するイソシアネート量は、通常のポウレタ
ン発泡体に適用される量、即ちイソシアネートイ
ンデツクス100〜115相当量でよい。 本発明に使用する発泡剤としては、例えば水あ
るいはトリクロロモノフルオルメタン、ジクロロ
ジフルオルメタン等の不活性気化剤等をあげるこ
とができる。上記各組成の添加量は全ポリオール
100重量部当り、水1〜4重量部、不活性気化剤
0〜10重量部である。 以上説明した各成分のほかに、さらにシリコー
ン系界面活性剤およびエチレンジアミン、トリメ
チルアミン、エチルモルフオリンなどのアミン触
媒、ジブチル錫ジラウレート等の錫触媒を用いる
ことができる。上記各成分の添加量はシリコーン
系界面活性剤0〜3重量部、触媒0〜3重量部で
ある。上記組成は密閉金型中で発泡する。上記の
発泡剤、触媒の例示はそれらを限定するものでは
ない。 かくして、衝撃エネルギー吸収能の高い優れた
ポリウレタンフオームが得られる。次に実施例、
比較例について詳細に説明する。 実施例1〜3、比較例1〜2 ポリマーポリオールとして、ポリエーテル型ポ
リオールにスチレンアクリロニトリル各10%の共
重合体をグラフト重合したOH価25のポリオール
(A)とOH価196の2,2′ビス(4ヒドロキシフエニ
ル)プロパンのオキシプロピレン誘導体(B)を表―
1の割合で使用した。 得られたフオーム物性について表―1に記す。
The present invention relates to an impact-absorbing urethane foam with excellent impact energy absorption rate. Polyurethane foam is used in armrests, crash pads, dash boards, etc. as interior parts of automobiles with excellent impact energy absorption properties, and in recent years, automobiles have begun to be equipped with impact-absorbing urethane bumpers made of polyurethane foam. It's here. The impact energy-absorbing polyurethane foam used in these products is made by mixing organic isocyanate in a mixture of a high molecular weight polyol and a short chain polyol in the presence of water or a blowing agent such as an inert vaporizing agent, a catalyst, a surfactant, etc. It is a semi-rigid urethane foam with a relatively low density that is foamed by reacting. However, when producing the above-mentioned semi-rigid foam, the resulting foam has a high degree of closed cells, and the foam tends to shrink or crack or crack due to abnormal heat generation during foaming, and is susceptible to impact energy. It has the disadvantage of low absorbency. The present invention relates to a method for manufacturing a polyurethane foam that eliminates the above-mentioned drawbacks in foam manufacturing and has high impact energy absorption properties. That is, in the present invention, when producing a polyurethane foam by reacting a polyol with an isocyanate in the presence of a blowing agent, a catalyst, a surfactant, etc., 10 to 30% by weight of a vinyl compound copolymer is added to a polyether type polyol as a polyol. % graft polymerized polymer polyol with an OH value of 20 to 160 and an OH value of 130 to 350, preferably 2 to 7 with an OH value of 130 to 200.
It consists of a mixture of 2,2'(4-hydroxyphenyl)propane containing an equivalent amount of oxypropylene, and the weight ratio of the above polymer polyol and 2,2'(4-hydroxyphenyl)propane containing 2 to 7 equivalents of oxypropylene is The present invention provides a method for producing impact energy absorbing urethane foam, characterized in that a polyol mixture having a polyol content of 0.3 to 2.5 is used. The polyol used in the present invention is obtained by graft polymerizing 10 to 30% by weight of a vinyl compound such as styrene and/or acrylonitrile to a polyether type polyol, and has a functional group number of 2 to 6 and an OH value of 20 to 160.
Polymer polyol with 2 functional groups and OH value 130
~350, preferably from 130 to 200, in a mixture with 2,2'bis(4hydroxyphenyl)propane containing 2 to 7 equivalents of oxypropylene, but the OH number of said polymer polyol is less than 20. The strength decreases, and if it exceeds 160, the recovery rate of the foam decreases, causing a change in appearance after compression. 2 containing 2 to 7 equivalents of oxypropylene,
2'bis(4hydroxyphenyl)propane is OH
When the value is 300 or more, the viscosity becomes high, and when mixed with organic polyisocyanate, catalyst, blowing agent, etc., it is difficult to form a uniform product, a non-uniform reaction occurs, and the resulting foam has poor physical properties. Furthermore, when oxyethylene is used in place of oxypropylene, the resulting diol has high crystallinity and poor compatibility with polymer polyols, making it difficult to handle. The mixing ratio of the above polyol is 2 to 7 to the polymer polyol.
The weight ratio of 2,2'bis(4hydroxyphenyl)propane containing an equivalent amount of oxypropylene, from 0.3 to
Must be within the range of 2.5. When the weight ratio is less than 0.3, the recovery rate of the obtained foam decreases, and when it exceeds 2.5, the compressive strength of the obtained foam decreases. The organic polyisocyanates used in the production of the semi-rigid polyurethane foam products of the present invention may be those known and used in the production of conventional polyurethane foams, such as tolylene diisocyanate, crude diphenylmethane diisocyanate, hexamethylene diisocyanate, m and p-xylene diisocyanate, polymethylene polyphenyl polyisocyanate, and mixtures thereof, or prepolymers having unterminated isocyanate groups obtained by reacting these organic isocyanates with polyols can also be used. The above examples are not intended to limit this. . The amount of isocyanate used may be that applied to conventional polyurethane foams, ie, an amount corresponding to an isocyanate index of 100 to 115. Examples of the blowing agent used in the present invention include water and inert vaporizing agents such as trichloromonofluoromethane and dichlorodifluoromethane. The amount added for each composition above is the total amount of polyol.
Per 100 parts by weight, 1 to 4 parts by weight of water and 0 to 10 parts by weight of inert vaporizing agent. In addition to the components described above, silicone surfactants, amine catalysts such as ethylenediamine, trimethylamine, and ethylmorpholine, and tin catalysts such as dibutyltin dilaurate can be used. The amounts of each of the above components added are 0 to 3 parts by weight of the silicone surfactant and 0 to 3 parts by weight of the catalyst. The above composition is foamed in a closed mold. The above blowing agents and catalysts are not limited to these examples. Thus, an excellent polyurethane foam with high impact energy absorption capacity is obtained. Next, an example,
A comparative example will be explained in detail. Examples 1 to 3, Comparative Examples 1 to 2 As a polymer polyol, a polyol with an OH value of 25 obtained by graft polymerizing a copolymer of 10% each of styrene acrylonitrile to a polyether type polyol.
(A) and the oxypropylene derivative (B) of 2,2'bis(4hydroxyphenyl)propane with an OH value of 196.
It was used at a ratio of 1:1. Table 1 shows the physical properties of the obtained foam.

【表】【table】

【表】 実施例1〜3においては衝撃エネルギー吸収能
が大きいだけでなく、回復率にもすぐれている。 比較例―1では回復率は良いが衝撃エネルギー
吸収能が小さい。比較例―2では衝撃エネルギー
吸収能は良いが回復率は悪い。 なお、ここで言うエネルギー吸収効率とはフオ
ームのエネルギー吸収能力の尺度であり、試料の
静的圧縮荷重試験により、圧縮荷重―歪曲線f
(γ)を描き、50%圧縮時に試料に加えられたエ
ネルギーに対して、フオームが吸収したエネルギ
ーの比率を示すものであり、 ∫0.5 0f(γ)dγ/0.5×f(0.5)×100(%)で示

れる。
[Table] Examples 1 to 3 not only have high impact energy absorption ability but also excellent recovery rate. In Comparative Example-1, the recovery rate was good, but the impact energy absorption ability was low. Comparative Example 2 has good impact energy absorption ability but poor recovery rate. Note that the energy absorption efficiency referred to here is a measure of the energy absorption ability of the foam, and the compression load-strain curve f was determined by a static compression load test of the sample.
(γ), which shows the ratio of energy absorbed by the foam to the energy applied to the sample at 50% compression, ∫ 0.5 0 f(γ)dγ/0.5×f(0.5)×100 (%).

Claims (1)

【特許請求の範囲】[Claims] 1 ポリオールを発泡剤、触媒、界面活性剤等の
存在下にイソシアネートと反応させて、ポリウレ
タンフオームを製造するにあたり、ポリオールと
して、ポリエーテル型ポリオールにビニル化合物
共重合体を10〜30重量%グラフト重合したOH価
20〜160のポリマーポリオールとOH価130〜350
で2〜7当量のオキシプロピレンを含む、2,
2′ビス(4ヒドロキシフエニル)プロパンの混合
物からなり、上記ポリマーポリオールと2〜7当
量のオキシプロピレンを含む、2,2′ビス(4ヒ
ドロキシフエニル)プロパンの重量比が0.3〜2.5
であるポリオール混合物を使用することを特徴と
する衝撃エネルギー吸収性ウレタンフオームの製
造方法。
1. In producing polyurethane foam by reacting polyol with isocyanate in the presence of a blowing agent, catalyst, surfactant, etc., 10 to 30% by weight of a vinyl compound copolymer is graft-polymerized to polyether type polyol as the polyol. OH value
Polymer polyol from 20 to 160 and OH number from 130 to 350
containing 2 to 7 equivalents of oxypropylene, 2,
consisting of a mixture of 2'bis(4hydroxyphenyl)propane, containing the above polymer polyol and 2 to 7 equivalents of oxypropylene, the weight ratio of 2,2'bis(4hydroxyphenyl)propane being 0.3 to 2.5;
A method for producing an impact energy-absorbing urethane foam, characterized in that it uses a polyol mixture.
JP7526879A 1979-06-15 1979-06-15 Preparation of impact energy-absorbing urethane foam Granted JPS56816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7526879A JPS56816A (en) 1979-06-15 1979-06-15 Preparation of impact energy-absorbing urethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7526879A JPS56816A (en) 1979-06-15 1979-06-15 Preparation of impact energy-absorbing urethane foam

Publications (2)

Publication Number Publication Date
JPS56816A JPS56816A (en) 1981-01-07
JPS6320250B2 true JPS6320250B2 (en) 1988-04-27

Family

ID=13571300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7526879A Granted JPS56816A (en) 1979-06-15 1979-06-15 Preparation of impact energy-absorbing urethane foam

Country Status (1)

Country Link
JP (1) JPS56816A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701474A (en) * 1986-04-09 1987-10-20 Union Carbide Corporation Reduced reactivity polyols as foam controllers in producing polyurethanes foams

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328699A (en) * 1976-08-31 1978-03-17 Mitsui Toatsu Chem Inc Manufacture of highly elastic urethane foams

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328699A (en) * 1976-08-31 1978-03-17 Mitsui Toatsu Chem Inc Manufacture of highly elastic urethane foams

Also Published As

Publication number Publication date
JPS56816A (en) 1981-01-07

Similar Documents

Publication Publication Date Title
US5114989A (en) Isocyanate-terminated prepolymer and polyurethane foam prepared therefrom
US6734220B2 (en) Fine cell, high density viscoelastic polyurethane foams
CN101392049B (en) All-MDI polyurethane low resilience urethane foam resilient foam
KR100245236B1 (en) Polyurethane foams
US6521674B1 (en) Latex-like flexible polyurethane foam and process for making same
MX2011000718A (en) Cellular structures and viscoelastic polyurethane foams.
CN103080178B (en) Method for making resilient low density polyurethane foam having low compression sets
US5106884A (en) Flexible polyurea foams having controlled load bearing qualities
JPH10504337A (en) Polyurethane foam for packaging
EP0778301B1 (en) Polyol formulation for producing latex-like flexible polyurethane foam
JP2002529557A (en) Energy managed polyurethane rigid foam with high recovery
CA2178521C (en) Polyurethane foam and process for production thereof
EP2519558B1 (en) Method for making low density polyurethane foam for sound and vibration absorption
JP2000290344A (en) Energy absorbing soft polyurethane foamed article and manufacture thereof
CN103906801B (en) The method preparing flexible polyurethane foams with hydrolyzable silane compound
US5182314A (en) Flexible polyurethane foams and process for producing same
US3880780A (en) High resilient polyurethane foam
JP3631558B2 (en) Manufacturing method of flexible mold foam
JPS6320250B2 (en)
JPH09124764A (en) Production of low-resilience flexible molded foam
JPS6315943B2 (en)
JP3358846B2 (en) Method for producing low-density ultra-flexible urethane foam
JP3214781B2 (en) Method for producing flexible polyurethane foam
JPS5946970B2 (en) Method for manufacturing energy absorbing polyurethane foam
GB2093852A (en) Polymeric materials