JPS6320109B2 - - Google Patents

Info

Publication number
JPS6320109B2
JPS6320109B2 JP55105739A JP10573980A JPS6320109B2 JP S6320109 B2 JPS6320109 B2 JP S6320109B2 JP 55105739 A JP55105739 A JP 55105739A JP 10573980 A JP10573980 A JP 10573980A JP S6320109 B2 JPS6320109 B2 JP S6320109B2
Authority
JP
Japan
Prior art keywords
group
gate
rectifier
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55105739A
Other languages
Japanese (ja)
Other versions
JPS5731374A (en
Inventor
Hiroshi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10573980A priority Critical patent/JPS5731374A/en
Publication of JPS5731374A publication Critical patent/JPS5731374A/en
Publication of JPS6320109B2 publication Critical patent/JPS6320109B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • H02M1/0845Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system digitally controlled (or with digital control)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Description

【発明の詳細な説明】 本発明は時定数の大きなリアクトルを負荷とす
る制御整流装置や大電流容量の制御整流装置など
の保護方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for protecting a controlled rectifier that uses a reactor with a large time constant as a load, a controlled rectifier that has a large current capacity, and the like.

制御整流装置故障時の保護方式としては、従来
より各種方式が採用されているが、基本的な保護
動作としては、ゲートシフト、バイパスペア、ゲ
ートブロツク、しや断器トリツプの4つの動作で
あり、これらを組み合わせて保護連動動作を行な
つている。
Various methods have been used to protect against failures of controlled rectifiers, but the four basic protective operations are gate shift, bypass pair, gate block, and breaker trip. , these are combined to perform protection interlocking operations.

第1図に一般的な制御整流装置のブロツク図を
示す。1は交流母線、2は交流しや断器、3は整
流器用変圧器、4は単位制御整流器、5−1〜5
−6は単位制御整流器4を構成する制御整流素
子、6は負荷である。ゲートシフトとは、単位制
御整流器4の点弧角を逆変換領域(点弧角が90゜
〜180゜)の適切な角度とし、直流側のエネルギー
をすみやかに交流側に回生させる動作である。一
方バイパスペアとは、交流側の同一相に接続され
た一対の制御整流素子(例えば制御整流素子5−
1と5−4)を同時に通電されて直流回路を短絡
される動作である。またゲートブロツクとは、制
御整流素子に与えられている点弧パルスをブロツ
クする動作である。
FIG. 1 shows a block diagram of a general controlled rectifier. 1 is an AC busbar, 2 is an AC power switch, 3 is a rectifier transformer, 4 is a unit control rectifier, 5-1 to 5
-6 is a controlled rectifying element constituting the unit controlled rectifier 4, and 6 is a load. Gate shift is an operation in which the firing angle of the unit control rectifier 4 is set to an appropriate angle in the inverse conversion region (the firing angle is 90° to 180°), and the energy on the DC side is quickly regenerated to the AC side. On the other hand, a bypass pair is a pair of controlled rectifying elements (for example, controlled rectifying elements 5-
1 and 5-4) are energized at the same time to short-circuit the DC circuit. Gate blocking is an operation of blocking the ignition pulse applied to the control rectifier.

従来、制御整流装置で故障を検出した場合に
は、故障種別に依り、上記の保護動作を組み合せ
ゲートシフトからゲートブロツク、バイパスペア
からゲートブロツク、瞬時ゲートブロツク等の保
護連動を行なわせ、最終的に交流しや断器をトリ
ツプして制御整流装置を保護している。
Conventionally, when a failure is detected in a controlled rectifier, depending on the type of failure, the protection operations described above are combined and interlocked, such as gate shift to gate block, bypass pair to gate block, instantaneous gate block, etc., and the final The control rectifier is protected by tripping the AC circuit breaker.

ところで、大容量の制御整流装置は、単位制御
整流器を複数台並列に接続して、多相の制御整流
装置を構成するものが多い。また、負荷が大きな
リアクトルである上に急峻な電流立ち上げが要求
される場合、電流立ち上げ時にはLdi/dtで高い電 圧を必要とするが、電流が一定になるとRiの電圧
で十分であり低い電圧しか必要としないため、力
率改善のため単位制御整流器をカスケードに接続
した制御整流装置が使用される。第2図に単位制
御整流器2台をカスケード接続し、カスケード接
続した単位整流器群を2群並列に接続して構成し
た制御整流装置のブロツク図を示す。図中第1図
と同一機能のものは同一符号とした。7−1〜7
−4は単位制御整流器4−1,4−3をカスケー
ドに接続した単位制御整流器群(簡単のためにA
群と呼ぶ)と、単位制御整流器4−2,4−4を
カスケードに接続した単位制御整流器群(B群と
呼ぶ)との間に流れる電流を抑制するための直流
リアクトルである。
Incidentally, many large-capacity controlled rectifiers are constructed by connecting a plurality of unit control rectifiers in parallel to form a multiphase controlled rectifier. Also, if the load is a large reactor and a steep current rise is required, a high voltage is required at Ldi/dt when the current rises, but once the current becomes constant, the voltage at R i is sufficient. Since only low voltages are required, a controlled rectifier is used, which is a cascade of unit controlled rectifiers for power factor correction. FIG. 2 shows a block diagram of a controlled rectifier constructed by connecting two unit control rectifiers in cascade and connecting two groups of cascade-connected unit rectifiers in parallel. Components in the figure that have the same functions as those in FIG. 1 are given the same reference numerals. 7-1~7
-4 is a unit control rectifier group in which unit control rectifiers 4-1 and 4-3 are connected in cascade (for simplicity, A
This is a DC reactor for suppressing the current flowing between the unit control rectifier group (referred to as group B) in which the unit control rectifiers 4-2 and 4-4 are connected in cascade.

このような構成の制御整流装置において、例え
ば単位制御整流器4−3の高圧側が地絡すると、
カスケード接続された単位制御整流器4−1,4
−3の電流が不平衡になる。また、単位制御整流
器4−3が転流失敗するとA群電流とB群電流と
の間に不平衡が発生する。このような制御整流器
群単位で発生する故障に対して、従来の保護方式
ではスムーズに保護を行なうことができない。
In a controlled rectifier having such a configuration, for example, if a ground fault occurs on the high voltage side of the unit controlled rectifier 4-3,
Cascade connected unit control rectifier 4-1, 4
-3 current becomes unbalanced. Further, if the unit control rectifier 4-3 fails in commutation, an imbalance occurs between the A group current and the B group current. Conventional protection methods cannot provide smooth protection against such failures that occur in units of controlled rectifier groups.

例えば単位制御整流器4−3の高圧側が地絡し
た場合、ゲートシフトを行なうと負荷のコイル6
に流れていた電流はすべてコイル、接地点、地絡
点、単位制御整流器4−1を通つて流れる。この
ため、2群並列の場合には2倍の電流が、n群並
列の場合にはn倍の電流が単位制御整流器4−1
に集中する。単位制御整流器4−3が転流失敗し
た場合も同様で、A群、B群間の出力電圧にアン
バランスが生じゲートシフトを行なうとA群に2
倍の電流が流れるという不具合がある。また、バ
イパスペアの保護動作を行なうと、直流電流が負
荷コイルのL/Rの時定数で減衰するため、電流
が零になるまで長時間を要するという不具合が発
生する。
For example, if the high voltage side of the unit control rectifier 4-3 has a ground fault, performing a gate shift will cause the load coil 6
All the current that was flowing through the coil, the ground point, the ground fault point, and the unit control rectifier 4-1 flows. Therefore, in the case of 2 groups in parallel, the current is twice as large, and in the case of n groups in parallel, the current is n times the unit control rectifier 4-1.
Concentrate on. The same thing happens when the unit control rectifier 4-3 fails to commutate, and when the output voltage between the A group and the B group becomes unbalanced and the gate shift is performed, the output voltage of the A group becomes 2.
The problem is that twice as much current flows. Furthermore, when a bypass pair protection operation is performed, the DC current attenuates with the L/R time constant of the load coil, resulting in a problem that it takes a long time for the current to become zero.

本発明の目的は、前記不具合を取り除きカスケ
ード接続された制御整流器群を複数群並列に接続
して構成した制御整流装置において、各制御整流
器群に事故が発生した場合、特定の制御整流器群
に電流が集中して流れることがなく、スムーズに
制御整流装置を保護することができる制御整流装
置の保護方法を提供するにある。
An object of the present invention is to eliminate the above-mentioned defects and to provide a controlled rectifier configured by connecting a plurality of cascade-connected controlled rectifier groups in parallel. To provide a method for protecting a controlled rectifying device, which can smoothly protect the controlled rectifying device without causing a concentrated flow of the controlled rectifying device.

以下本発明を図面を参照して説明する。 The present invention will be explained below with reference to the drawings.

第3図は、本発明の一実施例を示すブロツク図
であり、図中8−1,8−2はそれぞれ第2図に
示したブロツク図中のA群、B群の制御整流器の
点弧角を決定する電流制御回路、9−1,9−2
はゲートシフトまたは後に説明するゲート進め等
の保護依頼信号により故障時の点弧角を決定する
故障時点弧角決定回路、10−1,10−2は故
障を検出し必要な保護依頼信号を出力する故障検
出回路、11−1,11−2は自群の保護依頼信
号と他群の保護依頼信号とのオアを取るオア素
子、12−1,12−2は電流制御回路8−1,
8−2からの点弧角信号と故障時点弧角決定回路
9−1,9−2からの出力信号とをオア素子11
の出力信号により切りかえるマルチプレクサ、1
3−1,13−2は12−1,12−2から得ら
れた点弧角信号により点弧相と点弧タイミングと
を決定する位相制御回路である。信号51,52
はそれぞれA群、B群の故障信号である。また、
第3図中、幅を持つた信号線はビツト構成のデイ
ジタル信号であることを示している。
FIG. 3 is a block diagram showing one embodiment of the present invention, and 8-1 and 8-2 in the figure represent the ignition of the controlled rectifiers of the A group and B group in the block diagram shown in FIG. 2, respectively. Current control circuit that determines the angle, 9-1, 9-2
10-1 and 10-2 are fault firing angle determining circuits that determine the firing angle at the time of failure based on a protection request signal such as gate shift or gate advance which will be explained later; 10-1 and 10-2 detect a failure and output necessary protection request signals. failure detection circuits 11-1 and 11-2 are OR elements that take an OR between the protection request signal of its own group and the protection request signal of other groups; 12-1 and 12-2 are current control circuits 8-1;
The firing angle signal from 8-2 and the output signal from the failure time firing angle determining circuits 9-1 and 9-2 are connected to the OR element 11.
Multiplexer that switches depending on the output signal of 1
3-1 and 13-2 are phase control circuits that determine the firing phase and firing timing based on the firing angle signals obtained from 12-1 and 12-2. Signals 51, 52
are the failure signals of group A and group B, respectively. Also,
In FIG. 3, a signal line with a width indicates a digital signal having a bit structure.

以下、本発明の作用を第2図と、第3図とによ
り説明する。簡単のために位相制御回路13−1
の出力がA群の単位制御整流器4−1,4−3に
与えられ、位相制御回路13−2の出力がB群の
単位制御整流器4−2,4−4に与えられるもの
とする。
Hereinafter, the operation of the present invention will be explained with reference to FIGS. 2 and 3. For simplicity, phase control circuit 13-1
It is assumed that the output of the phase control circuit 13-2 is given to the unit control rectifiers 4-1 and 4-3 of the A group, and the output of the phase control circuit 13-2 is given to the unit control rectifiers 4-2 and 4-4 of the B group.

かかる構成において、正常運転時にはマルチプ
レクサ12−1,12−2は電流制御回路8−
1,8−2を選択しており、電流制御回路8−
1,8−2の出力が位相制御回路13−1,13
−2に与えられ点弧角を制御している。このよう
な状態において、例えば単位制御整流器4−3の
高圧側で地絡事故が発生し単位制御整流器4−
1,4−3を流れる電流が不平衡になつたとする
と、故障検出回路10−1にてA群故障を検出し
信号51が“1”となる。信号51はオア回路1
1−1,11−2を通つてA群、B群のマルチプ
レクサ12−1,12−2を切り換えてそれぞれ
電流制御回路8−1,8−2の信号を切断し、故
障時点弧角決定回路9−1,9−2からの出力信
号を位相制御回路13−1,13−2に出力す
る。同時に信号51は故障群の故障時検出回路9
−1に入力され、故障時点弧角決定回路9−1に
よりゲートシフトに相当する点弧角を出力する。
一方、信号51は健全群の故障時点弧角決定回路
9−2にも入力され、健全群の点弧角を順変換領
域(点弧角0゜〜90゜)の適切な角度に固定し、(こ
れをゲート進めと呼ぶ)一定時間経過後または故
障群の電流零を検出したら、点弧角をゲートシフ
トに相当する角度に移行させる。第4図に第3図
9−1,9−2で示した故障時点弧角決定回路の
一実施例を示す。第4図中、14−1,14−2
はリードオンリメモリ等で構成されるデイジタル
パターン発生回路であり、入力側のアドレスを適
切に選択することによりゲートシフト時の点弧角
ゲート進め時の点弧角を出力することができる。
16−1,16−2は他群の故障検出回路の信号
を一定時間遅らせる遅延回路、15−1,15−
2はそれぞれ遅延回路16−1,16−2の出力
信号と信号51,52とのオアを取るオア回路で
ある。
In this configuration, during normal operation, the multiplexers 12-1 and 12-2 are connected to the current control circuit 8-
1, 8-2 is selected, and the current control circuit 8-
The outputs of 1 and 8-2 are phase control circuits 13-1 and 13.
-2 to control the firing angle. In such a state, for example, a ground fault occurs on the high voltage side of the unit control rectifier 4-3, and the unit control rectifier 4-3
If the currents flowing through the circuits 1 and 4-3 become unbalanced, the failure detection circuit 10-1 detects a group A failure and the signal 51 becomes "1". Signal 51 is OR circuit 1
1-1 and 11-2, the multiplexers 12-1 and 12-2 of group A and group B are switched to disconnect the signals of current control circuits 8-1 and 8-2, respectively, and the firing angle determining circuit at the time of failure is activated. Output signals from 9-1 and 9-2 are output to phase control circuits 13-1 and 13-2. At the same time, the signal 51 is the failure detection circuit 9 of the failure group.
-1, and the firing angle determining circuit 9-1 at the time of failure outputs the firing angle corresponding to the gate shift.
On the other hand, the signal 51 is also input to the firing angle determination circuit 9-2 for the healthy group at the time of failure, and fixes the firing angle of the healthy group to an appropriate angle in the forward conversion region (firing angle 0° to 90°). (This is called gate advance) After a certain period of time has elapsed or when zero current is detected in the failure group, the firing angle is shifted to an angle corresponding to gate shift. FIG. 4 shows an embodiment of the firing angle determination circuit at the time of failure shown in FIGS. 9-1 and 9-2. In Figure 4, 14-1, 14-2
is a digital pattern generation circuit composed of a read-only memory, etc., and by appropriately selecting an address on the input side, it is possible to output the firing angle when the gate is shifted, and the firing angle when the gate is advanced.
16-1, 16-2 are delay circuits that delay the signals of the failure detection circuits of other groups for a certain period of time, 15-1, 15-
Reference numeral 2 denotes an OR circuit that ORs the output signals of the delay circuits 16-1 and 16-2 and the signals 51 and 52, respectively.

まず信号51が故障時点弧角決定回路9−1に
入力されると、デイジタルパターン発生回路14
−1のゲートシフトのアドレスを指定し、故障時
点弧角決定回路9−1からはゲートシフト時の点
弧角信号が出力されA群はゲートシフトされる。
一方信号51は故障時点弧角決定回路9−2にも
入力されデイジタルパターン発生回路14−2の
ゲート進めのアドレスを指定し、順変換領域の適
切な点弧角を出力する。また信号51は遅延回路
16−2に入力され、一定時間後オア回路15−
2を通つてデイジタルパターン発生回路14−2
のゲートシフトのアドレスを指定する。このため
B群は遅延回路16−2により定められた時間ゲ
ートを進め順変換領域で運転し、故障群であるB
群の電流を零にした後ゲートシフトする。
First, when the signal 51 is input to the fault firing angle determining circuit 9-1, the digital pattern generating circuit 14
-1 gate shift address is specified, a firing angle signal at the time of gate shift is output from the firing angle determining circuit 9-1 at the time of failure, and the A group is gate shifted.
On the other hand, the signal 51 is also input to the firing angle determining circuit 9-2 at the time of failure, designating the gate advance address of the digital pattern generating circuit 14-2, and outputting an appropriate firing angle in the forward conversion area. The signal 51 is also input to the delay circuit 16-2, and after a certain period of time, the OR circuit 15-2 is inputted to the delay circuit 16-2.
2 to the digital pattern generation circuit 14-2.
Specify the address of the gate shift. For this reason, group B advances the time gate determined by the delay circuit 16-2 and operates in the forward conversion region, and
The gate is shifted after the group current is reduced to zero.

以上の作用を要約すると、故障の発生した制御
整流器群は故障検出後ゲートシフトし電流を減衰
させ、残りの健全群は一定時間順変換領域の適切
な点弧角で運転し、故障群の電流を零にした後、
健全群をゲートシフトし負荷側のエネルギーを回
生する。第5図に故障時点弧角決定回路の他の実
施例を示す。第4図と同一機能のものは同一符号
とした。17−1,17−2は故障群の電流零点
を検出する零電流検出回路であり、18−1,1
8−2はアンド回路である。本実施例では、故障
群の電流が零になつたことを直接検出した後、健
全群をゲートシフトに移行させている。
To summarize the above actions, the control rectifier group in which the fault has occurred will gate shift and attenuate the current after detecting the fault, and the remaining healthy groups will operate at an appropriate firing angle in the forward conversion region for a certain period of time, and the current in the fault group will be After reducing to zero,
Gate-shifts the healthy group and regenerates energy on the load side. FIG. 5 shows another embodiment of the circuit for determining the firing angle at the time of failure. Components with the same functions as those in FIG. 4 are given the same reference numerals. 17-1 and 17-2 are zero current detection circuits that detect the current zero point of the failure group;
8-2 is an AND circuit. In this embodiment, after directly detecting that the current in the faulty group has become zero, the healthy group is shifted to gate shift.

以上説明したように、本発明の如くカスケード
接続された制御整流器群を複数並列に接続して構
成された制御整流装置においては、故障の発生し
た制御整流器群は直ちにゲートシフトすると共に
健全な制御整流器群は順変換領域にて運転し、一
定時間後または故障群の電流の零点を検出した後
ゲートシフトすることにより、特定の制御整流器
群に電流が集中して流れることなく、しかもゲー
トブロツクまたはバイパスペアする場合よりも速
く零になり、健全な制御整流器群を順変換領域で
運転する時間を短くすることができ、速やかに制
御整流装置を保護することができる。
As explained above, in a controlled rectifier configured by connecting a plurality of cascade-connected controlled rectifier groups in parallel as in the present invention, a failed controlled rectifier group is immediately gate-shifted, and a healthy controlled rectifier group is immediately gate-shifted. The group operates in the forward conversion region, and by gate shifting after a certain period of time or after detecting the zero point of the current in the fault group, the current does not concentrate on a specific control rectifier group, and it can be gate blocked or bypassed. It becomes zero faster than in the case of a pair, and the time for operating a healthy control rectifier group in the forward conversion region can be shortened, and the control rectifier can be promptly protected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な制御整流装置のブロツク図、
第2図は単位制御整流器を2台カスケード、2群
並列接続して構成した制御整流装置のブロツク
図、第3図は本発明の一実施例のブロツク図、第
4図及び第5図は第3図の故障時点弧角決定回路
のそれぞれ異なる実施例を示す構成図である。 1……交流母線、2……交流しや断器、3,3
−1〜3−4……整流器用変圧器、4,4〜1〜
4−4……単位制御整流器、5−1〜5−6……
制御整流素子、6……負荷、7−1〜7−4……
直流リアクトル、8−1,8−2……電流制御回
路、9−1,9−2……故障時点弧角決定回路、
10−1,10−2……故障検出回路、11−
1,11−2……オア回路、12−1,12−2
……マルチプレクサ、13−1,13−2……位
相制御回路、14−1,14−2……デイジタル
パターン発生回路、15−1,15−2……オア
回路、16−1,16−2……遅延回路、17−
1,17−2……零電流検出回路、18−1,1
8−2……アンド回路。
Figure 1 is a block diagram of a general controlled rectifier.
Fig. 2 is a block diagram of a controlled rectifier constructed by cascading two unit control rectifiers and connecting two groups in parallel, Fig. 3 is a block diagram of an embodiment of the present invention, and Figs. 4 and 5 are FIG. 4 is a configuration diagram showing different embodiments of the firing angle determination circuit at the time of failure shown in FIG. 3; 1...AC bus line, 2...AC line disconnector, 3,3
-1~3-4... Rectifier transformer, 4,4~1~
4-4... Unit control rectifier, 5-1 to 5-6...
Control rectifying element, 6...Load, 7-1 to 7-4...
DC reactor, 8-1, 8-2... Current control circuit, 9-1, 9-2... Failure time firing angle determining circuit,
10-1, 10-2... Failure detection circuit, 11-
1, 11-2...OR circuit, 12-1, 12-2
... Multiplexer, 13-1, 13-2 ... Phase control circuit, 14-1, 14-2 ... Digital pattern generation circuit, 15-1, 15-2 ... OR circuit, 16-1, 16-2 ...Delay circuit, 17-
1, 17-2...Zero current detection circuit, 18-1, 1
8-2...AND circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも2つの単位制御整流器をカスケー
ド接続して構成した制御整流器群を複数群並列に
接続して構成された多相の制御整流装置におい
て、直列に接続された制御整流器群にて故障が発
生した場合、故障した制御整流器群はゲートシフ
トからゲートブロツクまたはゲートシフトからバ
イパスペアの保護連動を行なうと共に、健全な制
御整流器群は順変換領域で運転し、一定時間後ま
たは故障した制御整流器群の電流が零になつたら
ゲートシフトからゲートブロツクの保護連動を行
なうことを特徴とする制御整流装置の保護方法。
1 In a polyphase controlled rectifier configured by connecting multiple groups of controlled rectifiers in parallel, each of which is configured by cascading at least two unit controlled rectifiers, a failure occurs in a group of controlled rectifiers connected in series. In this case, the failed control rectifier group performs protection interlocking from gate shift to gate block or gate shift to bypass pair, and the healthy control rectifier group operates in the forward conversion region, and after a certain period of time or the current of the failed control rectifier group 1. A method for protecting a controlled rectifier, characterized in that when the voltage becomes zero, the protection interlocking of a gate block is performed from a gate shift.
JP10573980A 1980-07-31 1980-07-31 Protecting system for controlled rectifier Granted JPS5731374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10573980A JPS5731374A (en) 1980-07-31 1980-07-31 Protecting system for controlled rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10573980A JPS5731374A (en) 1980-07-31 1980-07-31 Protecting system for controlled rectifier

Publications (2)

Publication Number Publication Date
JPS5731374A JPS5731374A (en) 1982-02-19
JPS6320109B2 true JPS6320109B2 (en) 1988-04-26

Family

ID=14415634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10573980A Granted JPS5731374A (en) 1980-07-31 1980-07-31 Protecting system for controlled rectifier

Country Status (1)

Country Link
JP (1) JPS5731374A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537861A (en) * 1978-09-08 1980-03-17 Toshiba Corp Controlled rectifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537861A (en) * 1978-09-08 1980-03-17 Toshiba Corp Controlled rectifier

Also Published As

Publication number Publication date
JPS5731374A (en) 1982-02-19

Similar Documents

Publication Publication Date Title
JP2928264B2 (en) Semiconductor power conversion system
WO2020250358A1 (en) Power conversion device
JPH04121060A (en) Semiconductor power conversion system
EP0316202B1 (en) Selecting a faulty phase in a multi-phase electrical power system
JPS6320109B2 (en)
US4197575A (en) Conduction through sensing and inverter protection system
JP3132814B2 (en) Semiconductor power conversion system
JPH0340853B2 (en)
JPS6240949B2 (en)
JPH10337029A (en) Thyristor converter
JP3162586B2 (en) Control device of AC / DC converter
JP2773808B2 (en) Earthing transformer protection relay
JPH08214538A (en) Power converter
JPS5936510B2 (en) Protection method of controlled rectifier
JPS6238931B2 (en)
JP3746552B2 (en) Abnormality confirmation method of instantaneous voltage drop countermeasure device
JP2001016765A (en) Coordinating lock control circuit and protection relay device
JP2557488B2 (en) Variable speed generator motor controller
JPH0866047A (en) Voltage type power converter
SU1410162A1 (en) Apparatus for providing redundancy for failures of switches and protection devices
JP3162546B2 (en) Control device of AC / DC converter
JP2812123B2 (en) Power semiconductor device protection device
JPH07177743A (en) Controller for ac-dc converter
JPH08237952A (en) Controller for ac/dc converter
JPS6222215B2 (en)