JPS63201622A - Image stabilization optical system and attachment - Google Patents

Image stabilization optical system and attachment

Info

Publication number
JPS63201622A
JPS63201622A JP3513287A JP3513287A JPS63201622A JP S63201622 A JPS63201622 A JP S63201622A JP 3513287 A JP3513287 A JP 3513287A JP 3513287 A JP3513287 A JP 3513287A JP S63201622 A JPS63201622 A JP S63201622A
Authority
JP
Japan
Prior art keywords
lens
optical system
movable
afocal
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3513287A
Other languages
Japanese (ja)
Other versions
JPH07119902B2 (en
Inventor
Shoichi Yamazaki
章市 山崎
Nozomi Kitagishi
望 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62035132A priority Critical patent/JPH07119902B2/en
Publication of JPS63201622A publication Critical patent/JPS63201622A/en
Publication of JPH07119902B2 publication Critical patent/JPH07119902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To vary the focal length of a main lens and to prevent vibration by making part of an afocal system attachment lens eccentric in parallel. CONSTITUTION:The specific part of an afocal optical part A which constitutes an optical system with a main lens system 1 or the afocal attachment mounted on part of the main lens system 1 is allowed to move freely at right angles to the optical axis of the optical system, and the remaining part is fixed; and the movable part is made eccentric in parallel according to a force which is applied from outside. Consequently, the constitution is reduced in size, the load on a driving mechanism is small, and deterioration in picture quality, specially, chromatic aberration is reducible.

Description

【発明の詳細な説明】 〈産業分野〉 能 本発明は、像を偏位させる機構を持った光学系及びアタ
ッチメントに関し、殊に防振装置に使用するのに適した
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field> The present invention relates to an optical system and an attachment having a mechanism for deflecting an image, and is particularly suitable for use in an anti-vibration device.

〈従来技術〉 従来より像安定化即ち、光学的防振への要求は極めて高
い。撮影画面のブレは、スポーツ競技の撮影あるいはニ
ュース取材の撮影のときにカメラを自動車や船、ヘリコ
プタ−に据え付けたり、手持ちのまま移動する際に、通
常引起される。
<Prior Art> There has been an extremely high demand for image stabilization, that is, optical image stabilization. Shaking of the photographic screen is usually caused when the camera is installed in a car, ship, or helicopter, or is moved hand-held when photographing sports events or news reporting.

スポーツの中継あるいはニュース番組は多(の場合、ビ
デオカメラかシネカメラで撮影されるが、ステイル・カ
メラの場合も焦点距離の長いレンズを装着して手持撮影
をするときには画像のブレが生じ易く、特に露出時間が
長いと避は難い。
Sports broadcasts or news programs are often shot with a video camera or cine camera, but even with a still camera, when hand-held shooting with a long focal length lens attached, the image is likely to blur, especially This is difficult to avoid if the exposure time is long.

この為、これまで種々の防振光学系が提案されている。For this reason, various anti-vibration optical systems have been proposed so far.

公知の光学的防振装置の1つは、撮影系内に光学楔を備
え、振動による光路の偏倚を光学楔の角度を変えてその
プリズム作用で修正する方法を採用している。光学楔は
、平凸レンズと平凹レンズの凹凸面を対向させたダブレ
ットレンズの一方のレンズを傾けるか、液体を充たした
ベローズの一方の面を他方の面に対して傾けることで形
成するが、屈折率の高いレンズ素材や液体を求めても限
度があるため、必要とする傾角の半分程度を修正できる
に過ぎない。従って、光学楔を複数個設けるか、ワイド
コンバータを前方に置いて組合せ効果を利用することが
提案されているが、前者は駆動機構が複雑になり、後者
は大型化しやすい。
One of the known optical image stabilization devices employs a method in which an optical wedge is provided in the imaging system, and the deviation of the optical path due to vibration is corrected by changing the angle of the optical wedge and using its prism effect. An optical wedge is formed by tilting one lens of a doublet lens, in which the uneven surfaces of a plano-convex lens and a plano-concave lens face each other, or by tilting one surface of a liquid-filled bellows with respect to the other surface. Even if we search for lens materials and liquids with a high ratio, there are limits, and we can only correct about half of the required angle of inclination. Therefore, it has been proposed to provide a plurality of optical wedges or to place a wide converter in front to utilize the combined effect, but the former requires a complicated drive mechanism, and the latter tends to increase the size.

またいずれにしろプリズムを導入したことになるから、
色収差補正の手段を講じても画像に色が着き易い。
Also, in any case, a prism has been introduced, so
Even if measures are taken to correct chromatic aberration, colors tend to appear on the image.

前述したダブレットレンズの一方を傾ける場合、レンズ
面の球心を中心にレンズが上下左右に揺動できる様に支
持し、またこの位置に設けたジャイロスコープに連結し
て動かすことになるが、回転中心を正確に維持し、また
円滑な作動を実現するためにはかなりの精度を要求され
るなど駆動機構に相当の負担が掛る難点がある。
When tilting one side of the doublet lens mentioned above, the lens must be supported so that it can swing vertically and horizontally around the spherical center of the lens surface, and it must also be connected to a gyroscope installed at this position to move it. It has the drawback of requiring considerable precision in order to accurately maintain the center and realize smooth operation, which places a considerable burden on the drive mechanism.

〈発明が解決すべき問題点〉 本発明は上述の難点を解消し、比較的小型で駆動機構に
負担が少なく、画質、特に色収差の悪化を軽減すること
を目的とする。
<Problems to be Solved by the Invention> It is an object of the present invention to solve the above-mentioned difficulties, to be relatively compact, to place less burden on the drive mechanism, and to reduce deterioration in image quality, particularly chromatic aberration.

この目的を達成するため、主レンズ系と共に光学系を構
成するアフォーカル光学部、あるいは主レンズ系の一部
に着脱されるアフォーカルアタッチメントの所定部分を
光学系の光軸と垂直方向に移動自在とし、残りの部分を
固定として移動自在とした部分を外界からの加力に応じ
て平行偏芯させている。
In order to achieve this purpose, the afocal optical part that constitutes the optical system together with the main lens system, or a predetermined part of the afocal attachment that is attached to and detached from a part of the main lens system, can be freely moved in the direction perpendicular to the optical axis of the optical system. The remaining part is fixed and the movable part is parallel and eccentric in response to external forces.

〈実施例〉 以下、第1図から第3図を使って本発明の実施例の基本
構成を説明する。第1図は正常な状態、即ち光学系に外
力が加わっていない状態を示す。第2図と第3図は光学
系に外力が加わって、例えば上向きに回転した状態を示
し、第2図は防振機能が作動していないときであり、第
3図は作動しているときである。
<Embodiment> Hereinafter, the basic configuration of an embodiment of the present invention will be explained using FIGS. 1 to 3. FIG. 1 shows a normal state, that is, a state in which no external force is applied to the optical system. Figures 2 and 3 show a state in which an external force is applied to the optical system, causing it to rotate upward, for example. Figure 2 shows when the anti-vibration function is not operating, and Figure 3 shows when it is operating. It is.

図中1は結像レンズの様な主レンズで、ここではブロッ
クとして描いているが、実際には複数枚のレンズから成
り、単焦点レンズであっても良いし、ズームレンズであ
っても良い。2は主レンズlの光軸である。3は画面を
示し、感光フィルムや撮像素子が配される。4と5°は
夫々光線で、無限遠の点光源からのものとし、画面3上
に点像6を結像する。7は正レンズ部、8は負レンズ部
で、図には薄肉系の表記法で示した。正レンズ部7と負
レンズ部8はアフォーカル光学系Aを構成するものとし
、主レンズlに対して着脱自在なアタッチメントとして
も良いし、主レンズlと同じ鏡筒(不図示)に設けても
良い。各レンズ部は求める画質に応じて1枚又は複数枚
のレンズで構成するが、後述する様に可動のレンズ部は
少なくとも1枚ずつの正レンズと負レンズで構成するの
が望ましい。本例では負レンズ部8を光軸2に垂直に移
動自在とする。
1 in the figure is a main lens such as an imaging lens, and although it is depicted as a block here, it actually consists of multiple lenses, and may be a single focus lens or a zoom lens. . 2 is the optical axis of the main lens l. 3 indicates a screen, on which a photosensitive film and an image sensor are arranged. 4 and 5 degrees are light rays, respectively, which are assumed to be from a point light source at an infinite distance, and form a point image 6 on the screen 3. 7 is a positive lens portion, and 8 is a negative lens portion, which are shown in the drawing using a thin-wall notation. The positive lens section 7 and the negative lens section 8 constitute an afocal optical system A, and may be provided as a detachable attachment to the main lens l, or may be provided in the same lens barrel (not shown) as the main lens l. Also good. Each lens section is composed of one or more lenses depending on the desired image quality, but as will be described later, it is desirable that the movable lens section is composed of at least one positive lens and one negative lens. In this example, the negative lens section 8 is movable perpendicularly to the optical axis 2.

またここではアフォーカル光学系Aをワイド・タイプと
したがテレタイプであっても良く、主レンズlが望遠系
のときはテレ・タイプ。広角系のときはワイド・タイプ
とするのが素直であるが、必要に応じて逆の選択もでき
る。
In addition, here, the afocal optical system A is a wide type, but it may be a tele type, and if the main lens l is a telephoto type, it is a tele type. If you are looking for a wide-angle lens, it is natural to use the wide type, but you can also select the opposite option if necessary.

負レンズ部8は図示しない支持部材で、光軸2に垂直な
面内を移動自在に支持されているものとし、アクチュエ
ータ9により駆動される。アクチュエータ9はソレノイ
ド、メータ、ピエゾ素子の積層など種々のものが使用で
きる。10は偏倚検出器で、ジャイロスコープあるいは
加速度計、角加速度計、速度計などを内蔵している。ジ
ャイロスコープであれば傾角を取出せ、加速度計であれ
ば出力を2回積分して加速度計の取付けられた位置の偏
位量が取出せるから、これを基に負レンズ部8の補償移
動量を算出できる。
The negative lens section 8 is supported by a support member (not shown) so as to be movable in a plane perpendicular to the optical axis 2, and is driven by an actuator 9. Various types of actuator 9 can be used, such as a solenoid, a meter, and a stack of piezo elements. 10 is a deflection detector which includes a gyroscope, an accelerometer, an angular accelerometer, a speedometer, etc. If you use a gyroscope, you can get the inclination angle, and if you use an accelerometer, you can integrate the output twice to get the amount of deviation at the position where the accelerometer is attached, so based on this, you can calculate the amount of compensation movement of the negative lens section 8. It can be calculated.

第1図で、光線4と5は正レンズ部7と負レンズ部8を
通過し、主レンズlで画面3上に結像されている。点線
6は画面3の中心にある。次に外力が光学系に加わって
、例えば節点を中心に回転すると像点6は、第2図に示
す様に画面3の中心から変位する。つまり物体像が画面
3上を移動するわけで、繰返し外力が加わることで物体
像は振動する。
In FIG. 1, rays 4 and 5 pass through a positive lens section 7 and a negative lens section 8, and are imaged onto a screen 3 by a main lens l. The dotted line 6 is at the center of the screen 3. Next, when an external force is applied to the optical system and the optical system is rotated, for example, around a node, the image point 6 is displaced from the center of the screen 3 as shown in FIG. In other words, the object image moves on the screen 3, and the object image vibrates as external forces are applied repeatedly.

第3図の様に、偏倚検出器lOとアクチュエータ9が作
動していれば偏倚検出器lOが補償移動量を検出し、ア
クチュエータ9を駆動する。アクチュエータ9は負レン
ズ部8を光軸2と垂直な方向へ移動させるので、像点6
は画面の中心に維持される。光学的な補正作用は後述す
る。
As shown in FIG. 3, if the bias detector lO and the actuator 9 are operating, the bias detector lO detects the compensation movement amount and drives the actuator 9. Since the actuator 9 moves the negative lens section 8 in a direction perpendicular to the optical axis 2, the image point 6
remains centered on the screen. The optical correction effect will be described later.

第4図は負レンズ部8の駆動機構を模型的に示している
。要は負レンズ部8を上下方向、水平方向の2方向に独
立に移動できると共に、斜方向へ移動すべく2方向へ同
時に移動できる構成が必要である。
FIG. 4 schematically shows the drive mechanism of the negative lens section 8. In short, a configuration is required in which the negative lens portion 8 can be moved independently in two directions, vertical and horizontal, and simultaneously in two directions in order to move in an oblique direction.

尚、特殊な用途あるいは簡略化された装置では一方向の
移動で済む場合もある。図で、11は外側鏡筒、12は
内側鏡筒である。第1のアクチュエータ9aと第1のス
ライド軸受13は外側鏡筒11の対向する位置に設けら
れて内側鏡筒12を軸によって支えると共にバネで中立
位置に維持し、アクチュエータ9aの駆動により内側鏡
筒12を所望位置に移動させ得る。外側鏡筒11は第2
のアクチュエータ9aと第2のスライド軸受14で同様
に支持され、負レンズ部8を所望位置に移動させ得る。
Note that for special applications or simplified devices, movement in one direction may be sufficient. In the figure, 11 is an outer lens barrel, and 12 is an inner lens barrel. The first actuator 9a and the first slide bearing 13 are provided at opposing positions of the outer lens barrel 11, and support the inner lens barrel 12 with a shaft and maintain it in a neutral position with a spring. 12 can be moved to a desired position. The outer lens barrel 11 is the second
The negative lens portion 8 is similarly supported by the actuator 9a and the second slide bearing 14, and can move the negative lens portion 8 to a desired position.

そして本機構では第1のアクチュエータ9aによる上下
方向の移動と第2のアクチュエータによる水平方向の移
動を独立にまた重畳して実施できる。
In this mechanism, the vertical movement by the first actuator 9a and the horizontal movement by the second actuator can be performed independently or in a superimposed manner.

第5図と第6図はアフォーカル光学系の一部をその光軸
と垂直な方向に平行偏芯させることによる光線が傾(様
子を説明する図である。
FIGS. 5 and 6 are diagrams illustrating how light rays are tilted when a part of the afocal optical system is decentered in parallel in a direction perpendicular to its optical axis.

今、正レンズ部7のパワーをφ1、負レンズ部8のパワ
ーをφ2とし、負レンズ部8を補償量りだけ平行偏芯さ
れると出射する光線は−Dφ2の角度だけ傾くが、これ
を光学の近軸追跡を使って説明する。負レンズ部8へ入
射する上側の光線4の入射角度をαu2、その時の光軸
からの高さhu2、また射出角度をα′u2とし、下側
の光線5についても同じ様にαd2 + hd2 + 
α/a2と定義すると、第5図の場合、 上線4 ;    a u2+hu2*φ2 =0 ”
””  (1)下線5;    αd2+hd2・φ2
=0・・・・・・ (2)また第6図の場合、 上線4;  (!’ u2=αu2+(hu2−D)φ
2=αu 2 +hu 2・φ2−D・φ2・・・・・
・・・・・(3)下線5; α′d2=αd 2+ (
hd 2−D)φ2=αd2+hd2・φ2−D・φ2
・・・・・・・・・(4)(3)式にlを代入し、(4
)式に(2)を代入するとa’u2=−Dφ2.  a
’ d2 = −D−φ2つまり上線と下線の出射角度
はともに−Dφ2だけ傾くから、この性質を利用して像
移動を補償することができる。
Now, let us assume that the power of the positive lens section 7 is φ1, and the power of the negative lens section 8 is φ2, and when the negative lens section 8 is parallel decentered by the amount of compensation, the emitted light ray will be tilted by an angle of -Dφ2. This will be explained using paraxial tracking. Let the incident angle of the upper ray 4 entering the negative lens section 8 be αu2, the height hu2 from the optical axis at that time, and the exit angle α'u2, and similarly for the lower ray 5 αd2 + hd2 +
Defining α/a2, in the case of Figure 5, the upper line 4; a u2+hu2*φ2 =0”
”” (1) Underline 5; αd2+hd2・φ2
=0... (2) Also, in the case of Figure 6, the upper line 4; (!' u2=αu2+(hu2-D)φ
2=αu 2 +hu 2・φ2−D・φ2・・・・
・・・・・・(3) Underline 5; α′d2=αd 2+ (
hd 2-D) φ2=αd2+hd2・φ2-D・φ2
・・・・・・・・・(4) Substitute l into equation (3) and get (4
) By substituting (2) into the equation, a'u2=-Dφ2. a
' d2 = -D-φ2 That is, the emission angles of the upper line and the lower line are both tilted by -Dφ2, so this property can be utilized to compensate for image movement.

この方法に依れば平行偏芯量りに対応し光線が−Dφ2
傾くのでφ2を大きな値に設定することにより、小さな
移動で防振の効果を上げることができる。また従来の光
学楔の様に物質の屈折率による制限を受けないため、比
較的自由に敏感度(レンズの動きに対する像の動きの反
応)を設定できる。
According to this method, the light beam corresponds to the parallel eccentricity measurement and -Dφ2
Since it is tilted, by setting φ2 to a large value, the vibration isolation effect can be increased with a small movement. Furthermore, unlike conventional optical wedges, it is not limited by the refractive index of the material, so the sensitivity (response of image movement to lens movement) can be set relatively freely.

また上の説明では発散レンズ部と収斂レンズ部から成る
アフォーカル光学系の後側収斂レンズ部を平行偏芯させ
たが、アフォーカル光学系内のレンズならどの部分を平
行偏芯させても上線と下線の傾く角度は同じになること
が同様の近軸追跡から言えるので、極めて都合が良い。
Also, in the above explanation, the rear convergent lens part of the afocal optical system, which consists of a diverging lens part and a converging lens part, is parallel decentered, but if any part of the lens in the afocal optical system is parallel decentered, the upper line This is extremely convenient since it can be said from similar paraxial tracing that the angle of inclination of the underline and the underline will be the same.

第7図から第9図までは、第1図の変形例を夫々示して
いる。第7図はアフォーカル光学系を主レンズlの像側
に配置した例であり、第8図はアフォーカル光学系を正
レンズ部8a、負レンズ部7′、正レンズ部8bを装置
して構成した例であって、アクチュエータ9で2つの正
レンズ部8a、8bを平行偏芯させている。
7 to 9 show modifications of FIG. 1, respectively. Fig. 7 shows an example in which the afocal optical system is arranged on the image side of the main lens l, and Fig. 8 shows an example in which the afocal optical system is arranged in a positive lens section 8a, a negative lens section 7', and a positive lens section 8b. In this example, the actuator 9 is used to make the two positive lens parts 8a and 8b parallel and decentered.

第9図は3部分から成るアフォーカル光学系を主レンズ
lの像側に配置した例を示す。
FIG. 9 shows an example in which an afocal optical system consisting of three parts is arranged on the image side of the main lens l.

次に各レンズ部を厚内化した例を第10図に示す。Next, FIG. 10 shows an example in which each lens portion is made thicker.

数値諸元は後述する。lの主レンズは望遠レンズで、特
公昭60−328°47号の実施例1のデータを焦点距
離300mmに換算したものを使用し、アフォーカル光
学系Aとこの望遠レンズを合わせた光学系の合成焦点距
離は352.94mm、Fナンバー1 : 5.6.画
角2W=7° となる。
Numerical specifications will be described later. The main lens of l is a telephoto lens, and using the data of Example 1 of Japanese Patent Publication No. 60-328°47 converted to a focal length of 300 mm, the optical system that combines afocal optical system A and this telephoto lens is used. The combined focal length is 352.94mm, F number 1: 5.6. The angle of view 2W=7°.

本例のアフォーカル光学系はテレタイプで、正レンズ部
AIと負レンズ部A2の2群4枚から成り、負レンズ部
A2を平行偏芯させている。
The afocal optical system of this example is a teletype, and consists of four lenses in two groups: a positive lens section AI and a negative lens section A2, with the negative lens section A2 being parallel and decentered.

上述して来た構成で設計上の観点から次の条件を満足す
ると良い。
It is preferable that the configuration described above satisfies the following conditions from a design standpoint.

一3≦Fp/Fn≦−1 但し、Fpは正レンズ部の焦点距離、Fnは負レンズ部
の焦点距離とする。下限値を越えると可動部の単位移動
量に対する像の移動量つまり敏感値が悪化し、上限値を
越えると画像性能が良好にするのが難しくなって来る。
-3≦Fp/Fn≦-1 However, Fp is the focal length of the positive lens portion, and Fn is the focal length of the negative lens portion. If the lower limit value is exceeded, the amount of movement of the image relative to the unit movement amount of the movable part, that is, the sensitivity value deteriorates, and if the upper limit value is exceeded, it becomes difficult to improve the image performance.

他方、従来の様な光学楔を使用した装置に比べれば遥か
に小さいとはいえ他のレンズに対して光軸のずれたレン
ズを導入することになるから色収差は悪化する。しかし
ながら可動のレンズ部自体の色収差はを小さく抑えてお
(ことで、収差を改善することができる。
On the other hand, although it is much smaller than a conventional device using an optical wedge, chromatic aberration worsens because a lens whose optical axis is shifted from other lenses is introduced. However, the chromatic aberration of the movable lens section itself can be suppressed to a minimum, thereby improving the aberration.

可動レンズ部が負屈折力αときは、レンズ部を構成して
いる正レンズの平均アツベ数をνp1負レンズの平均ア
ツベ数を7nとして、vp≦40゜丁n≧45を満足す
る。
When the movable lens portion has a negative refractive power α, the average Abbe number of the positive lenses constituting the lens portion is νp1, and the average Abbe number of the negative lenses is 7n, satisfying vp≦40°dn≧45.

逆に可動レンズ部が正屈折力のときは、レンズ部を構成
している正レンズの平均アツベ数をνp、負レンズの平
均アツベ数を7nとして、yp≧45゜丁n≦40を満
足する。
Conversely, when the movable lens part has a positive refractive power, the average Atsube number of the positive lenses constituting the lens part is νp, and the average Atsube number of the negative lenses is 7n, and the following conditions are satisfied: yp≧45° dn≦40 .

これら条件を満足しないときは、レンズ部を偏芯させた
ときに色収差、特に倍率色収差が目につ(ことがある。
If these conditions are not satisfied, chromatic aberration, especially chromatic aberration of magnification, may become noticeable when the lens portion is decentered.

第11図は本発明の数値実施例の縦収差による基準性能
を示している。またこの時の各レンズ群の収差係数値も
あげである。
FIG. 11 shows the reference performance due to longitudinal aberration of a numerical example of the present invention. Also, the aberration coefficient values of each lens group at this time are also given.

第12図は上記の基準状態(手ブレなどによる像ブレが
ない状態)の性能を横収差で示したものである。上から
像高Y=15.  O,−15である。
FIG. 12 shows the performance in the above-mentioned standard state (a state in which there is no image blur due to camera shake, etc.) in terms of lateral aberration. Image height Y=15 from above. O, -15.

第13図は像ブレがl m m生じた時に、負の偏心ブ
ロックA2を0.6mm平行偏心させ、像を1mmずら
し像ブレをキャンセルした状態の性能である。
FIG. 13 shows the performance in a state where, when image blur occurs by l m m, the negative eccentric block A2 is parallel and decentered by 0.6 mm, the image is shifted by 1 mm, and the image blur is canceled.

第12図の性能と比較してわかるように平行偏心による
収差の悪化はほとんどないと言ってよい。
As can be seen by comparing the performance with the performance shown in FIG. 12, it can be said that there is almost no deterioration of aberrations due to parallel eccentricity.

これは 一4≦AO2≦0 一1≦BO2≦3 の条件を満たしている。ここで使われているA。2゜8
02は薄肉光学系でのA2ブロックの形状Rを決定する
ための固有係数A。、Boである(松居吉哉:レンズ設
計法参照)。A2ブロックのA。2゜BQZ本条件を満
たさない時は、A2を平行偏心させ像ブレを補正した状
態での収差の悪化が大きい。特に偏心コマ収差、偏心非
点収差、偏心像面湾曲、偏心歪曲収差が新たに発生する
This satisfies the following conditions: -4≦AO2≦0 and -1≦BO2≦3. A used here. 2゜8
02 is the characteristic coefficient A for determining the shape R of the A2 block in the thin optical system. , Bo (see Yoshiya Matsui: Lens Design Method). A of A2 block. 2°BQZ When this condition is not satisfied, aberrations are greatly worsened even when A2 is parallel decentered and image blur is corrected. In particular, eccentric comatic aberration, eccentric astigmatism, eccentric curvature of field, and eccentric distortion aberration are newly generated.

またA2ブロック中の第1面の曲率半・径R1(rs)
及び最終面の曲率半径をRk (r、)とした時、下記
の条件を満たすと設定上都合が良い。
Also, the radius of curvature and radius R1 (rs) of the first surface in the A2 block
When the radius of curvature of the final surface is Rk (r,), it is convenient for setting if the following conditions are satisfied.

−1≦(R,+Rk)/ (R+  Rk)≦1.5こ
の条件式の下限を越えると基準状態で球面収差が補正過
剰となり、移動レンズ群A2を平行偏心させると偏心コ
マ収差の発生が大きくなる。
-1≦(R,+Rk)/(R+Rk)≦1.5If the lower limit of this conditional expression is exceeded, spherical aberration will be overcorrected in the standard state, and if the movable lens group A2 is parallel decentered, eccentric coma aberration will occur. growing.

また上記の条件式の上限を越えると、基準状態でコマ収
差が発生し始め、A2を平行偏心させた時は偏心コマ収
差及び偏芯非点収差が発生する。
Furthermore, when the upper limit of the above conditional expression is exceeded, coma aberration begins to occur in the standard state, and when A2 is parallel decentered, eccentric coma aberration and eccentric astigmatism occur.

〈実施例〉 f =352.94  Fno、=1:5.6 2w=
7゜RD     ND    VD 全系を1に規準化した時、φ2=−2,08で光線の傾
き角は2.08Dとなる。
<Example> f = 352.94 Fno, = 1:5.6 2w =
7°RD ND VD When the entire system is normalized to 1, the inclination angle of the light beam is 2.08D when φ2=-2.08.

Fp/Fn=−1,2 LI A=52.3   A0=1.87B=35.3
  80=0.39 1、十Rk)/(R,−Rk)=o、sta各レンズ群
のし差係数の分担値 L   TSAC1lASFrDS ^11−40.030481−0.0056830.5
368090.3000961.51120531.0
72464−1.148775^25−8−0.030
9660.003577−0.084701−0.42
9071−1.469197−1.0772930.5
20091B 9−170.0005960.01X1
4530.4026070.2641870.1?11
6j −0,080139−5,807461Lは倍率
の色収差、 Tは軸上色収差、SAは球面収差、  C
Mはコマ収差、ASは非点収差、  PTはペッツバー
ル和、DSは歪曲の各収差係数。
Fp/Fn=-1,2 LI A=52.3 A0=1.87B=35.3
80=0.39 1, 10Rk)/(R, -Rk)=o, sta Sharing value of the difference coefficient of each lens group L TSAC1lASFrDS ^11-40.030481-0.0056830.5
368090.3000961.51120531.0
72464-1.148775^25-8-0.030
9660.003577-0.084701-0.42
9071-1.469197-1.0772930.5
20091B 9-170.0005960.01X1
4530.4026070.2641870.1?11
6j -0,080139-5,807461L is lateral chromatic aberration, T is axial chromatic aberration, SA is spherical aberration, C
M is comatic aberration, AS is astigmatism, PT is Petzval sum, and DS is distortion coefficient.

尚、アフォーカル光学系をアタッチメントとする他、光
学系自体がアフォーカルな系にはそのまま適用できる。
In addition to using an afocal optical system as an attachment, the present invention can also be applied to systems where the optical system itself is afocal.

例えば望遠鏡、双眼鏡、ファインダである。また、上側
は防振装置の場合を述べたが、逆に視界の走査にも使用
できる。
For example, telescopes, binoculars, and finders. In addition, although the above case was described as a vibration isolator, it can also be used to scan the field of view.

〈効果〉 本発明はアフォーカル系アタッチメントレンズの1部を
平行偏心させることにより、防振を行うので、傾き偏心
を使った可変頂角プリズムによる防振系ではできなかっ
た主レンズの焦点距離の変倍が可能となり、アタッチメ
ントとして望遠化または広角化ができ、しかも防振が可
能である。
<Effects> Since the present invention performs vibration isolation by paralleling and decentering a part of the afocal attachment lens, it is possible to change the focal length of the main lens, which could not be achieved with a vibration isolation system using a variable apex angle prism using tilt decentering. It is possible to change the magnification, and it can be used as an attachment to make it telephoto or wide-angle, and it also has vibration isolation.

また平行偏心ブロックを平行偏心させた時の光線の傾き
角が−Dφ2で表され、φ2のパラメーターとなり、φ
2の値を太き(設定することにより、敏感度を大きくす
ることができる。そして大きな敏感度で平行偏心させる
ことにより、平行偏心レンズ群(補正レンズ群)を上下
方向または左右方向に単純に少量ずらすだけで像ブレが
補正できるため、アクチュエーターも複雑なものを必要
とせずコンパクトにすることができる。また高周波数で
振幅の大きな振動に対しても平行偏心レンズ群のずれ量
が小さいため十分に補正できる。
Also, the inclination angle of the light beam when the parallel eccentric block is parallel eccentric is expressed as -Dφ2, which becomes the parameter of φ2, and φ
The sensitivity can be increased by setting the value of 2 to be thicker (setting).And by making the parallel eccentric lens group with a large sensitivity, the parallel eccentric lens group (correction lens group) can be simply moved vertically or horizontally. Since image blur can be corrected by simply shifting a small amount, the actuator can be made compact without requiring a complicated one.Also, the small amount of shift of the parallel decentered lens group is sufficient even for high frequency and large amplitude vibrations. It can be corrected to

このように応答速度が速いために、センサーからアクチ
ュエーターへの信号のフィードバックの回数も多くでき
、振動に対してリアルタイムで補正が可能となる。
This fast response speed allows signals to be fed back from the sensor to the actuator many times, making it possible to correct vibrations in real time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す光学配置図で、第2図と
第3図は夫々、外力が加わった時の状態を示す図、第4
図は駆動機構の正面図。第5図と第6図は光学作用の説
明図、第7図、第8図、第9図は夫々変形例を示す光学
配置図。第10図は実施例のレンズ断面図。第11図、
第12図、第13図は夫々収差図。 図中1は主レンズ、Aはアフォーカル光学系、7は負レ
ンズ部、8は正レンズ部、9はアクチュエータである。
FIG. 1 is an optical layout diagram showing an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing the state when an external force is applied, and FIG.
The figure is a front view of the drive mechanism. 5 and 6 are explanatory diagrams of optical effects, and FIGS. 7, 8, and 9 are optical layout diagrams showing modified examples, respectively. FIG. 10 is a sectional view of the lens of the example. Figure 11,
FIG. 12 and FIG. 13 are aberration diagrams, respectively. In the figure, 1 is a main lens, A is an afocal optical system, 7 is a negative lens section, 8 is a positive lens section, and 9 is an actuator.

Claims (8)

【特許請求の範囲】[Claims] (1)主レンズと、主レンズと共に光学系を構成するア
フオーカル光学部を具え、アフオーカル光学部の所定部
分を光学系の光軸と垂直方向に移動自在とし、残りの部
分を主レンズと一体として、移動自在とした部分を光学
系へ加わった外力に応じて平行偏芯させることを特徴と
する像安定化光学系。
(1) Equipped with a main lens and an afocal optical section that constitutes an optical system together with the main lens, a predetermined part of the afocal optical section is movable in a direction perpendicular to the optical axis of the optical system, and the remaining part is integrated with the main lens. An image stabilizing optical system characterized in that a movable part is parallel and decentered in response to an external force applied to the optical system.
(2)前記アフオーカル光学部を正屈折力の部分と負屈
折力の部分で構成し、どちらか一方を移動自在、他方を
固定とした特許請求の範囲第1項に記載する像安定化光
学系。
(2) The image stabilizing optical system according to claim 1, wherein the afocal optical section is composed of a portion with positive refractive power and a portion with negative refractive power, one of which is movable and the other fixed. .
(3)前記移動自在とした部分は正レンズと負レンズを
有する特許請求の範囲第1項又は第2項に記載する像安
定化光学系。
(3) The image stabilizing optical system according to claim 1 or 2, wherein the movable portion includes a positive lens and a negative lens.
(4)主レンズの物体側または像側に着脱されるアフオ
ーカル光学部であって、アフオーカル光学部の所定部分
を光軸と垂直方向に移動自在、残りの部分は固定とし、
移動自在の部分を外界からの加力に応じて平行偏芯させ
ることを特徴とするアタッチメント。
(4) an afocal optical section that is attached to and detached from the object side or image side of the main lens, a predetermined portion of the afocal optical section being movable in a direction perpendicular to the optical axis, and the remaining portion being fixed;
An attachment characterized by making a movable part parallel and eccentric in response to applied force from the outside world.
(5)前記アフオーカル光学部を正屈折力の部分と負屈
折力の部分で構成し、どちらか一方を移動自在、他方を
固定とした特許請求の範囲第4項に記載するアタッチメ
ント。
(5) The attachment according to claim 4, wherein the afocal optical section is composed of a portion with positive refractive power and a portion with negative refractive power, one of which is movable and the other fixed.
(6)前記正屈折力の部分の焦点距離をFp、前記負屈
折力の部分の焦点距離をFnとしたとき、−3≦Fp/
Fn≦−1を満足する特許請求の範囲第5項に記載する
アタッチメント。
(6) When the focal length of the positive refractive power portion is Fp and the focal length of the negative refractive power portion is Fn, −3≦Fp/
The attachment according to claim 5, which satisfies Fn≦-1.
(7)正屈折力の部分が移動自在で、また正レンズと負
レンズを有しており、正レンズの平均アツベ数をνp、
負レンズの平均アツベ数を@ν@nとするとき、@ν@
p≧45、@ν@n≦40を満足する特許請求の範囲第
5項に記載するアタッチメント。
(7) The positive refractive power part is movable and has a positive lens and a negative lens, and the average Atsube number of the positive lens is νp,
When the average Atsube number of a negative lens is @ν@n, @ν@
The attachment according to claim 5, which satisfies p≧45 and @v@n≦40.
(8)負屈折力の部分が移動自在で、また正レンズと負
レンズを有しており、正レンズの平均アツベ数を@ν@
p、負レンズの平均アツベ数を@ν@nとするとき@ν
@p≦40、@ν@n≧45を満足する特許請求の範囲
第5項に記載するアタッチメント。
(8) The part with negative refractive power is movable and has a positive lens and a negative lens, and the average Atsube number of the positive lens is @ν@
p, when the average Atsube number of the negative lens is @ν@n, @ν
The attachment according to claim 5, which satisfies @p≦40 and @ν@n≧45.
JP62035132A 1987-02-17 1987-02-17 Image stabilization optics and attachments Expired - Fee Related JPH07119902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62035132A JPH07119902B2 (en) 1987-02-17 1987-02-17 Image stabilization optics and attachments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035132A JPH07119902B2 (en) 1987-02-17 1987-02-17 Image stabilization optics and attachments

Publications (2)

Publication Number Publication Date
JPS63201622A true JPS63201622A (en) 1988-08-19
JPH07119902B2 JPH07119902B2 (en) 1995-12-20

Family

ID=12433399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035132A Expired - Fee Related JPH07119902B2 (en) 1987-02-17 1987-02-17 Image stabilization optics and attachments

Country Status (1)

Country Link
JP (1) JPH07119902B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225123A (en) * 1988-11-17 1990-05-23 Asahi Optical Co Ltd Image blur compensating telephoto lens
US5172276A (en) * 1989-08-29 1992-12-15 Minolta Camera Kabushiki Kaisha Structure for stabilizing image in optical system
EP0590950A2 (en) * 1992-09-30 1994-04-06 Sony Corporation A lens apparatus for correcting optical axis
JP2001249276A (en) * 2000-03-03 2001-09-14 Olympus Optical Co Ltd Photographic lens with image blurring correcting function
JP2007237138A (en) * 2006-03-13 2007-09-20 Equos Research Co Ltd Oxygen-enriching membrane, oxygen-enriching device, and oxygen-enriching method
JP2008018338A (en) * 2006-07-12 2008-01-31 Equos Research Co Ltd Oxygen-enriched membrane and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514179A (en) * 1966-09-12 1970-05-26 Bell & Howell Co Stabilized optical system and method of stabilizing images
JPS4848141A (en) * 1971-10-18 1973-07-07
JPS5075048A (en) * 1973-11-01 1975-06-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514179A (en) * 1966-09-12 1970-05-26 Bell & Howell Co Stabilized optical system and method of stabilizing images
JPS4848141A (en) * 1971-10-18 1973-07-07
JPS5075048A (en) * 1973-11-01 1975-06-20

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2225123A (en) * 1988-11-17 1990-05-23 Asahi Optical Co Ltd Image blur compensating telephoto lens
JPH02135408A (en) * 1988-11-17 1990-05-24 Asahi Optical Co Ltd Vibration compensation type telephoto lens
US5121978A (en) * 1988-11-17 1992-06-16 Asahi Kogaku Kogyo Kabushiki Kaisha Image blur compensating telephotographic lens
US5172276A (en) * 1989-08-29 1992-12-15 Minolta Camera Kabushiki Kaisha Structure for stabilizing image in optical system
EP0590950A2 (en) * 1992-09-30 1994-04-06 Sony Corporation A lens apparatus for correcting optical axis
EP0590950A3 (en) * 1992-09-30 1994-07-20 Sony Corp A lens apparatus for correcting optical axis
JP2001249276A (en) * 2000-03-03 2001-09-14 Olympus Optical Co Ltd Photographic lens with image blurring correcting function
JP2007237138A (en) * 2006-03-13 2007-09-20 Equos Research Co Ltd Oxygen-enriching membrane, oxygen-enriching device, and oxygen-enriching method
JP2008018338A (en) * 2006-07-12 2008-01-31 Equos Research Co Ltd Oxygen-enriched membrane and its manufacturing method

Also Published As

Publication number Publication date
JPH07119902B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
JP5064837B2 (en) Zoom lens with anti-vibration function
US7023623B2 (en) Zoom lens and electronic still camera using the same
US6646803B2 (en) Zoom lens having an image stabilizing function
JP4447704B2 (en) Variable magnification optical system and camera having the same
JP3412964B2 (en) Optical system with anti-vibration function
US20020063961A1 (en) Variable magnification optical system having image stabilizing function
JP3072815B2 (en) Variable power optical system
JP3141681B2 (en) Optical system with anti-vibration function
JP4789530B2 (en) Zoom lens and imaging apparatus having the same
US8896930B2 (en) Zoom lens and image pickup apparatus equipped with zoom lens
JPS61223819A (en) Vibration-proof optical system
JPH09230234A (en) Zoom lens provided with vibration-proof function
JP4109884B2 (en) Zoom lens and optical apparatus having the same
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JP2535969B2 (en) Variable magnification optical system with anti-vibration function
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
JP2621280B2 (en) Variable power optical system with anti-vibration function
US8218238B2 (en) Zoom lens system and image taking apparatus including the same
JPH01191113A (en) Variable power optical system with vibration isolating function
JP4829445B2 (en) Zoom lens and optical apparatus having the same
EP2015122A1 (en) Zoom lens and optical device with the same
JPH0862541A (en) Variable power optical system having vibration damping function
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JPH08136862A (en) Variable power optical system provided with vibration proofing function
JPH10260355A (en) Variable power optical system with vibration-proof function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees