JPS63201564A - Method for dissolving iron-component of aqueous solution containing colloidal iron-component - Google Patents

Method for dissolving iron-component of aqueous solution containing colloidal iron-component

Info

Publication number
JPS63201564A
JPS63201564A JP3346487A JP3346487A JPS63201564A JP S63201564 A JPS63201564 A JP S63201564A JP 3346487 A JP3346487 A JP 3346487A JP 3346487 A JP3346487 A JP 3346487A JP S63201564 A JPS63201564 A JP S63201564A
Authority
JP
Japan
Prior art keywords
iron
sample water
hydrochloric acid
component
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3346487A
Other languages
Japanese (ja)
Inventor
Tanji Nakamuta
中牟田 端士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3346487A priority Critical patent/JPS63201564A/en
Publication of JPS63201564A publication Critical patent/JPS63201564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To completely dissolve the colloidal iron-component in sample water by adding hydrochloric acid or thioglycollic acid to the water and heating the water under a high pressure. CONSTITUTION:The sample water is drawn by a sample introducing pipe 1 and is sent through an inlet valve 2, a water feed pump 3 and a flow meter 4 to a sample water heater 8 under the high pressure. On the other hand, the hydrochloric acid is injected from a hydrochloric acid information pump 5 through a hydrochloric acid injection pipe 6 and a hydrochloric acid injection valve 7 into the sample water. The sample water is then heated to 100-150 deg.C by the sample water heater 8, by which the colloidal and particulate iron- component in the sample water is dissolved. The sample water is thereafter cooled by a cooler 9 and is reduced in pressure by a pressure regulator 10. Such water is sent to a total iron analyzer 12. The thioglycollic acid may be used in place of the hydrochloric acid. The colloidal and particulate iron- component in the sample water is thereby completely dissolved in the form of ions in a short period, by which the time required for analyzing the total iron is shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水溶液中の鉄分を分析する前処理法に関し、特
に火力原子力発電プラント、及び化学工場プラント等に
おけるコロイド状の鉄分を含む水溶液の鉄分を分析する
に当って先ずコロイド状(粒子状も含む)鉄分を完全に
水溶液中に溶解させる方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a pretreatment method for analyzing the iron content in an aqueous solution, and in particular to a pretreatment method for analyzing iron content in an aqueous solution containing colloidal iron in thermal nuclear power plants, chemical factory plants, etc. In analyzing this, we first relate to a method for completely dissolving colloidal (including particulate) iron in an aqueous solution.

〔従来の技術〕[Conventional technology]

水溶液中の鉄分を鉄分析計で分析するには、全鉄分に塩
酸やチオグリコ」ル酸等を一定量添加後、加熱溶解しイ
オン状とする必要があるが、従来の加熱する際の溶解装
置はビー力等のガラス製容器で耐圧性のない構造となっ
ているため10Q±50℃以上には加熱できない。
In order to analyze iron in an aqueous solution using an iron analyzer, it is necessary to add a certain amount of hydrochloric acid or thioglycolic acid to the total iron and then heat it to dissolve it into an ionic state. Because it is a glass container such as a Bee force and has a structure that is not pressure resistant, it cannot be heated above 10Q±50°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

とのため試料水中に含まれるコロイド状(粒子状を含む
)の鉄分を完全に溶解するには塩酸で約10〜20分以
上の時間を必要とし、又、チオグリコール酸では溶解力
が小さいため鉄分を完全にイオン状にできず分析値に負
の誤差を生じる等従来の鉄分溶解方法では鉄分の溶解に
長時間を必要としたシ、溶解が不十分であシ分析値の精
度に問題があった。
Therefore, to completely dissolve the colloidal (including particulate) iron contained in the sample water, it takes about 10 to 20 minutes or more with hydrochloric acid, and thioglycolic acid has low dissolving power. Conventional iron dissolution methods require a long time to dissolve the iron, and the dissolution is insufficient, resulting in problems with the accuracy of the analysis values. there were.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の水準に鑑み、水溶液中の鉄分を
分析する前処理として水溶液中6鉄分を完全に溶解させ
る方法を提供しようとするものである。
In view of the above-mentioned level of the prior art, the present invention aims to provide a method for completely dissolving hexagonal iron in an aqueous solution as a pretreatment for analyzing iron in an aqueous solution.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はコロイド状鉄分含有水溶液中の鉄分を分析する
前処理として、該水溶液から採取した試料水溶液に、塩
酸またはチオグリコール酸を添加した後、高圧下で高温
に加熱し、コロイド状鉄分を溶解させた後、冷却するこ
とを特徴とするコロイド状鉄分含有水溶液の鉄分溶解方
法である。
As a pretreatment for analyzing iron in an aqueous solution containing colloidal iron, the present invention involves adding hydrochloric acid or thioglycolic acid to a sample aqueous solution taken from the aqueous solution, and then heating the sample to a high temperature under high pressure to dissolve the colloidal iron. This is a method for dissolving iron in a colloidal iron-containing aqueous solution, which is characterized by cooling the colloidal iron-containing aqueous solution.

すなわち、本発明は分析対象の水溶液(試料水)に塩酸
またはチオグリコ−〜酸を添加後、試料水加熱器で10
0℃〜150℃に加熱し高温高圧の条件でコロイドや粒
子状の鉄分を短時間でイオン状に溶解した後冷却器で冷
却して全鉄分析計の試料水として供給するものである。
That is, in the present invention, after adding hydrochloric acid or thioglyco-acid to an aqueous solution to be analyzed (sample water), the sample water is heated in a sample water heater for 10 minutes.
It is heated to 0°C to 150°C to dissolve colloidal and particulate iron into ions in a short time under high temperature and high pressure conditions, and then cooled in a cooler and supplied as sample water to a total iron analyzer.

〔作用〕[Effect]

コロイドや粒子状の鉄分の塩酸またはチオグリコール酸
による溶解反応は温度を高くする程大きくなシ、試料水
中のこれらの鉄分はきわめて短時間に塩化鉄(Fec1
4. peczs)などとして完全に溶解される。
The dissolution reaction of colloidal and particulate iron with hydrochloric acid or thioglycolic acid increases as the temperature increases, and these iron contents in the sample water dissolve into iron chloride (Fec1) in a very short time.
4. peczs) etc. completely dissolved.

〔実施例〕〔Example〕

第1図は本発明の一実施例である試料水の鉄分溶解方法
の概略図でおる。第1図において1は試料水導入管、2
は試料水大口弁、3は送水ポンプ、4は流量計、5は塩
酸注入ポンプ、6は塩酸注入管、7は塩酸注入弁、8は
試料水加熱器、9は冷却器、10は調圧弁、11は弁、
12は全鉄分析計、13はブロー管、14は試料水出口
管、15は試料水出口弁である。
FIG. 1 is a schematic diagram of a method for dissolving iron in sample water, which is an embodiment of the present invention. In Figure 1, 1 is the sample water introduction tube, 2
is the sample water large mouth valve, 3 is the water pump, 4 is the flow meter, 5 is the hydrochloric acid injection pump, 6 is the hydrochloric acid injection pipe, 7 is the hydrochloric acid injection valve, 8 is the sample water heater, 9 is the cooler, and 10 is the pressure regulating valve. , 11 is a valve,
12 is a total iron analyzer, 13 is a blow pipe, 14 is a sample water outlet pipe, and 15 is a sample water outlet valve.

鉄分溶解装置(図示省略)用の試料水が試料水導入管1
によって採取され試料水大口弁2、送水ポンプ3、流量
計4から高圧下にある試料水加熱器8に送水される。一
方塊酸注入ポンプ5から塩酸注入管6、塩酸注入弁7を
介して上記試料水中に塩酸が1〜10%程度となるよう
注入混合され試料水加熱器8で100〜150℃に加熱
され上記試料水中のコロイド及び粒子状の鉄分は、従来
の100℃の加熱温度による溶解時間よ〕大幅に短い滞
留時間で溶解された後、冷却器?で冷却され調圧弁10
を介して減圧される。
The sample water for the iron dissolution device (not shown) is in the sample water introduction pipe 1.
The sample water is collected by the sample water outlet valve 2, the water supply pump 3, and the flow meter 4, and is sent to the sample water heater 8 under high pressure. On the other hand, hydrochloric acid is injected into the sample water from the block acid injection pump 5 through the hydrochloric acid injection pipe 6 and the hydrochloric acid injection valve 7 to a concentration of about 1 to 10% and mixed, and heated to 100 to 150°C by the sample water heater 8. After the colloidal and particulate iron in the sample water is dissolved in a much shorter residence time than the conventional dissolution time at a heating temperature of 100°C, the colloidal and particulate iron is dissolved in a cooler. The pressure regulating valve 10 is cooled by
The pressure is reduced through the

次いで弁11を経て全鉄分析計12に送水されブロー管
13から排出される。又全鉄分析計12による分析が必
要でない場合、弁11を閉じ試料水出口弁15を開口し
塩酸で処理された試料水は試料水出口管14から排出さ
れるが、これは手分析で全鉄を分析するのに使用できる
The water is then sent to the total iron analyzer 12 via the valve 11 and discharged from the blow pipe 13. When analysis by the total iron analyzer 12 is not required, the valve 11 is closed, the sample water outlet valve 15 is opened, and the sample water treated with hydrochloric acid is discharged from the sample water outlet pipe 14, but this is completely analyzed manually. Can be used to analyze iron.

なお、試料水加熱器8による加熱温度は150℃以上も
可能であるが鉄分溶解装置の耐圧を大きくする必要があ
るため圧力5 ata程度の耐圧以下が実用的であるの
で加熱温度の最高温度は約150℃とした。
Note that the heating temperature by the sample water heater 8 can be higher than 150°C, but since it is necessary to increase the pressure resistance of the iron melting device, it is practical to keep the pressure resistance below about 5 ata, so the maximum heating temperature is The temperature was about 150°C.

以上は、鉄分の溶解に塩酸を使用した場合について述べ
たが、チオグリコール酸を用いても同様外結果が得られ
る。
The above has described the case where hydrochloric acid is used to dissolve iron, but similar results can be obtained using thioglycolic acid.

〔発明の効果〕〔Effect of the invention〕

試料水中に含まれるコロイドや粒子状の鉄分を5〜10
分以内の極めて短時間にイオン状に溶解できるため、全
鉄の分析所要時間がこれまでの約30分以上から約%程
度迄短縮される。
5 to 10% of colloidal and particulate iron contained in the sample water.
Since it can be dissolved in ionic form in an extremely short time of less than a minute, the time required for total iron analysis is reduced from about 30 minutes or more to about 30%.

このため火カデラット起動時等に鉄分濃度を確認するま
で系外ヘブローしていた復水ドレンやボイラ水の回収の
遅れがなくなシ節水や工程が短縮されこれらのコストが
低減される。
Therefore, there is no delay in recovering condensate drain or boiler water, which is blown outside the system until the iron concentration is confirmed when starting the fire cadaver, etc., which saves water, shortens processes, and reduces costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のフローを示す図である。 FIG. 1 is a diagram showing the flow of one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] コロイド状鉄分含有水溶液中の鉄分を分析する前処理と
して、該水溶液から採取した試料水溶液に、塩酸または
チオグリコール酸を添加した後、高圧下で高温に加熱し
、コロイド状鉄分を溶解させた後、冷却することを特徴
とするコロイド状鉄分含有水溶液の鉄分溶解方法。
As a pretreatment for analyzing iron in a colloidal iron-containing aqueous solution, hydrochloric acid or thioglycolic acid is added to a sample aqueous solution taken from the aqueous solution, which is then heated to a high temperature under high pressure to dissolve the colloidal iron. A method for dissolving iron in a colloidal iron-containing aqueous solution, which comprises cooling.
JP3346487A 1987-02-18 1987-02-18 Method for dissolving iron-component of aqueous solution containing colloidal iron-component Pending JPS63201564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3346487A JPS63201564A (en) 1987-02-18 1987-02-18 Method for dissolving iron-component of aqueous solution containing colloidal iron-component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3346487A JPS63201564A (en) 1987-02-18 1987-02-18 Method for dissolving iron-component of aqueous solution containing colloidal iron-component

Publications (1)

Publication Number Publication Date
JPS63201564A true JPS63201564A (en) 1988-08-19

Family

ID=12387264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3346487A Pending JPS63201564A (en) 1987-02-18 1987-02-18 Method for dissolving iron-component of aqueous solution containing colloidal iron-component

Country Status (1)

Country Link
JP (1) JPS63201564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870903A (en) * 2022-04-07 2022-08-09 浙江西热利华智能传感技术有限公司 Mixed catalyst for dissolving trace colloidal iron in water vapor of power station

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870903A (en) * 2022-04-07 2022-08-09 浙江西热利华智能传感技术有限公司 Mixed catalyst for dissolving trace colloidal iron in water vapor of power station
CN114870903B (en) * 2022-04-07 2024-04-23 浙江西热利华智能传感技术有限公司 Mixed catalyst for dissolving trace colloidal iron in water vapor of power station

Similar Documents

Publication Publication Date Title
CN204044056U (en) For the device of online water quality detection
Krogh et al. Methods for the determination of dissolved organic carbon and nitrogen in sea water
CN204556366U (en) Intelligent environmental protection type electric heating counteract appearance
Sullivan et al. The hydrolysis of neptunium (IV)
JPS63201564A (en) Method for dissolving iron-component of aqueous solution containing colloidal iron-component
CN106969953A (en) The device for making and its oxidizing fire method of a kind of organic tritium carbon sample
CN206772953U (en) A kind of Industrial Boiler water hardness monitoring device
CN109851187B (en) Sludge supercritical water oxidation system with heat transfer oil as heat exchange medium and sludge treatment method
SE462303B (en) PREPARED TEST PREPARATION BY ANALYSIS OF PARTICULATE SOCIETIES IN A FLOW OF WATER
CN104914063A (en) Analytical device
CN205590474U (en) Desulfurization waste water flue gas softens preprocessing device
CN105523673B (en) A kind of desulfurization wastewater flue gas softening pretreatment unit and preprocess method
CN208607918U (en) It is a kind of spherical shape Nuclear Fuel Element Production Line in unqualified U3O8The recycling and processing device of powder
Ingram Rapid micro combustion methods for the determination of elements in organic compounds
CN205528184U (en) Desulfurization waste water flue gas softens preprocessing device
CN110467334A (en) A kind of kiln gas waste heat is used for the heating device of molten tin bath
CN201926919U (en) Water quality on-line monitoring and intelligent control device for industrial boiler
CN105731683A (en) Treatment device and method for softening desulfurization waste water
FR2383396A1 (en) METHOD AND DEVICE FOR INCREASING THE FLUE GAS RISE
CN205528118U (en) Malactic processing apparatus of desulfurization waste water
CN206177692U (en) Polonium oxidation collection device among solid sample
CN110983065A (en) Method for reducing gold in iodine-containing waste liquid
OHNO-IWASHITA et al. Colicin E3 induced cleavage of 16S rRNA of isolated 30S ribosomal subunits
JPS5864194A (en) Method for operating cell for aerating active sludge
KR980001863A (en) Fluorine (H₂SiF_6) input method and system