JPS6320145A - Control method for mold oscillation of continuous casting equipment - Google Patents

Control method for mold oscillation of continuous casting equipment

Info

Publication number
JPS6320145A
JPS6320145A JP16575986A JP16575986A JPS6320145A JP S6320145 A JPS6320145 A JP S6320145A JP 16575986 A JP16575986 A JP 16575986A JP 16575986 A JP16575986 A JP 16575986A JP S6320145 A JPS6320145 A JP S6320145A
Authority
JP
Japan
Prior art keywords
mold
sloshing
oscillation
frequency
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16575986A
Other languages
Japanese (ja)
Inventor
Mitsushige Shimaoka
島岡 満茂
Futoshi Kamei
亀井 太
Hiroyuki Yasunaka
弘行 安中
Minoru Kato
稔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16575986A priority Critical patent/JPS6320145A/en
Publication of JPS6320145A publication Critical patent/JPS6320145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent sloshing phenomenon at the time of transition period for an operation by returning back number of mold oscillation changed to pass out of dangerous region for sloshing, to the original calculated number of oscillation after passing the dangerous region. CONSTITUTION:In case of finding the number of mold oscillation in the dangerous region for sloshing, for example, a damping circuit is passed through as setting it to upper limit value in the dangerous region, to send a command oscillation value to a mold oscillation control device. After passing the dangerous region, a number of oscillation S=RXV, in which multiplies a control constant R to the production command velocity V, is operated and in case of comparing S with a mold oscillation lower limit L is found and so again the number of oscillation S=RXV is adopted to return back the command oscillation value to the original calculating number of oscillation. In this way, the casting operation is possible to pass the dangerous region within the time of no big development of sloshing on the molten metal practically. Therefore, at even the time of transition period for the operation, fluctuation of the molten surface does not occur and the operation without any adverse effect on the cast billet quality is executed.

Description

【発明の詳細な説明】 (産′業−1−の利用分野) 本発明(」連続鋳造の操業過渡期にお(Jる鋳型振動制
御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of Industry-1-) The present invention relates to a mold vibration control method during the transition period of continuous casting operations.

(従来技術とその問題点) 連続鋳造法では、鋳片と鋳型との摩擦を軽減さUて鋳片
の焼イ・jlあるいはブレークアウト事故を防雨ずろこ
とが必要である。そこで、鋳型と鋳片の間の摩擦を軽減
するために、鋳型を−1−下に振動させながら、鋳造す
るいわゆる鋳型振動方式の連続鋳造が行われている。
(Prior art and its problems) In the continuous casting method, it is necessary to reduce the friction between the slab and the mold to prevent burning, breakout, or breakout accidents of the slab. Therefore, in order to reduce the friction between the mold and the slab, continuous casting is carried out using the so-called mold vibration method, in which the mold is vibrated downward by -1-.

しかしなから、一般に、鋳型振動方式の鋳造(」鋳型の
振動を鋳型の最大下降速度が鋳片の引き抜き速度より大
きくなるように設定されるたぬ、振動周波数を−1−げ
、オツソレーンヨン欠陥の発生率を低下さUる必要があ
るが、振動周波数を」−げろと、操業安定期だ(Jでな
く、操業過渡期(鋳込み初期、Tr)交換時、注入系ト
ラブル時等)におけろス〔7ツシングと呼ばれる溶鋼の
表面振動が誘起され、鋳片品質に悪影響を勺えるため、
振動周波数をむやみに大きく出来ないと言う技術的問題
がある。
However, in general, mold vibration type casting (in which the vibration of the mold is set so that the maximum descending speed of the mold is greater than the withdrawal speed of the slab) increases the vibration frequency by -1-1 to prevent defects in the outer layer. It is necessary to reduce the occurrence rate, but it is necessary to reduce the vibration frequency during the stable operation period (not during the operation transition period (initial casting period, when replacing the Tr, when there is a problem with the injection system, etc.) [7] Surface vibration of the molten steel called tsusing is induced, which has a negative effect on the quality of the slab.
There is a technical problem in that the vibration frequency cannot be increased unnecessarily.

(発明の課題) 本発明は、振動周θν数を上げてオツシレーション欠陥
の発生率を低ドさせて操業する場合において、特に操業
過渡期におけろ液面スロッシングと呼ばれる溶銅の表面
振動が誘起されることのないよう制御ずろ方法を提供す
ることを課題とする。
(Problems to be solved by the invention) The present invention aims at reducing the surface vibration of molten copper called filtrate level sloshing especially during the transitional period of operation when operating by increasing the vibration frequency θν number to reduce the incidence of oscillation defects. It is an object of the present invention to provide a control shift method that prevents this from occurring.

(課題解決の八y)の手段) 本発明は、鋳片引き抜き速度Vにネガティブストリップ
率により決定される比例定数F工を乗じて鋳型振動数を
比例設定する一方、操業条件により決定される下限振動
数以下にならないように連続鋳造装置の鋳型振動を制御
するにあたり、安定操業時のみのスロッシング防11−
は第1図に示すように、安定操業時の振動数が鋳型形状
により算出されるスロッシング周波数と重なる領域にお
いて、ネガティブストリップ率により決定される比例定
数rtを重なり部分がなくなるように変更すればよいが
、操業過渡期におけろスロッシング現象の防11゛、に
対処オろためには、第1図に示すように、鋳型形状によ
り決定される過渡期のスロッシング周θkU(zを検知
してかかる危険領域に達した時、該危険領域外の振動数
で鋳型を振動させ、該危険領域を扱は出たときには元の
算出振動数に復帰さU゛るようにしな(Jれば、過渡期
におけろ液面スロッシング現象に対処出来ないことを見
出し、完成したもので、その要旨とするところは、「鋳
片引き抜き速度Vにネガティブストリップ率により決定
される比例定数Rを乗じて鋳型振動数を比例設定する一
方、操業条件により決定される下限振動数以下にならな
いように連続鋳造装置の鋳型振動を制御するにあたり、 鋳造速度の降下または上昇時における鋳型振動を鋳型引
き抜き速度に比例して制御しつつ、鋳型形状ににり算出
されるスロッシング危険領域に達したとき、鋳型振動数
が」−記スロッンング危険領域外を通過するように変更
し、」1記スロッシング危険領域を通過オろと、元の算
出振動数に復帰させろように制御する」連続鋳造装置の
鋳型振動制御方法にある。
(Means for Solving the Problem (8y)) The present invention sets the mold vibration frequency proportionally by multiplying the slab withdrawal speed V by a proportionality constant F determined by the negative strip rate, while at the same time setting the mold vibration frequency to a lower limit determined by the operating conditions. In controlling the mold vibration of continuous casting equipment so that it does not fall below the vibration frequency, sloshing prevention only during stable operation 11-
As shown in Figure 1, in the region where the frequency during stable operation overlaps with the sloshing frequency calculated from the mold shape, the proportionality constant rt determined by the negative strip rate may be changed so that there is no overlap. However, in order to prevent the sloshing phenomenon during the transitional period of operation, as shown in Fig. 1, the sloshing circumference θkU (z of When the danger zone is reached, the mold should be vibrated at a frequency outside the danger zone, and when the danger zone is reached, the vibration frequency should be returned to the original calculated frequency. This product was completed after discovering that it was impossible to deal with the sloshing phenomenon of the filtrate level in In order to control the mold vibration of continuous casting equipment so that it does not fall below the lower limit frequency determined by the operating conditions, the mold vibration when the casting speed decreases or increases is controlled in proportion to the mold withdrawal speed. However, when the sloshing danger area calculated based on the mold shape is reached, the mold vibration frequency is changed so that it passes outside the sloshing danger area, and it passes through the sloshing danger area. "Controlling the vibration to return it to the original calculated vibration frequency" is a mold vibration control method for a continuous casting machine.

スロッシング危険領域外において鋳型振動を行わせるた
めの変更は第1図破線に示すように、鋳=3− 型振動数を1−げろ方向に変更することも、第1図−点
鎖線に示すように下げろ方向に変更することら可能であ
るが、鋳片品質I−は鋳型振動数を上げる方向に変更オ
ろのが好ましい。
Changes to make the mold vibrate outside the sloshing danger area can be made as shown in the dashed line in Figure 1.Changes in the casting = 3- mold vibration frequency to the 1-glow direction can also be made as shown in the dotted line in Figure 1. Although it is possible to change the slab quality I- in the direction of lowering the mold frequency, it is preferable to change it in the direction of increasing the mold vibration frequency.

また、鋳型振動数の急変を避けるために、ステップ状の
振動数変化が発生した場合、5秒間(実用−1−スロッ
シングが大きく成長しない時間)で振動数を変動させろ
ように、クッション(ダンピング)回路をちって制御す
るようにずろのがよい。
In addition, in order to avoid sudden changes in mold frequency, if a step-like change in frequency occurs, a cushion (damping) is used to change the frequency for 5 seconds (Practical - 1 - time during which sloshing does not grow significantly). It is better to control the circuit individually.

以下、本発明を添付図面に示す具体例に基づき、詳細に
説明オろ。
Hereinafter, the present invention will be described in detail based on specific examples shown in the accompanying drawings.

(実施例) 一般に、鋳型の下降速度と鋳片の引き抜き速度とのかか
る方式として、従来電動機駆動方式と電油サーボ駆動方
式の2方式が採用され、第2図に示す制御方式で、鋳片
引き抜き速度■を検出し、振動数設定器により鋳片引き
抜き速度■にネガティブストリップ比により決定される
比率Rを乗じて鋳型振動数を上記引き抜き速度に比例す
るように振動数指令値Nを設定する一方、引き抜き速度
か=4= 極度に低下した場合、比例制御しているだけでは振動数
ら極度に低下して鋳型壁が焼付を起こすため、操業条件
により決定される下限振動数以下にならないように下限
設定器からの下限値■7を受(J下限制限器を介して連
続鋳造装置の鋳型振動を制御ずろよろにしている(第3
図参照)。
(Example) In general, two methods, a conventional electric motor drive method and an electro-hydraulic servo drive method, are used to control the descending speed of the mold and the withdrawal speed of the slab. Detect the drawing speed ■, and set the frequency command value N so that the mold vibration frequency is proportional to the above drawing speed by multiplying the slab drawing speed ■ by the ratio R determined by the negative strip ratio using a frequency setting device. On the other hand, if the pulling speed is extremely low, if only proportional control is used, the frequency will drop drastically and the mold wall will seize. The lower limit value ■7 is received from the lower limit setter (the mold vibration of the continuous casting device is controlled and staggered through the J lower limit limiter).
(see figure).

本発明においては、第4図に示すように、−上記第2図
の制御方式に、振動数設定機能を持たせろことを特徴と
している。
As shown in FIG. 4, the present invention is characterized in that the control system shown in FIG. 2 is provided with a frequency setting function.

即ち、図面では、過渡期におけろスロッシング周波数N
s5〜9(5次〜9次のスロッシング周波数を示す)は
鋳型形状を考慮して決定され、スロッシング危険領域±
2 NsX 0 、02 [T−rz]を持たせ、スロ
ッシング危険領域周波数l]を設定し、Nsn+(2N
snXn、02)[T−1z]信号とNsn −(2N
5nXO、02)[nzl信号を演算し、出力するよう
にする。
That is, in the drawing, the sloshing frequency N during the transition period
s5 to 9 (indicating the 5th to 9th sloshing frequencies) are determined considering the mold shape, and are within the sloshing danger area ±
2 NsX 0, 02 [T-rz], set the sloshing danger region frequency l], and
snXn, 02) [T-1z] signal and Nsn - (2N
5nXO, 02) [Calculate the nzl signal and output it.

他方、鋳造指令速度(実稼動速度)■に対し、制御定数
R(安定操業時のスロッシングを回避するように調整さ
れた比例定数を採用するのが好ましい。)を乗じて振動
数S−4*Vを演算し、鋳型振動下限値I、と比較して
S≦I7にて下限領域を判定し、■7以下であれば、s
 = r、に振動数下限を補正ずろ一方、■7以−1−
であれば、従来のようにして振動数S = I’(* 
Vを演算12、振動数指令値Sを鋳型振動制御装置に送
るようにする。
On the other hand, the vibration frequency S-4* is obtained by multiplying the casting command speed (actual operating speed) ■ by the control constant R (it is preferable to adopt a proportional constant adjusted to avoid sloshing during stable operation). V is calculated and compared with the mold vibration lower limit value I, and the lower limit area is determined by S≦I7. ■ If it is 7 or less, s
Correct the lower limit of the frequency to = r, and on the other hand, ■7 or more -1-
If so, the frequency S = I'(*
V is calculated in step 12, and the frequency command value S is sent to the mold vibration control device.

また、−1−記振動数S−R*VとN5n−1−(2N
snx O,02)[T−1zl信号とN5n−(2N
snXO,02)[T−T z ]信号とを組み合わU
−て過渡期にお(Jろ5〜9次のスロッシング危険領域
との干渉判定を行う。
Also, −1− frequency S−R*V and N5n−1−(2N
snx O, 02) [T-1zl signal and N5n-(2N
snXO, 02) [T-T z ] signal in combination with U
- In the transition period (J), interference with the 5th to 9th sloshing danger areas is determined.

即ち、S≦Nsn −(2N5nX O、02)II−
1zlの判定と、S≧Nsn+ (2N5nX O、0
2)[1−rz:]の判定とを組み合わせ、何れか一方
が一1―記条件を満たず時は上記スロッシング危険領域
にないから振動数を補正せず、−1−記振動数S−R*
Vを採用する。
That is, S≦Nsn −(2N5nX O, 02) II−
Judgment of 1zl and S≧Nsn+ (2N5nX O, 0
2) Combining the judgment of [1-rz:], if either one does not satisfy the 11-item condition, the frequency is not corrected because it is not in the sloshing danger area, and the -1-item frequency S- R*
Adopt V.

他方、−1−記条件をいずれも満たさない時は上記スロ
ッシング危険領域にあるから、破線で示す遮断信号によ
り−1−記周波数S =r(*Vの演算を1月1−する
一方、S = Nsn+ (2N5nX O、02)[
Hzlの演算を行い、上記スロッシング危険領域から上
方に外れるように、例えば、危険領域」二限値に設定し
てダンピング回路を介して振動指令値を鋳型振動制御装
置に送るようにする。
On the other hand, when none of the conditions -1- are satisfied, the above-mentioned sloshing danger region exists, so the cut-off signal shown by the broken line causes the frequency S = r (*V to be calculated on January 1-, while S = Nsn+ (2N5nX O, 02) [
Hzl is calculated, and the vibration command value is set to, for example, the second limit value of the "dangerous region" so as to move upward from the above-mentioned sloshing danger region, and the vibration command value is sent to the mold vibration control device via the damping circuit.

なお、」―記スロッソング危険領域から下方に外れるよ
うに振動数Sを演算する場合は、S = Nsn −(
2N5nX O、02)[1(zlの演算を行うように
すればよい。
In addition, when calculating the frequency S so that it deviates downward from the slot song danger area, S = Nsn - (
2N5nX O, 02) [1 (zl may be calculated.

危険領域を通過した後は、」−記何れか一方の判定条件
をl:iたすようになるので、」―記従来演算を行い、
再び」−記振動数S=R*Vを採用し、振動指令値を鋳
型振動制御装置に送るようになる。
After passing through the dangerous area, either one of the judgment conditions described in "-" becomes equal to l:i, so the conventional calculation described in "-" is performed.
Again, the vibration frequency S=R*V is adopted, and the vibration command value is sent to the mold vibration control device.

安定操業状態に入れば、制御定数をスロッシング現象を
避けるように設定することにより、湯面変動を避けるこ
とができる(特願昭58−148054号参照)。
Once a stable operating state is reached, fluctuations in the hot water level can be avoided by setting the control constants to avoid the sloshing phenomenon (see Japanese Patent Application No. 148054/1982).

(発明の作用効果) 以」−の説明で明らかなJ−うに、本発明によれば、鋳
片引き抜き速度■にネガティブストリップ率により決定
される比例定数Rを乗じて鋳型振動数を比例する、にう
に設定する一方、操業条件により決定される下限振動数
以下にならないように連続鋳造装置の鋳型振動を制御す
るにあたり、鋳造速度の降下または」二昇時における鋳
型振動を鋳型引き抜き速度に比例して制御しつつ、鋳型
形状により算出されるスロッシング危険領域に達したと
き、鋳型振動数が上記スロッシング危険領域外を通過す
るように変更し、」―記スロツンング危険領域を通過す
ると、元の算出振動数に復帰させるように制御するので
、溶湯面に実用」−スロッシングが大きく成長しない時
間内で危険領域を通過させろことができる。したがって
、操業過渡期においても湯面の変動が発生せず、鋳片品
質に悪影響を与えることなく、操業が可能となる。
(Operations and Effects of the Invention) As is clear from the explanation below, according to the present invention, the mold frequency is proportional to the mold frequency by multiplying the slab withdrawal speed ■ by the proportionality constant R determined by the negative strip rate. On the other hand, in order to control the mold vibration of continuous casting equipment so that it does not fall below the lower limit frequency determined by the operating conditions, the mold vibration when the casting speed decreases or increases is proportional to the mold withdrawal speed. When the sloshing danger area calculated based on the mold shape is reached, the mold vibration frequency is changed so that it passes outside the sloshing danger area, and when it passes through the sloshing danger area, the original calculated vibration Since it is controlled so that the molten metal surface returns to normal, it is possible to pass through the dangerous area within a time period in which sloshing does not grow significantly. Therefore, even during the transition period of operation, fluctuations in the molten metal level do not occur, and operation can be performed without adversely affecting the quality of the slab.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の鋳型振動制御方法を図式化したグラフ
で、第2図は従来の鋳型振動制御方法の振動数算出ロジ
ック図、第3図は従来の制御方式を図式化したグラフ、
第4図は第2図の制御方式に本発明方式を適用したロジ
ック図である。 S・・鋳型振動数、 17・・・振動数下限値、Nsn
・・ス[1ツンング周波数、 ■・・・鋳造指令値。
Fig. 1 is a graph illustrating the mold vibration control method of the present invention, Fig. 2 is a frequency calculation logic diagram of the conventional mold vibration control method, and Fig. 3 is a graph illustrating the conventional control method.
FIG. 4 is a logic diagram in which the method of the present invention is applied to the control method of FIG. 2. S... Mold vibration frequency, 17... Lower limit of frequency, Nsn
...S[1 Tunng frequency, ■...Casting command value.

Claims (1)

【特許請求の範囲】[Claims] (1)鋳片引き抜き速度Vにネガティブストリップ率に
より決定される比例定数Rを乗じて鋳型振動数を比例設
定する一方、操業条件により決定される下限振動数以下
にならないように連続鋳造装置の鋳型振動を制御するに
あたり、 鋳造速度の降下または上昇時における鋳型振動を鋳型引
き抜き速度に比例して制御しつつ、鋳型形状により算出
されるスロッシング危険領域に達したとき、鋳型振動数
を上記スロッシング危険領域外を通過するように変更し
、上記スロッシング危険領域を通過すると、元の算出振
動数に復帰させるように制御することを特徴とする連続
鋳造装置の鋳型振動制御方法。
(1) The mold frequency is set proportionally by multiplying the slab withdrawal speed V by the proportionality constant R determined by the negative strip rate, while the mold frequency of the continuous casting equipment is set so as not to fall below the lower limit frequency determined by the operating conditions. To control vibration, while controlling the mold vibration when the casting speed decreases or increases in proportion to the mold withdrawal speed, when the sloshing danger area calculated based on the mold shape is reached, the mold vibration frequency is adjusted to the above sloshing danger area. A mold vibration control method for a continuous casting apparatus, characterized in that the mold vibration is controlled so that the vibration frequency is changed to pass outside the sloshing danger area, and the vibration frequency is returned to the original calculated vibration frequency when the vibration passes through the sloshing danger area.
JP16575986A 1986-07-14 1986-07-14 Control method for mold oscillation of continuous casting equipment Pending JPS6320145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16575986A JPS6320145A (en) 1986-07-14 1986-07-14 Control method for mold oscillation of continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16575986A JPS6320145A (en) 1986-07-14 1986-07-14 Control method for mold oscillation of continuous casting equipment

Publications (1)

Publication Number Publication Date
JPS6320145A true JPS6320145A (en) 1988-01-27

Family

ID=15818506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16575986A Pending JPS6320145A (en) 1986-07-14 1986-07-14 Control method for mold oscillation of continuous casting equipment

Country Status (1)

Country Link
JP (1) JPS6320145A (en)

Similar Documents

Publication Publication Date Title
US3886991A (en) Method and apparatus for controlling the withdrawal of heat in molds of continuous casting installations
US5311924A (en) Molten metal level control method and device for continuous casting
US4771821A (en) Method for controlling early casting stage in continuous casting process
JPS6320145A (en) Control method for mold oscillation of continuous casting equipment
JPS5946705B2 (en) Method for controlling molten metal level in continuous casting mold
JP3101069B2 (en) Continuous casting method
JP3506195B2 (en) Continuous casting method
JPS6045026B2 (en) Mold content steel level control method
JP2935882B2 (en) Control method of molten steel level in mold in continuous casting
JPS5978763A (en) Controlling method of molten steel level in casting mold in continuous casting
JPH04339552A (en) Method for controlling molten steel surface level in continuous caster
JPS61235056A (en) System for controlling molten steel level in continuous casting machine
SU637196A1 (en) Method of automatic control of the starting mode of a metal continuous casting plant
JPH07178525A (en) Method for controlling pouring quantity of molten steel for surface layer in continuous casting of double layered steel plate
JPH04344862A (en) Method for controlling molten metal surface of mold in continuous casting device
JPH04313453A (en) Continuous casting method
JPS63171257A (en) Method for controlling casting end
JPS59125248A (en) Method for controlling lubrication of casting mold in continuous casting
JP2903844B2 (en) Method of finishing casting in continuous casting
JPS6152972A (en) Method for predicting breakout in continuous casting
JP3107688B2 (en) Pinch roller speed controller for continuous casting equipment
JPH07214267A (en) Method for controlling change of width for continuous casting
JPH05212517A (en) Method for executing light rolling reduction in continuous casting
JPH03243264A (en) Method for controlling casting of multi-ply cast slab
JP2665260B2 (en) Estimation method of flow rate into mold in continuous casting