JPS6235580B2 - - Google Patents

Info

Publication number
JPS6235580B2
JPS6235580B2 JP57044301A JP4430182A JPS6235580B2 JP S6235580 B2 JPS6235580 B2 JP S6235580B2 JP 57044301 A JP57044301 A JP 57044301A JP 4430182 A JP4430182 A JP 4430182A JP S6235580 B2 JPS6235580 B2 JP S6235580B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
amount
temperature controller
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57044301A
Other languages
Japanese (ja)
Other versions
JPS58160762A (en
Inventor
Shinichi Nakane
Hiroshi Fujeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57044301A priority Critical patent/JPS58160762A/en
Publication of JPS58160762A publication Critical patent/JPS58160762A/en
Publication of JPS6235580B2 publication Critical patent/JPS6235580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/082Regulating fuel supply conjointly with another medium, e.g. boiler water using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/12Integration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/18Measuring temperature feedwater temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves

Description

【発明の詳細な説明】 本発明は、ガス、石油、電気等を熱源とする給
湯機の温度制御に関わり、給湯口での通水停止に
伴う熱量供給停止後、所定時間内に再度給湯を開
始したとき所定の熱量供給値から制御することに
より、目標とする湯温への収束時間の短縮を図る
とともに、設定値からの湯温偏差を極力抑制する
制御装置の提供を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to temperature control of water heaters that use gas, oil, electricity, etc. as a heat source. It is an object of the present invention to provide a control device that reduces the time required to converge to a target hot water temperature and suppresses deviations in hot water temperature from a set value as much as possible by controlling from a predetermined heat supply value when starting.

ここでは、ガスを燃料とするガス瞬間式給湯機
を例に挙げ、本発明の効果を説明する。
Here, the effects of the present invention will be explained using an example of a gas instantaneous water heater that uses gas as fuel.

第1図で、給湯機の構成を示す。ガスバーナ1
での燃焼熱は熱交換器2で水と置換され、湯とな
つて供給される。温度制御器3では、出湯温度検
知器4からの信号TWO2と、温度設定器5からの
信号TWRとを入力し、その温度偏差TER=
TWR−TWO2から所定の燃焼量を決定し、供給
熱量制御器6を制御して出湯温度コントロールを
実施している。一般に、出湯温度検知器としては
サーミスタや熱電対が、また、湯温制御アルゴリ
ズムには比例・積分・微分制御(PiD方式)やそ
の組み合わせが用いられている。7は給湯口を示
す。
FIG. 1 shows the configuration of the water heater. gas burner 1
The combustion heat is replaced with water in the heat exchanger 2 and supplied as hot water. The temperature controller 3 inputs the signal TWO 2 from the hot water temperature detector 4 and the signal TWR from the temperature setting device 5, and calculates the temperature deviation TER=
A predetermined combustion amount is determined from TWR-TWO 2 , and the supply heat amount controller 6 is controlled to control the hot water temperature. Generally, a thermistor or thermocouple is used as the hot water temperature detector, and proportional, integral, and differential control (PiD method) or a combination thereof is used as the hot water temperature control algorithm. 7 indicates a hot water supply port.

第2図では、第1図の湯温制御システムをブロ
ツク化して表わしている。8はコントローラのゲ
イン(PiD方式による演算制御等)、9はプロセ
スである熱交換器を主体としたゲイン、10は出
湯温度検知器の応答とゲインを示すブロツクであ
り、湯温偏差TERを入力したコントローラが出
力TC(燃焼量に相当する)をプロセスに与え、
その結果湯温がTWOとして表わされる。TWO2
は出湯温度検知器4を介して入力される出湯温度
であり、TWOに対して応答遅れの要素を含んで
いる。
In FIG. 2, the hot water temperature control system of FIG. 1 is shown in blocks. 8 is the gain of the controller (arithmetic control using PiD method, etc.), 9 is the gain mainly for the heat exchanger which is a process, and 10 is the block that shows the response and gain of the hot water temperature detector, and the hot water temperature deviation TER is input. The controller gives an output TC (corresponding to the amount of combustion) to the process,
As a result, the water temperature is expressed as TWO. TWO 2
is the outlet hot water temperature input via the outlet hot water temperature detector 4, and includes an element of response delay with respect to TWO.

第5図は、従来の温度制御器での出湯温度特性
を示している。aは出湯温度、bは給水量、cは
コントローラ出力および積分項の時間特性であ
る。t<t1まで定常状態の燃焼を続行し、その時
の給水量はW1、コントローラ出力はTC1であ
る。温度の定常的偏差が残らないPiD方式では、
定常状態におけるコントローラ出力は積分項の値
に等しい。つまり、積分量が、負荷とのバランス
点である。t=t1で給湯を停止すれば、瞬間式給
湯機では直ちに燃焼を停止し、余分な燃焼は行わ
ない。つまり、コントローラ出力TCは零とな
る。t=t2で給湯口から再び通水を開始すると、
出湯温度TWOには給湯機内に溜つていた機器本
体の熱容量で加熱された分が初めに現われ
(Tov1)、その後、燃焼制御にしたがつて水温か
ら熱められた湯が現われる。TDW1はアンダーシ
ユートであり制御出力に大きく左右される。cの
VTiはコントローラ内の積分量を示し、このVTi
を含んだPiD方式での出力がTCとなつている。
従来方式では、再着火時は給湯機使用開始時と同
様の制御を実施するので、積分項は零から演算ス
タートしている。電子回路ではコンデンサへの充
放電が積分量に相当している。このため、図aの
ように大きなアンダーシユートTDW1が生じ、頻
繁に給湯口を開閉して給湯機を利用する際には問
題となつている。
FIG. 5 shows the outlet temperature characteristics of a conventional temperature controller. a is the hot water temperature, b is the water supply amount, and c is the time characteristic of the controller output and the integral term. Steady state combustion continues until t<t 1 , at which time the water supply amount is W 1 and the controller output is TC 1 . In the PiD method, which does not leave a steady deviation in temperature,
The controller output in steady state is equal to the value of the integral term. In other words, the integral amount is the balance point with the load. If hot water supply is stopped at t= t1 , instantaneous water heaters will immediately stop combustion and no additional combustion will occur. In other words, the controller output TC becomes zero. When water starts flowing again from the hot water supply port at t=t 2 ,
The hot water temperature TWO that is heated by the heat capacity of the equipment that has accumulated in the water heater first appears (Tov 1 ), and then the hot water that is heated from the water temperature according to combustion control appears. T DW1 is an undershoot and is greatly influenced by the control output. c's
VTi indicates the integral amount in the controller, and this VTi
The output of the PiD method that includes is TC.
In the conventional method, when re-igniting, the same control as when starting to use the water heater is performed, so the calculation of the integral term starts from zero. In electronic circuits, charging and discharging a capacitor corresponds to an integral amount. For this reason, a large undershoot T DW1 occurs as shown in Figure a, which is a problem when using the water heater by frequently opening and closing the hot water supply opening.

第6図は別の従来例であり、t=t2での再着火
時の給水量がW3−W2と通水停止以前の流量に比
べて少ない場合である。このように再着火時の流
量が少ないと、熱交の容量等に依存したオーバー
シユート分TOV2は絶対値が大きくなる。さらに
設定温度WTR2の高温のときには、出給湯が給湯
機としての危険温度Tx(例えば95℃)に達する
こともある。この場合も、従来の方法ではオーバ
ーシユートの後に大きなアンダーシユートTDW2
が発生している。このため、整定時間も長くなつ
ている。
FIG. 6 shows another conventional example, in which the amount of water supplied at the time of re-ignition at t=t 2 is W 3 −W 2 , which is smaller than the flow rate before the water flow is stopped. When the flow rate at the time of re-ignition is small in this way, the absolute value of the overshoot amount T OV2 , which depends on the capacity of the heat exchanger, becomes large. Furthermore, when the set temperature WTR 2 is high, the output hot water may reach a dangerous temperature Tx (for example, 95°C) for a water heater. In this case as well, in the conventional method, a large undershoot T DW2 is generated after the overshoot.
is occurring. For this reason, the settling time is also becoming longer.

このような従来の欠点を解消し、アンダーシユ
ートを抑え、収束の早い質の良い湯を供給するの
が本発明の目的である。
It is an object of the present invention to eliminate such conventional drawbacks, suppress undershoot, and supply high-quality hot water that converges quickly.

第3図で、本発明の湯温制御を説明する。a,
b,cはそれぞれ出湯温度、給水量、コントロー
ラ出力の時間特性であり、第5図と同様にt=t1
で給湯を停止し、t=t2で給湯を再開するモード
を表わしている。給湯再開に伴う再着火後のオー
バーシユートTOV5は給湯機の熱容量、設定温度
および給湯量に依存するもので、再給湯時の湯量
が第5図同様のW1であれば従来の方式と差はな
い。ところがcで示すように、t2時点での積分量
セツトを通水停止直前の定常状態における積分量
TC1(前述したように、定常状態でのコントロー
ラ出力は積分量そのものと考えて良い)として積
分動作を開始すれば、aで示すようにアンダーシ
ユートTDW5はほとんど無くなる。cのt>t2
VTiが少し低下しているのは、オーバーシユート
分の影響である。
With reference to FIG. 3, the hot water temperature control of the present invention will be explained. a,
b and c are the time characteristics of the hot water temperature, water supply amount, and controller output, respectively, and as in Fig. 5, t = t 1
This represents a mode in which hot water supply is stopped at t= t2 and hot water supply is restarted at t=t2. The overshoot T OV5 after re-ignition due to restarting hot water supply depends on the heat capacity, set temperature, and hot water supply amount of the water heater, and if the hot water amount at the time of re-heating is W 1 as in Figure 5, it will be different from the conventional method. There is no difference. However, as shown in c, the integral amount set at time t 2 is the integral amount in the steady state just before the water flow is stopped.
If the integral operation is started as TC 1 (as described above, the controller output in a steady state can be considered as the integral quantity itself), the undershoot T DW5 will almost disappear as shown by a. At t>t 2 of c
The slight drop in VTi is due to the effect of overshoot.

このように、給湯口の開閉を頻繁に行うような
使い方の場合には通水停止後の所定時間内での再
着火時TC1の積分量セツトから燃焼制御を再開す
ることにより、アンダーシユートの抑制はもちろ
ん、目標値への収束を早めることができる。cの
Tixは積分量の所定範囲の上限値を示すもので、
その効果を次に説明する。
In this way, if the hot water supply port is frequently opened and closed, undershoot can be prevented by restarting combustion control from the integral amount set for re-ignition TC 1 within a predetermined time after water flow is stopped. It is possible not only to suppress this, but also to accelerate convergence to the target value. c's
Tix indicates the upper limit of a predetermined range of integral quantity,
The effect will be explained next.

第7図では、前記の積分量の所定範囲を設けな
い場合の応答を示している。第6図の給湯量モー
ドと同様に、温度設定でTWR2で高く、再着火時
の給湯量W3が通水停止前の給湯量W2より小さい
場合の例である。このとき、再着火時の積分量セ
ツトを定常時の値TC2にすると、オーバーシユー
トTOV3後の偏差面積が大きくなり、特にTxをオ
ーバーする時間が伸びて使い勝手も悪く、危険度
も高くなる。cのTixは前記の積分の上限値を表
わしている。TC3はW3での定常状態におけるコ
ントローラ出力である。
FIG. 7 shows the response when the predetermined range of the integral amount is not provided. Similar to the hot water supply amount mode in FIG. 6, this is an example where the temperature setting is high at TWR 2 and the hot water supply amount W 3 at the time of re-ignition is smaller than the hot water supply amount W 2 before water flow is stopped. At this time, if the integral amount set at the time of re-ignition is set to the steady state value TC 2 , the deviation area after overshoot T OV3 will increase, and the time to exceed Tx will become longer, making it less convenient to use and more dangerous. Become. Tix of c represents the upper limit value of the above-mentioned integral. TC 3 is the steady state controller output at W 3 .

そこで本発明は第4図のように、設定温度に依
存した積分の範囲を定めることにより、オーバー
シユート続行の危険度を低めるとともに、収束時
間の短縮を図るものである。第4図のa,b,c
は前記第3図のa,b,c同様の特性図である。
再着火時、セツトすべき積分量が上限値Tixを越
しているときにはTixを積分セツト値として用い
るのである。cのt=t2の時点のように、TC2
Tixのときには、Tixを積分セツト値とし、図の
VTiのような時間特性を得ている。この所定範囲
内に規制することにより、オーバーシユートTOV
後の偏差オーバー面積を大幅に縮小し、またア
ンダーシユートTDW4も抑制している。
Therefore, the present invention aims to reduce the risk of continuing overshoot and shorten the convergence time by determining the range of integration dependent on the set temperature as shown in FIG. a, b, c in Figure 4
are characteristic diagrams similar to a, b, and c in FIG. 3 above.
At the time of re-ignition, if the integral amount to be set exceeds the upper limit value Tix, Tix is used as the integral set value. As at time t=t 2 in c, TC 2 >
When Tix, let Tix be the integral set value and
It has time characteristics similar to VTi. By regulating it within this predetermined range, the overshoot T OV
The over-deviation area after 4 has been significantly reduced, and undershoot T DW4 has also been suppressed.

ところで、設定温度がTWR2と高温時に、再着
火動作後の給湯量がW3≒W2と同等のときには
TC2をTixに限定することでアンダーシユート分
は第4図の特性より大きくなるが、給湯量を即座
に検出する手段を特に有しないシステムにおいて
は、流量変更モードでの高温危険率を考慮して
Tixのように上限値を設けておくのがよい。さら
にこのTixをTWRによつて対応させれば、一層
細かな湯温制御が可能となる。
By the way, when the set temperature is TWR 2 and the amount of hot water supplied after re-ignition operation is equal to W 3 ≒ W 2 ,
By limiting TC 2 to Tix, the undershoot will be larger than the characteristics shown in Figure 4, but in systems that do not have a means to immediately detect the amount of hot water, it is necessary to take into account the risk of high temperature in the flow rate change mode. do
It is better to set an upper limit like Tix. Furthermore, by making Tix compatible with TWR, even more precise control of water temperature becomes possible.

また、以上の説明では所定範囲の上限値につい
て説明したが、下限値については、コントローラ
出力とプロセス応答との関係から所定値に制限す
ることで、アンダーシユートを抑制することがで
きる。特に前述とは逆に、再着火時の流量が通水
停止時に比べて増加した場合に有効である。
Moreover, although the upper limit value of the predetermined range has been described in the above description, undershoot can be suppressed by limiting the lower limit value to a predetermined value based on the relationship between the controller output and the process response. This is particularly effective when, contrary to the above, the flow rate during re-ignition is increased compared to when water flow is stopped.

以上説明したように、本発明の給湯機制御装置
によれば、再着火時のアンダーシユート分を大幅
に抑制、あるいは零にできる上、整定時間の短縮
が図れる。さらに、温度設定器の信号TWRに依
存した積分量の所定範囲を設けることにより、特
に高温設定時の異常高湯温の危険度を低下させる
ことができ、給湯性能の大きな向上が実現でき
る。なお、パイロツトバーナ残しの機器に対して
も、本発明の効果は十分にある。
As explained above, according to the water heater control device of the present invention, the undershoot at the time of re-ignition can be significantly suppressed or eliminated, and the settling time can be shortened. Furthermore, by providing a predetermined range of the integral amount depending on the signal TWR of the temperature setting device, it is possible to reduce the risk of abnormally high water temperature especially when the temperature is set to high temperature, and it is possible to realize a significant improvement in hot water supply performance. It should be noted that the present invention is sufficiently effective even for equipment that does not have a pilot burner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガス瞬間式給湯機の構成図、第2図は
温度制御のブロツク構成図、第3図a,b,cは
本発明の一実施例の給湯機制御装置による出湯温
度特性図、第4図a,b,cは本発明の他の実施
例を示す特性図、第5図a,b,cは従来の制御
装置による出湯温度特性図、第6図a,b,cは
従来の他の例を示す特性図、第7図a,b,cは
積分の所定範囲を設けない場合の比較特性図であ
る。 3……温度制御器、4……出湯温度検知器、5
……温度設定器、6……供給熱量制御器、Tix…
…積分の所定範囲の上限値。
Fig. 1 is a block diagram of a gas instantaneous water heater, Fig. 2 is a block diagram of temperature control, and Figs. 3 a, b, and c are hot water temperature characteristic diagrams of a water heater control device according to an embodiment of the present invention. Figures 4a, b, and c are characteristic diagrams showing other embodiments of the present invention; Figures 5a, b, and c are hot water temperature characteristic diagrams using a conventional control device; Figures 6a, b, and c are conventional FIGS. 7a, b, and c are characteristic diagrams showing other examples of comparison characteristics in the case where a predetermined range of integration is not provided. 3... Temperature controller, 4... Hot water temperature detector, 5
...Temperature setting device, 6...Supply heat amount controller, Tix...
...The upper limit of a predetermined range of integrals.

Claims (1)

【特許請求の範囲】 1 給湯機の出湯温度検出器と、温度設定器と、
前記温度設定器の信号と前記出湯温度検出器の信
号の差に依存して前記給湯機供給熱量を制御する
信号を出力する温度制御器と、前記温度制御器出
力に応動する供給熱量制御器を有し、給湯停止に
伴う熱量供給停止時直前の温度制御器出力値を保
持するとともに、給湯再開時には湯温のオーバー
シユートを危険域に到らしめない温度制御器出力
の上限値及びアンダーシユートを極端に大きくし
ない温度制御器出力の下限値で示される所定範囲
内の前記保持された温度制御器出力値から供給熱
量を制御する給湯機制御装置。 2 熱量供給停止直前の温度制御器出力の積分値
を保持するとともに、給湯再開時には所定範囲内
の前記保持された積分値から積分動作を開始する
特許請求の範囲第1項記載の給湯機制御装置。 3 温度設定値に応じて、所定範囲を可変する特
許請求の範囲第2項記載の給湯機制御装置。
[Claims] 1. A hot water temperature detector of a water heater, a temperature setting device,
a temperature controller that outputs a signal for controlling the amount of heat supplied by the water heater depending on the difference between the signal of the temperature setting device and the signal of the hot water temperature detector; and a supply amount of heat controller that responds to the output of the temperature controller. It maintains the temperature controller output value immediately before the heat supply is stopped due to hot water supply, and also maintains the upper limit and undershoot of the temperature controller output to prevent the hot water temperature from overshooting into the dangerous range when hot water supply is resumed. A water heater control device that controls the amount of heat to be supplied from the temperature controller output value held within a predetermined range indicated by the lower limit value of the temperature controller output that does not excessively increase the temperature. 2. The water heater control device according to claim 1, which holds the integral value of the temperature controller output immediately before the heat supply is stopped, and starts the integral operation from the held integral value within a predetermined range when hot water supply is resumed. . 3. The water heater control device according to claim 2, wherein the predetermined range is varied according to the temperature setting value.
JP57044301A 1982-03-18 1982-03-18 Apparatus for controlling hot water supply apparatus Granted JPS58160762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044301A JPS58160762A (en) 1982-03-18 1982-03-18 Apparatus for controlling hot water supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044301A JPS58160762A (en) 1982-03-18 1982-03-18 Apparatus for controlling hot water supply apparatus

Publications (2)

Publication Number Publication Date
JPS58160762A JPS58160762A (en) 1983-09-24
JPS6235580B2 true JPS6235580B2 (en) 1987-08-03

Family

ID=12687676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044301A Granted JPS58160762A (en) 1982-03-18 1982-03-18 Apparatus for controlling hot water supply apparatus

Country Status (1)

Country Link
JP (1) JPS58160762A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273758A (en) * 1987-04-30 1988-11-10 Takagi Ind Co Ltd Hot water temperature control device of instantaneous hot water maker
FR2621382B1 (en) * 1987-10-05 1990-01-19 Sdecc GAS BOILER CONTROL DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096952A (en) * 1973-12-27 1975-08-01
JPS56108105A (en) * 1980-12-22 1981-08-27 Matsushita Electric Ind Co Ltd Automatic control circuit
JPS56124829A (en) * 1980-03-04 1981-09-30 Sanyo Electric Co Ltd Combustion control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096952A (en) * 1973-12-27 1975-08-01
JPS56124829A (en) * 1980-03-04 1981-09-30 Sanyo Electric Co Ltd Combustion control device
JPS56108105A (en) * 1980-12-22 1981-08-27 Matsushita Electric Ind Co Ltd Automatic control circuit

Also Published As

Publication number Publication date
JPS58160762A (en) 1983-09-24

Similar Documents

Publication Publication Date Title
JPS6235580B2 (en)
JPS6235573B2 (en)
JPH0160721B2 (en)
JPS58207104A (en) Automatic tuning controller
JPS6219641A (en) Method of controlling combustion for hot water supplier
JPS6039842B2 (en) Boiler/turbine coordinated voltage transformation operation method
JPS6314266B2 (en)
JPS6222384B2 (en)
JPH0426840Y2 (en)
JPS6113531B2 (en)
JP2830257B2 (en) Water control device for water heater
JP2593575B2 (en) Cogeneration system
JP3769660B2 (en) Water heater
JPS6132403Y2 (en)
JPS6225945B2 (en)
JP2866171B2 (en) Boiler gas recirculation control device
JPH029260B2 (en)
JPS5997421A (en) Combustion controlling device
JPS6222386B2 (en)
JP2577477B2 (en) Fluid heating controller
JPH08159460A (en) Hot-water supply apparatus
JPS6339805B2 (en)
JPS6010303A (en) Temperature controller
JPS6039846B2 (en) Setting method of regulating valve opening for variable pressure operating thermal power plant
JPS60223948A (en) Feed water control device for tap-controlled water heater