JPS63201404A - Boiler-drum level controller - Google Patents

Boiler-drum level controller

Info

Publication number
JPS63201404A
JPS63201404A JP3316687A JP3316687A JPS63201404A JP S63201404 A JPS63201404 A JP S63201404A JP 3316687 A JP3316687 A JP 3316687A JP 3316687 A JP3316687 A JP 3316687A JP S63201404 A JPS63201404 A JP S63201404A
Authority
JP
Japan
Prior art keywords
control
deviation
drum
drum level
measure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3316687A
Other languages
Japanese (ja)
Inventor
寺村 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3316687A priority Critical patent/JPS63201404A/en
Publication of JPS63201404A publication Critical patent/JPS63201404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明はボイラのドラムレベル制御装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a drum level control device for a boiler.

(従来の噸術) 火力発電プラントにおいて、ボイラのドラム水や発生蒸
気が蓄積されるドラムの水位調節であるドラムレベル制
御は1発電プラントの性能を確保するだけでなく、火炉
のカラ焚き、また水分の侵入によるタービンの損傷を防
ぐためにも重要なものである。
(Conventional trick) In a thermal power plant, drum level control, which is the water level adjustment of the drum in which boiler drum water and generated steam are accumulated, not only ensures the performance of the power plant, but also controls the empty firing of the furnace and It is also important to prevent damage to the turbine due to moisture intrusion.

通常、ドラムレベルの制御は、プラントの運転状態に応
じて設定した目標値と実測値との偏差に基づいて、ボイ
ラへの給水量を調節する給水制御弁をPI制御すること
により行なわれている。
Normally, drum level control is performed by PI control of the water supply control valve that adjusts the amount of water supplied to the boiler based on the deviation between the target value set according to the operating status of the plant and the actual value. .

また、ドラムには内部の水を放出するドレン弁が配設さ
れており、ドラムレベルが急激に上昇した場合、そのド
レン弁を手動で操作してドラムレベルを低下させるよう
にしている。
Additionally, the drum is equipped with a drain valve that discharges the water inside, and when the drum level suddenly rises, the drain valve is manually operated to lower the drum level.

(発明が解決しようとする問題点) プラント運転起動時において、初負荷以前のドラム温度
が80s〜100°付近になる状態、つまりドラム水内
に初めて気はうが発生し始める状態。
(Problems to be Solved by the Invention) At the start of plant operation, the drum temperature before the initial load is around 80 seconds to 100 degrees, that is, the state where air swells begin to occur in the drum water for the first time.

あるいは、定格の40%以下の低負荷状態で、FA/P
A切替、圧力ダンピング、バーナー切替などのプラント
運転を行なうとき、主蒸気流量、ガス流量、火炉出口ガ
ス温度が一般に大きく変化することがある。
Alternatively, under a low load condition of 40% or less of the rating, the FA/P
When performing plant operations such as A switching, pressure damping, and burner switching, the main steam flow rate, gas flow rate, and furnace outlet gas temperature may generally change significantly.

これらの変化はドラムレベルの外乱となり、ボイラレベ
ルが急変するようになる。この外乱は突発的に発生した
り、急激に消滅したりするもので。
These changes result in disturbances to the drum level, causing sudden changes in the boiler level. This disturbance occurs suddenly or disappears rapidly.

・  起動の都度発生状況が異なる。・The occurrence situation differs each time it is started.

ところが、前記のような給水制御弁のPI制御により急
変するボイラレベルを制御しようとすると。
However, when trying to control a boiler level that changes suddenly by PI control of the water supply control valve as described above.

ゲインなどのパラメータは一定値に設定されるため、極
度なオーバーシュートを生ずる場合、または制御応答が
間に合わない場合が多くなる。また。
Since parameters such as gains are set to constant values, there are many cases where extreme overshoot occurs or the control response is not in time. Also.

場合によっては、ドラムレベル高または低が原因でボイ
ラトリップに至ることになってしまう、また、ドレン弁
を給水制御弁と同様にPI制御やPID制御しようとす
る場合も、上記と同様に安定した制御が行なえない。
In some cases, a boiler trip may occur due to a high or low drum level.Also, when attempting to control the drain valve using PI or PID control in the same way as the water supply control valve, the stable Cannot be controlled.

このため、従来はドラムレベルを運転員が監視しており
、レベルが高くなるとドレン弁を全開し、また低下すれ
ば全開にするというように、オンオフ制御的に手動操作
していた。
For this reason, in the past, operators monitored the drum level and manually operated the drain valve in an on-off control manner, such as fully opening the drain valve when the level rose and fully opening it when the level fell.

このように、従来のボイラドラムレベル制御装置は、低
負荷状態で制御装置が不安定となるため自動制御するこ
とが不可能であり、運転員がプラントの状況により手動
でレベル調節を行なっていたが、熟練運転員でないと安
定に制御することができなかった。
As described above, with conventional boiler drum level control devices, automatic control is impossible because the control device becomes unstable under low load conditions, and operators have to manually adjust the level depending on plant conditions. However, stable control could only be achieved by a skilled operator.

本発明は、プラントを不安定にすることなく低負荷状態
においても、自動で安定にドラムレベルを制御すること
ができるボイラドラムレベル制御装置を提供することを
目的とする。
An object of the present invention is to provide a boiler drum level control device that can automatically and stably control the drum level even in a low load state without making the plant unstable.

[発明の構成コ (問題点を解決するための手段) このため、本発明はボイラレベルの目標値と実測値との
偏差を入力し、熟練運転員が操作する時の制御則をその
まま適用した制御器を構成し。
[Configuration of the Invention (Means for Solving Problems)] Therefore, the present invention inputs the deviation between the target value and the measured value of the boiler level, and applies the control law used when operated by a skilled operator as is. Configure the controller.

この制御器によりドレン弁を開閉制御するようにしたも
のである。
This controller controls the opening and closing of the drain valve.

(作用) 熟練運転員が勘に頼って行なっていた制御と同様の制御
が自動的に行なわれるので、ドラムレベルが適切に制御
され、プラントを安定して運転することができる。
(Function) Since control similar to that previously performed by experienced operators relying on their intuition is automatically performed, the drum level is appropriately controlled and the plant can be operated stably.

(実施例) 以下、図面を参照して本発明の一実施例を説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は1本発明の一実施例に係るボイラドラ、ムレベ
ル制御装置を適用した火力発電プラントの概略構成図で
ある1図において、燃料は燃料調節弁11を通り、各段
のバーナー12から火炉に供給される。これと同時に補
助空気は押込通風ファン13により空気流量調節ダンパ
ー14を通り、バーナー12から火炉に供給され、燃焼
が行なわれる。火炉内での燃料の燃焼で蒸発部15と熱
交換した排ガスは、更に第1加熱器16.再熱器17.
最終加熱器18.第2加熱器19と熱交換し、吸込通風
ファン20により。
FIG. 1 is a schematic diagram of a thermal power plant to which a boiler drum and level control device according to an embodiment of the present invention is applied. In FIG. supplied to At the same time, auxiliary air is supplied from the burner 12 to the furnace through the air flow rate regulating damper 14 by the forced draft fan 13, and combustion is performed. The exhaust gas that has exchanged heat with the evaporator 15 due to the combustion of fuel in the furnace is further transferred to the first heater 16. Reheater 17.
Final heater 18. Heat exchange with the second heater 19 and by the suction ventilation fan 20.

煙突21から大気へ放出される。It is released into the atmosphere from the chimney 21.

また、蒸発部15で生成された蒸気は、ドラムDに蓄積
され、さらにその蒸気は第1加熱器16.第2加熱器1
9.最終加熱器18で更に温度上昇し、タービン加減弁
22を通り、高圧タービン23に供給される。高圧ター
ビン23を出た冷たい蒸気は再熱器17−17により温
度上昇し、中圧タービン24.低圧タービン25に供給
され、復水器26で水になる。復水器26に貯った水は
復水ポンプ27により脱気器28に。
Further, the steam generated in the evaporator 15 is accumulated in the drum D, and the steam is further transferred to the first heater 16. Second heater 1
9. The temperature is further increased in the final heater 18, passes through the turbine control valve 22, and is supplied to the high pressure turbine 23. The cold steam leaving the high-pressure turbine 23 is heated by the reheater 17-17, and is heated by the intermediate-pressure turbine 24. It is supplied to the low pressure turbine 25 and becomes water in the condenser 26. The water stored in the condenser 26 is transferred to the deaerator 28 by the condensate pump 27.

更に、給水ポンプ29により給水流量調節弁30を通り
、ドラムDに供給される。ドラムDにはドラム水を放出
するドレン弁Bが配設されている。
Furthermore, the water is supplied to the drum D by the water supply pump 29 through the water supply flow rate control valve 30 . The drum D is provided with a drain valve B for discharging drum water.

発電機31は高圧タービン23.中圧タービン24.低
圧タービン25により回転し電力を発生する。
The generator 31 is a high pressure turbine 23. Medium pressure turbine 24. It is rotated by a low pressure turbine 25 and generates electric power.

第1加熱器16の出口側および第2加熱器19の出口側
には、1次スプレィ調節弁32および2次スプレィ調節
弁33を通って、それぞれ過加熱を防止し温度を調節す
るためのスプレィ配管が設けられている。
Spray is supplied to the outlet side of the first heater 16 and the outlet side of the second heater 19 through a primary spray control valve 32 and a secondary spray control valve 33 to prevent overheating and adjust the temperature, respectively. Piping is provided.

ボイラドラムレベル制御装置Cは、ドラムDにおけるド
ラムレベルの目標値とその実測値とに基づいて、ドレン
弁Bを制御し、ドラムレベルを制御するものである。
The boiler drum level control device C controls the drain valve B based on the target value of the drum level of the drum D and its actual measured value, thereby controlling the drum level.

第2図は、ボイラドラムレベル制御装置cのブロック構
成を示すもので、加算器41は1図示せぬ設定器により
設定されたドラムレベルの目標値しSと、ドラムD内に
配設された図示せぬ水位センサにより検出したドラムレ
ベルの実測値りとを入力し、両者の偏差e=Ls−Lを
演算するものである。微分器42は、その偏差eの時間
微分Δe : de/dt、を演算するものである。
FIG. 2 shows the block configuration of the boiler drum level control device c, in which an adder 41 is connected to a drum level target value S set by a setting device (not shown) and a drum level disposed in the drum D. The actual measured value of the drum level detected by a water level sensor (not shown) is input, and the deviation e=Ls-L between the two is calculated. The differentiator 42 calculates the time differential Δe: de/dt of the deviation e.

制御器43は、その偏差eとその時間微分Δeとを入力
し、制御出力ΔUを次の制御則1〜5に基づいて演算す
る制御器である。
The controller 43 is a controller that inputs the deviation e and its time differential Δe and calculates the control output ΔU based on the following control laws 1 to 5.

制御則1丁偏差eが正方向に大で、偏差の微分値Δeが
負方向に大のとき、制御出力ΔUを正方向に小とする。
When the control law 1 deviation e is large in the positive direction and the differential value Δe of the deviation is large in the negative direction, the control output ΔU is made small in the positive direction.

制御則2;偏差eが正方向に大で、偏差の微分値Δeが
負方向に大のとき、制御出力ΔUを正方向に大とする。
Control law 2: When the deviation e is large in the positive direction and the differential value Δe of the deviation is large in the negative direction, the control output ΔU is made large in the positive direction.

制御則3;偏差eが零に近い時は、偏差の微分値Δeが
いかなる値でも、制御出力ΔUを零に近い値とする。
Control law 3: When the deviation e is close to zero, the control output ΔU is set to a value close to zero, regardless of the value of the differential value Δe of the deviation.

制御則4;偏差eが負方向に大で、偏差の微分値Δeが
負方向に大のとき、制御出力ΔUを負方向に大とする。
Control law 4: When the deviation e is large in the negative direction and the differential value Δe of the deviation is large in the negative direction, the control output ΔU is made large in the negative direction.

制御則5;偏差eが負方向に大で、偏差の微分値Δeが
正方向に大のとき、制御出力ΔUを負方向に小とする。
Control law 5: When the deviation e is large in the negative direction and the differential value Δe of the deviation is large in the positive direction, the control output ΔU is made small in the negative direction.

第3図は、この制御器43の具体的な演算手法を説明す
る図である。同図において、各グラフは横軸に偏差e、
偏差の微分値Δeおよび制御出力ΔUを一100〜10
0%でとり、縦軸に上記のr正方向に大」、「正方向に
小」、「零」、「負方向に小」および「負方向に大」と
いう概念を集合で表わしたときの各概念の属する測度μ
を0〜1でとり、上記の各制御則をグラフ表現したもの
である。
FIG. 3 is a diagram illustrating a specific calculation method of this controller 43. In the same figure, each graph has a deviation e on the horizontal axis,
The differential value Δe of the deviation and the control output ΔU are -100 to 10.
0%, and the vertical axis represents the concepts of ``large in the positive direction,'' ``small in the positive direction,''``zero,'' ``small in the negative direction,'' and ``large in the negative direction.'' Measure μ to which each concept belongs
is taken from 0 to 1, and each of the above control laws is expressed graphically.

即ち、同図の(制御則1)について見れば、このときの
偏差eから測度μeを算出するため、偏差eは正方向に
10%から100%までを大と定義し、その測度μeを
偏差eが10%のとき0として偏差eが増すに従って徐
々に増し、偏差70%で測度μeを最高の1として、そ
の後は再び減らして偏差100%で0とするパターンP
esを設けている。ここで、偏差70%を測度最高とし
てそれ以降測度を減少させる理由は、偏差eとしては7
0%付近が最大で、それ以上の偏差は正常な制御状態で
は生じ難いことを意見している。
That is, looking at (control law 1) in the same figure, in order to calculate the measure μe from the deviation e at this time, the deviation e is defined as large from 10% to 100% in the positive direction, and the measure μe is calculated as the deviation Pattern P in which the measure μe is set to 0 when e is 10%, increases gradually as the deviation e increases, reaches a maximum of 1 at a deviation of 70%, and then decreases again to 0 at a deviation of 100%.
es has been established. Here, the reason why the deviation is set to be the highest at 70% and the measure is decreased thereafter is that the deviation e is 7
The opinion is that the maximum deviation is around 0%, and that deviations larger than that are unlikely to occur under normal control conditions.

次に、その偏差の微分値Δeから測度μΔeを算出する
ため、偏差の微分値Δeは、−10%から一100%ま
でを小と定義し、その測度μΔeは。
Next, in order to calculate the measure μΔe from the differential value Δe of the deviation, the differential value Δe of the deviation is defined as small from -10% to -100%, and the measure μΔe is.

−60%で最高の1とするパターンPΔe1を設けてい
る。
A pattern PΔe1 is provided in which the maximum value is 1 at -60%.

更に、その制御出力ΔUは、−20%から+70%まで
を正方向に小と定義し、+20%で測度μΔUが最高の
1となるパターンPΔU1を設けている。
Further, the control output ΔU is defined as being small in the positive direction from −20% to +70%, and a pattern PΔU1 is provided in which the measure μΔU becomes the highest 1 at +20%.

これらのパターンPer、PΔet、PΔU1から判る
ように、制御則lは、制御偏差eが正方向に大であるが
、その偏差の微分値Δeが負方向に大つまり偏差が急速
に回復方向に向っている場合には、制御出力ΔUは小と
して修正動作をひかえ目にし。
As can be seen from these patterns Per, PΔet, and PΔU1, the control law l is such that the control deviation e is large in the positive direction, but the differential value Δe of the deviation is large in the negative direction, which means that the deviation rapidly moves toward recovery. In this case, the control output ΔU should be kept small and corrective action should be taken sparingly.

逆方向への制御の行き過ぎを防止することを意味する。This means preventing excessive control in the opposite direction.

また、このときの制御出力ΔUの大きさは、偏差eと偏
差の微分値Δeの大きさに応じて決める。
Further, the magnitude of the control output ΔU at this time is determined depending on the magnitude of the deviation e and the differential value Δe of the deviation.

以下、同様にして制御則2〜5についても、図示のパタ
ーンPe 2〜Pe s 、PΔez〜PΔes、PΔ
U2〜PΔU5を設ける。
Hereinafter, similarly for control laws 2 to 5, the illustrated patterns Pe 2 to Pe s , PΔez to PΔes, PΔ
U2 to PΔU5 are provided.

制御器43は、上記制御則1〜5を備え、そこに入力す
る偏差eと、偏差の微分値Δeをそれらの制御則に基づ
き、先ずeとΔeの各パターンから得られる測度μe、
μΔeを求め、その小さい方μMINで制御出力ΔUの
パターンの上部を切り取り、残り部分PBΔυを各制御
則につき求めて、それらの最大値μMAXを演算し、得
られるパターンPμMAXΔUの平均値を制御器43の
出力dTとする。
The controller 43 is equipped with the above-mentioned control laws 1 to 5, and based on the input deviation e and the differential value Δe of the deviation, first calculates the measure μe obtained from each pattern of e and Δe,
μΔe is determined, the upper part of the control output ΔU pattern is cut off using the smaller μMIN, the remaining portion PBΔυ is determined for each control law, their maximum value μMAX is calculated, and the average value of the obtained pattern PμMAXΔU is sent to the controller 43. Let the output dT be

例えば、e=40%、Δe=30%の値が入力された時
を例にとって説明すると、 制御則1ではpe1=0.1.pΔe1=0で、μMI
Nt=0制御則2ではμe 2 =o、7、μΔoz=
0.5で、μにlN2=0.5制御則3ではμe3=0
.2、μΔe3:1.0で、μMIN3=0.2制御則
4ではpe<=0、μΔe4=0で、μMIN<=0制
御則5ではμes=0.2、μΔes=0で、it M
IN s =0となり、制御則2および制御則3のみが
適用可能となる。この制御則についてPaΔUを取った
のが。
For example, to explain the case where the values of e=40% and Δe=30% are input, in control law 1, pe1=0.1. With pΔe1=0, μMI
In Nt=0 control law 2, μe 2 =o, 7, μΔoz=
0.5, μ is lN2 = 0.5, and in control law 3, μe3 = 0
.. 2. μΔe3: 1.0, μMIN3=0.2 Control law 4: pe<=0, μΔe4=0, μMIN<=0 Control law 5: μes=0.2, μΔes=0, it M
IN s =0, and only control law 2 and control law 3 are applicable. PaΔU was calculated for this control law.

第3図における斜線部PBΔU2とPBΔU3である。These are the shaded areas PBΔU2 and PBΔU3 in FIG.

このPBΔU2とPBΔU3について最大値μMAXを
演算したのが第2図の斜線部PμMAXΔUで、この平
均値から制御器3の出力dTを算出する。この出力dT
により、ドレン弁Bの開度を制御する。
The maximum value μMAX for these PBΔU2 and PBΔU3 is calculated in the shaded area PμMAXΔU in FIG. 2, and the output dT of the controller 3 is calculated from this average value. This output dT
The opening degree of the drain valve B is controlled by this.

以上のように本発明によれば、ドラムレベルの目標値と
実測値との偏差とその時間微分を入力し、熟練運転員が
操作する時の制御則をそのまま適用した制御器を構成し
、この制御器により、ドレン弁Bを開閉制御するように
している。ドラム水の温度が80′〜100°付近での
不安定領域において、従来は運転員が勘に頼って手動で
操作しなければならなかったが、上記制御により従来運
転員が行なっていた制御と同様の制御が自動的に行なわ
れるようになる。
As described above, according to the present invention, a controller is configured in which the deviation between the target drum level value and the actual measured value and its time derivative are input, and the control law used when operated by a skilled operator is directly applied. A controller controls opening and closing of the drain valve B. In the unstable region where the temperature of the drum water is around 80' to 100°, operators had to rely on their intuition and manually operate the drum water. Similar control will now be performed automatically.

また、S般に知られているPI制御や、 PID制御を
使用する場合と異なり、偏差が大きく出ても微分積分器
の飽和によるハンチングを引き起こすことなく、安定、
迅速な制御動作をもたらすことが可能となる。
In addition, unlike when using PI control or PID control, which is generally known as S, even if a large deviation occurs, it does not cause hunting due to saturation of the differential integrator, resulting in stable and stable control.
It becomes possible to bring about rapid control operations.

[発明の効果コ 以上のように本発明によれば、熟練運転員が操作すると
きの制御則をそのまま適用した制御器を構成し、この制
御器により、ドレン弁を開閉制御するようにしたので、
運転員が行なう制御と同様の制御が自動的に行なわれ、
低負荷状態においても、プラントを安定に運転すること
ができる。
[Effects of the Invention] As described above, according to the present invention, a controller is configured to which the control law used when operated by a skilled operator is directly applied, and this controller is used to control the opening and closing of the drain valve. ,
Controls similar to those performed by operators are performed automatically,
The plant can be operated stably even under low load conditions.

また、ドラムレベルの目標値と実測値との偏差が大きく
出ても微分積分器の飽和によるハンチングを引き起こす
ことなく、安定、迅速な制御動作をもたらすことが可能
となる。
Further, even if there is a large deviation between the target value and the actual measured value of the drum level, it is possible to provide stable and quick control operations without causing hunting due to saturation of the differential integrator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るボイラドラムレベル制
御装置を適用した火力発電プラントの概略構成図、第2
図はそのボイラドラムレベル制御装置のブロック構成図
、第5図は第2図の制御器の動作説明図である。 D・・・ ドラム、B・・・ ドレン弁、C・・・ボイ
ラドラムレベル制御装置、1・・・加算器、2・・・微
分器、3・・・制御器。 (7317)  代理人 弁理士 則 近  憲 佑(
8105)   同  王侯 弘文 第2図
FIG. 1 is a schematic configuration diagram of a thermal power plant to which a boiler drum level control device according to an embodiment of the present invention is applied;
The figure is a block diagram of the boiler drum level control device, and FIG. 5 is an explanatory diagram of the operation of the controller shown in FIG. 2. D... Drum, B... Drain valve, C... Boiler drum level control device, 1... Adder, 2... Differentiator, 3... Controller. (7317) Agent: Patent Attorney Noriyuki Chika (
8105) King Hongbun Figure 2

Claims (1)

【特許請求の範囲】[Claims] ドラムレベルの目標値と実際のドラムレベルの偏差を算
出する手段と、算出された偏差を時間微分する手段と、
前記偏差とその時間微分を入力し、その各入力に対して
、予め「正方向に大」、「正方向に小」、「零」、「負
方向に小」および「負方向に大」という運転員の概念を
測度パラメータで与え、更に上記各概念の組合わせに対
し、制御出力を「正方向に大」、「正方向に小」、「零
」、「負方向に小」および「負方向に大」にする運転員
の制御則にも測度パラメータを与え、前記偏差およびそ
の時間微分が入力するとき、各制御則毎に偏差およびそ
の時間微分の対応する測度の最小値を選び、各制御則の
制御出力の測度分布を最小値以下のもののみ有効とし測
度分布をとり直し、その結果得られる各制御出力の測度
分布を最大値を選択するように重ね合わせた後、平均し
て制御出力を決定する制御手段と、その制御出力に応じ
てドレイン弁を開閉制御する手段とを設けたことを特徴
とするボイラドラムレベル制御装置。
means for calculating the deviation between the target value of the drum level and the actual drum level; and means for differentiating the calculated deviation with respect to time;
Input the deviation and its time derivative, and for each input, specify in advance "large in the positive direction,""small in the positive direction,""zero,""small in the negative direction," and "large in the negative direction." The concept of the operator is given as a measurement parameter, and the control output can be set to ``large in the positive direction'', ``small in the positive direction'', ``zero'', ``small in the negative direction'', and ``negative'' for each combination of the above concepts. A measure parameter is also given to the operator's control law that makes the deviation larger in the direction, and when the deviation and its time derivative are input, the minimum value of the corresponding measure of the deviation and its time derivative is selected for each control law, and each The measure distribution of the control output of the control law is valid only if it is less than the minimum value, and the measure distribution is re-taken, and the resulting measure distributions of each control output are superimposed so as to select the maximum value, and then the control is averaged. A boiler drum level control device comprising a control means for determining an output, and a means for controlling opening and closing of a drain valve according to the control output.
JP3316687A 1987-02-18 1987-02-18 Boiler-drum level controller Pending JPS63201404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3316687A JPS63201404A (en) 1987-02-18 1987-02-18 Boiler-drum level controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3316687A JPS63201404A (en) 1987-02-18 1987-02-18 Boiler-drum level controller

Publications (1)

Publication Number Publication Date
JPS63201404A true JPS63201404A (en) 1988-08-19

Family

ID=12378957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3316687A Pending JPS63201404A (en) 1987-02-18 1987-02-18 Boiler-drum level controller

Country Status (1)

Country Link
JP (1) JPS63201404A (en)

Similar Documents

Publication Publication Date Title
US5452687A (en) Microprocessor-based boiler sequencer
EP0170145A2 (en) Apparatus for controlling starting operation of boiler
JPH0160721B2 (en)
JPS63201404A (en) Boiler-drum level controller
CN113883492B (en) Boiler steam temperature control method and electronic equipment
JPS63286614A (en) Combustion control of boller
JP2001295607A (en) Method and device for controlling load of thermal power plant
JP3673295B2 (en) Method and apparatus for controlling reheat steam temperature of boiler
JPS6138361B2 (en)
JP2007132630A (en) Boiler reheating steam temperature control device and method
JPS61225502A (en) Boiler main steam temperature controller
JP4665842B2 (en) Turbine bypass valve control system and apparatus
JP2686259B2 (en) Operating method of once-through boiler
JP4284698B2 (en) Method of controlling flow rate of injected steam to gas turbine
JPH0758121B2 (en) Recycling controller for economizer
CN114838347A (en) Method and device for controlling reheated steam temperature, storage medium and electronic equipment
JPS62129602A (en) Controller for pressure of main steam
JPS5933804B2 (en) Reheat steam temperature control device
JPS6015214B2 (en) Steam temperature control device
JP2645129B2 (en) Condensate recirculation flow control device
JPH035489B2 (en)
JPH0252904A (en) Control method of steam temperature and controller
SU1134740A1 (en) Control system of steam extraction turbine plant
JPH06317304A (en) Steam temperature controller with automatic bias circuit
JPH02293509A (en) Controller of degree of superheating in boiler