JPS5936510B2 - Protection method of controlled rectifier - Google Patents

Protection method of controlled rectifier

Info

Publication number
JPS5936510B2
JPS5936510B2 JP11031878A JP11031878A JPS5936510B2 JP S5936510 B2 JPS5936510 B2 JP S5936510B2 JP 11031878 A JP11031878 A JP 11031878A JP 11031878 A JP11031878 A JP 11031878A JP S5936510 B2 JPS5936510 B2 JP S5936510B2
Authority
JP
Japan
Prior art keywords
rectifier
unit control
circuit
unit
controlled rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11031878A
Other languages
Japanese (ja)
Other versions
JPS5537861A (en
Inventor
博 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11031878A priority Critical patent/JPS5936510B2/en
Publication of JPS5537861A publication Critical patent/JPS5537861A/en
Publication of JPS5936510B2 publication Critical patent/JPS5936510B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Protection Of Static Devices (AREA)
  • Rectifiers (AREA)

Description

【発明の詳細な説明】 本発明は制御整流装置に係り、特に時定数の大きなL負
荷や大容量直流送電に適用するに好適な制御整流装置の
保護方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a controlled rectifier, and particularly to a protection method for a controlled rectifier suitable for application to L loads with large time constants and large-capacity DC power transmission.

従来から、単位制御整流器を複数台並列に接続し、多相
の大容量整流器が知られているが、制御整流素子に依り
構成されている制御整流器に関して云えば、アーム短絡
、転流失敗等の故障の場合、ゲートシフト、バイパスペ
ア、ゲートブロック等の保護方式が知られている。
Conventionally, multi-phase large capacity rectifiers are known in which multiple unit controlled rectifiers are connected in parallel, but when it comes to controlled rectifiers that are configured by controlled rectifying elements, there are problems such as arm short circuits and commutation failures. In case of failure, protection methods such as gate shifting, bypass pairs, gate blocks, etc. are known.

ここで、ゲートシフトとは制御整流器の点弧角を大きく
遅らせて、逆変換領域(点弧角900〜1800)で運
転し、直流側のエネルギーを交流側に回生させる動作で
ある。
Here, the gate shift is an operation in which the firing angle of the control rectifier is greatly delayed to operate in a reverse conversion region (firing angle 900 to 1800), and energy on the DC side is regenerated to the AC side.

一方、バイパスペアとは、交流側の同一相に接続された
1対の制御整流素子を同時に通電させて、直流回路を短
絡させるものである。また、ゲートブロックとは制御整
流素子に与えられている点弧パルスをブロックする事に
依る保護動作である。なお、制御整流器の保護方式とし
ては、通常は故障種別に依り、これらの動作を組み合せ
て、ゲートシフトからゲートブロック、バイパスペアか
らゲートブロック、瞬時ゲートブロック等の保護連動を
行なわせ、最終的に交流側遮断器をトリップする方式が
一般的である。第1図は単位制御整流器を2個並列接続
した周知の12相制御整流装置の主回路結線図を示すも
ので、同図中1は交流母線、2−1、2−2は交流側遮
断器、3−1、3−2は整流器用変圧器、導磁1、導磁
2は前記整流器用変圧器3−1、3−2の出力を直流に
変換する単位制御整流器、5−1、5−2は前記単位制
御整流器4−1、4−2間を流れる電流を抑制する直流
リアクトル、6は負荷をそれぞれ示すものである。
On the other hand, a bypass pair is one in which a pair of controlled rectifier elements connected to the same phase on the AC side are simultaneously energized to short-circuit the DC circuit. Furthermore, gate blocking is a protective operation based on blocking the ignition pulse given to the control rectifier. The protection method for a controlled rectifier usually involves combining these operations depending on the type of failure, and interlocking protection from gate shift to gate block, bypass pair to gate block, instantaneous gate block, etc., and finally The most common method is to trip the AC circuit breaker. Figure 1 shows the main circuit wiring diagram of a well-known 12-phase control rectifier in which two unit control rectifiers are connected in parallel. , 3-1, 3-2 are rectifier transformers, magnetic conductor 1, magnetic conductor 2 are unit control rectifiers that convert the outputs of the rectifier transformers 3-1, 3-2 into direct current, 5-1, 5 -2 is a DC reactor that suppresses the current flowing between the unit control rectifiers 4-1 and 4-2, and 6 is a load.

かかる構成に於いて、通常動作時は負荷6に対して直流
電力が供給される訳であるが、単位制御整流器4−1、
4−2にその出力を正常に制御し得ないアーム短絡、転
流失敗等の故障が発生した場合、上に述べた様な従来の
保護連動方式では、スムーズにこれを保護する事が出来
ない。
In this configuration, during normal operation, DC power is supplied to the load 6, but the unit control rectifier 4-1,
4-2 If a failure occurs such as an arm short circuit or commutation failure that prevents the output from being properly controlled, the conventional protection interlocking method described above cannot smoothly protect it. .

例えば、単位制御整流器導磁1にアーム短絡が発生した
とすると、従来の保護方式に依れば瞬時ゲートブロック
から遮断器トリップと保護連動を行う訳であるが、第1
図に示す如く、多相、大容量で負荷の時定数が大きい場
合は直流電流の減衰に長時間を要する為、直流電流が長
時間継続して流れ続ける事となる。
For example, if an arm short circuit occurs in the unit control rectifier conductor 1, according to the conventional protection method, the protection is linked to the circuit breaker trip from the instantaneous gate block.
As shown in the figure, when the load is multiphase, has a large capacity, and has a large time constant, it takes a long time for the DC current to decay, so the DC current continues to flow for a long time.

この為、故障した単位制御整流器導磁1の故障拡大とか
、健全な単位制御整流器導磁2の故障発生等の不具合が
発生する事となる。即ち、ゲートブロックを行なうと、
単位制御整流器の出力電圧は、正の電圧と負の電圧が周
期的に発生するが、平均値は零であるため、直流電流は
概略負荷の時定数に従つて減衰する事となり、従つて上
の様な場合、長時間特定の2つのアームに流れ続ける事
となる。また故障した単位制御整流器だけ瞬時ゲートプ
ロツク、またはバイパスペアとし、健全な単位制御整流
器だけゲートシフトすると、単位制御整流器間の出力電
圧のアンバランスにより、直流電流は故障した単位制御
整流器に集中して流れるという不具合が発生する事とな
る。第2図イは単位制御整流器のU相がtlにてアーム
短絡を発生し、TOにて健全な単位制御整流器をゲート
シフトした場合の相電圧波形を示し、第2図口は同様に
T,にてアーム短絡が発生した単位制御整流器をT2に
て瞬時ゲートプロツクした場合の相電圧波形を示す。
For this reason, problems such as the expansion of the failure of the faulty unit control rectifier magnetic conductor 1 and the occurrence of a failure in the healthy unit control rectifier magnetic conductor 2 occur. In other words, when you perform a gate block,
The output voltage of the unit control rectifier is a positive voltage and a negative voltage that occur periodically, but the average value is zero, so the DC current attenuates approximately according to the time constant of the load. In such a case, the flow will continue to flow to two specific arms for a long time. In addition, if only the faulty unit control rectifier is set to an instantaneous gate block or a bypass pair, and only the healthy unit control rectifier is gate shifted, the DC current will concentrate on the faulty unit control rectifier due to the unbalance of the output voltage between the unit control rectifiers. This will cause a problem. Figure 2A shows the phase voltage waveform when the U phase of the unit control rectifier causes an arm short circuit at tl, and the healthy unit control rectifier is gate shifted at TO. The phase voltage waveform is shown when the unit control rectifier in which an arm short circuit occurs is instantaneously gate-blocked at T2.

同図からも明らかな如く、健全な単位制御整流器が一定
の負電圧を発生するのに対して、故障した単位制御整流
器は正の電圧と負の電圧とを周期的に発生する為、故障
した単位制御整流器、直流リアクトル、健全な単位制御
整流器のループで電流が流れ、健全な単位制御整流器の
電流が減少して故障した単位制御整流器に電流が集中す
る事となる。従つて、本発明の目的は、上記従来技術の
欠点を無くし、単位制御整流器を複数個並列に接続した
多相の制御整流装置に於いて、1つ以上の単位制御整流
器が故障した場合、スムーズにこれを保護する事を可能
ならしめた新規の制御整流装置の保護方式を提供するこ
とにある。
As is clear from the figure, a healthy unit control rectifier generates a constant negative voltage, whereas a faulty unit control rectifier periodically generates positive and negative voltages, so it is a failure. Current flows in the loop of the unit control rectifier, DC reactor, and healthy unit control rectifier, and the current in the healthy unit control rectifier decreases, causing the current to concentrate on the faulty unit control rectifier. Therefore, an object of the present invention is to eliminate the drawbacks of the above-mentioned prior art, and to solve the problem of a polyphase controlled rectifier in which a plurality of unit controlled rectifiers are connected in parallel, so that when one or more of the unit controlled rectifiers fails, it can be smoothly handled. The object of the present invention is to provide a new protection method for a controlled rectifier that makes it possible to protect this device.

第3図は本発明の一実施例に係る制御整流装置のプロツ
ク図で、同図中、56−1,56−2は第1図の単位制
御整流器4−1,4− 2の制御回路に対応する整流器
制御回路、T −1,T− 2は基準値と検出値の差に
より電流制御あるいは電圧制御を行い、整流器の点弧角
を決定する制御回路、8 −1,8− 2は通常は正常
に点弧し得る最小の点弧角付近に設定され、故障時には
他の単位制御整流器4 − 2,4−1の故障時点弧角
を出力する点弧角決定回路、9 −1,9− 2はゲー
トシフト位相決定回路、10−1,10− 2は制御回
路T−1,7−2、点弧角決定回路8 −1,8− 2
またはゲートシフト位相決定回路9 −1,9− 2の
出力のいずれかの出力信号に基いて対応する単位制御整
流器4 −1,4− 2の各相へ点弧タイミングを発生
する位相制御回路、12−1,12− 2は他の単位制
御整流器4 − 2,4−1の故障信号に遅れをもたせ
る遅延回路、13−1,13− 2は他の単位制御整流
器4 − 2,4−1の故障信号によりセツトされ、前
記遅延回路12−1,12− 2の出力信号によりセツ
トされるフリツプフロツプ回路、14−1,14−2は
単位制御整流器10−1,10−2の故障信号により位
相制御回路T−1,T−2の出力をプロツクするインヒ
ビツト回路、11−11,11− 21はそれぞれ他の
単位制御整流器4 − 2,4−1の故障信号で制御回
路7一1,T−2の出力をオフするアナログスイツチ回
路、11−12,11−22はフリツプフロツプ回路1
3−1,13− 2の出力により点弧角決定回路8 −
1,8− 2の出力をオン−オフするアナログスイツチ
回路、11−13,11−23は遅延回路12−1,1
2− 2の出力信号によりゲートシフト位相決定回路の
出力をオン−オフするアナログスイツチ回路、51−1
,51− 2は単位制御整流器4−1,4−2の故障信
号、52−1,52−2は前記遅延回路12−1,12
− 2の出力信号、53−1,53−2はフリツプフロ
ツプ回路13−1,13−2の出力信号である。
FIG. 3 is a block diagram of a controlled rectifier according to an embodiment of the present invention, in which 56-1 and 56-2 are the control circuits of the unit controlled rectifiers 4-1 and 4-2 in FIG. The corresponding rectifier control circuits, T-1 and T-2, are control circuits that perform current control or voltage control based on the difference between the reference value and the detected value and determine the firing angle of the rectifier, and 8-1 and 8-2 are normal control circuits. is set near the minimum firing angle that can normally fire, and in the event of a failure, a firing angle determination circuit 9-1, 9 outputs the firing angle at the time of failure of the other unit control rectifiers 4-2, 4-1. - 2 is a gate shift phase determining circuit, 10-1, 10-2 is a control circuit T-1, 7-2, firing angle determining circuit 8-1, 8-2
or a phase control circuit that generates firing timing for each phase of the corresponding unit control rectifier 4-1, 4-2 based on the output signal of either of the outputs of the gate shift phase determining circuit 9-1, 9-2; 12-1, 12-2 are delay circuits that delay the failure signals of other unit control rectifiers 4-2, 4-1, and 13-1, 13-2 are other unit control rectifiers 4-2, 4-1. The flip-flop circuits 14-1 and 14-2 are set by the fault signals of the unit control rectifiers 10-1 and 10-2, and the flip-flop circuits 14-1 and 14-2 are set by the fault signals of the unit control rectifiers 10-1 and 10-2. Inhibit circuits 11-11 and 11-21 block the outputs of control circuits T-1 and T-2, respectively, and control circuits 7-1 and T-2 with failure signals of other unit control rectifiers 4-2 and 4-1. 11-12, 11-22 are flip-flop circuits 1
The firing angle determining circuit 8 - is determined by the outputs of 3-1 and 13-2.
1, 8-2 are analog switch circuits that turn on and off the outputs, 11-13, 11-23 are delay circuits 12-1, 1
2-2 An analog switch circuit that turns on and off the output of the gate shift phase determining circuit according to the output signal of 2, 51-1
, 51-2 are failure signals of the unit control rectifiers 4-1, 4-2, and 52-1, 52-2 are the delay circuits 12-1, 12.
-2 output signals 53-1 and 53-2 are output signals of the flip-flop circuits 13-1 and 13-2.

かかる構成に於いて、今、単位制御整流器4−1が故障
したとすると故障信号51−1がロジツク゛1’’とな
りインヒビツト回路14−1により位相制御回路10−
1からの点弧パルス信号がプロツクされ、単位制御整流
器4−1はゲートプロツクされる。
In this configuration, if the unit control rectifier 4-1 fails now, the failure signal 51-1 becomes logic 1'' and is output to the phase control circuit 10-1 by the inhibit circuit 14-1.
The ignition pulse signal from 4-1 is blocked and the unit control rectifier 4-1 is gate-blocked.

同時に故障信号51−1は単位制御整流器4−2の制御
回路56−2に送られ、アナログスイツチ11−21を
オフし、制御回路T−2からの制御信号をカツトすると
共に、フリツプフロツプ回路13−2をセツトし、前記
フリツプフロツプ回路13−2の出力信号53−2によ
りアナログスイツチ11−22をオンする。その結果、
点弧角決定回路8−2の出力信号が位相制御回路10−
2に送られ、単位制御整流器4−2は順変換領域で運転
される。また故障信号51−1は遅延回路12−2にも
送られ、この時間から遅延回路12−2に於いて適宜設
定された時間を経過すると、遅延回路12−2の出力5
2−2はロジック1’’となる。その結果、この出力5
2−2を受けているフリツプフロツプ回路13−2がり
セツトされ、その出力信号はロジツク″o’’となる。
従つて、前記フリツプフロツプ回路13−2の出力53
−2を受けているアナログスイツチ11−22がオフす
ると同時に前記遅延回路12−2の出力52−2を受け
ているアナログスイツチ11−23がオンし、ゲートシ
フト位相決定回路9−2の出力信号が位相制御回路10
−2に送られ、従つて単位制御整流器4−2はゲートシ
フトされる。第4図に単位制御整流器4−1の故障信号
51一1とフリツプフロツプ回路13−2の出力信号5
3−2と遅延回路12−2の出力信号52−2のタイム
シーケンスを示す。以上の動作を要約すると、単位制御
整流器4−1が故障すると、単位制御整流器4−1は瞬
時ゲートプロツクし、単位制御整流器4−2は遅延回路
12−2により設定された時間だけ故障時点弧角決定回
路8−2により順変換領域で運転され、遅延時間の後ゲ
ートシフトする。
At the same time, the fault signal 51-1 is sent to the control circuit 56-2 of the unit control rectifier 4-2, which turns off the analog switch 11-21 and cuts off the control signal from the control circuit T-2. 2, and the analog switch 11-22 is turned on by the output signal 53-2 of the flip-flop circuit 13-2. the result,
The output signal of the firing angle determining circuit 8-2 is transmitted to the phase control circuit 10-.
2, and the unit control rectifier 4-2 is operated in the forward conversion region. The failure signal 51-1 is also sent to the delay circuit 12-2, and when a suitably set time elapses from this time in the delay circuit 12-2, the output 5 of the delay circuit 12-2
2-2 becomes logic 1''. As a result, this output 5
The flip-flop circuit 13-2 receiving the flip-flop 2-2 is reset and its output signal becomes logic "o".
Therefore, the output 53 of the flip-flop circuit 13-2
-2 is turned off, and at the same time, the analog switch 11-23 receiving the output 52-2 of the delay circuit 12-2 is turned on, and the output signal of the gate shift phase determining circuit 9-2 is turned on. is the phase control circuit 10
-2, so that the unit controlled rectifier 4-2 is gate shifted. FIG. 4 shows the fault signal 51-1 of the unit control rectifier 4-1 and the output signal 5 of the flip-flop circuit 13-2.
3-2 and the time sequence of the output signal 52-2 of the delay circuit 12-2. To summarize the above operation, when the unit control rectifier 4-1 fails, the unit control rectifier 4-1 instantaneously gate-locks the unit control rectifier 4-2, and the unit control rectifier 4-2 maintains the firing angle for the time set by the delay circuit 12-2. The determining circuit 8-2 operates in the forward conversion region, and gate shifts after a delay time.

以上のように、故障時に健全な単位制御整流器を一定時
間順変換領域で運転すると、健全な単位制御整流器から
直流リアクトル、故障した単位制御整流器のループで電
流が流れ、故障した単位制御整流器の電流は零となる。
As described above, when a healthy unit control rectifier is operated in the forward conversion region for a certain period of time at the time of a failure, current flows from the healthy unit control rectifier to the DC reactor and then through the loop of the failed unit control rectifier. becomes zero.

従つて、故障した単位制御整流器はすみやかに停止され
、その後健全な単位制御整流器をゲートシフトすること
により直流電流は交流側に回生される事となる。ちなみ
に、遅延回路12−1,12−2の設定遅延時間は最大
故障電流、定格電圧、直流リアクトルの値により、故障
した単位制御整流器の電流が確実に零となるまでの時間
に設定される事は勿論である。なお、第3図の実施例に
おいては、故障直後の順変換領域の点弧位相とゲートシ
フト位相をアナログスイツチで切り換える方式を一例と
して示したが、積分回路等で遅延をもたせて、点弧位相
を順変換領域からゲートシフト位相まで徐々に変化させ
る如き構成としても同様の効果を得る事が出来るもので
ある。第5図は本発明の他の実施例に係る制御整流装置
の部分プロツク図を示すもので、同図中、15−1は単
位制御整流器4−1の電流零検出回路、54−1は単位
制御整流器4−1を流れる電流値である。
Therefore, the faulty unit control rectifier is immediately stopped, and then the normal unit control rectifier is gate-shifted, so that the DC current is regenerated to the AC side. By the way, the delay time set for the delay circuits 12-1 and 12-2 is set to the time until the current of the failed unit control rectifier reliably reaches zero, depending on the maximum fault current, rated voltage, and DC reactor value. Of course. In the embodiment shown in Fig. 3, an analog switch is used to switch the firing phase and gate shift phase in the forward conversion region immediately after a failure. Similar effects can also be obtained with a configuration in which the phase is gradually changed from the forward conversion region to the gate shift phase. FIG. 5 shows a partial block diagram of a controlled rectifier according to another embodiment of the present invention, in which 15-1 is a current zero detection circuit of a unit controlled rectifier 4-1, and 54-1 is a unit This is the current value flowing through the controlled rectifier 4-1.

即ち、第5図の構成は第3図の構成における遅延回路1
2−1,12−2をそれぞれ単位制(財)整流器4−2
,4−1の電流零検出回路に置き換えたものであり、そ
の他はすべて第3図の構成と同一である。かかる構成に
於いては、故障発生後、前にも述べた如く、健全な単位
制御整流器を順変換運転し、故障してゲートプロツクさ
れた単位制御整流器の電流が零となつたことを電流零検
出回路で確認した後、健全な単位制御整流器をゲートシ
フトするものである。
That is, the configuration of FIG. 5 is the same as the delay circuit 1 in the configuration of FIG.
2-1 and 12-2 are each unit system (goods) rectifier 4-2
, 4-1, and all other configurations are the same as those shown in FIG. 3. In such a configuration, after a failure occurs, as mentioned above, the unit control rectifier that is healthy is operated in a forward conversion manner, and the current zero detection is performed to detect that the current of the unit control rectifier that has failed and is gate-locked has become zero. After checking the circuit, the unit control rectifier is gate shifted.

第5図の構成に依れば、故障した単位制御整流器の電流
が零になつたことを確認してから健全な単位制御整流器
をゲートシフトするので信頼性が高い事、また故障時の
通電々流の違いによる零電流となるまでの時間の違いに
対応できる等の効果がある。
According to the configuration shown in Fig. 5, since the gate shift is performed on a healthy unit control rectifier after confirming that the current in the faulty unit control rectifier has become zero, reliability is high, and energization in the event of a failure is reduced. This has the effect of being able to cope with differences in the time required to reach zero current due to differences in current.

なお、第5図の構成に於いて電流零検出回路15−1の
出力信号55−2の代わりに、故障信号51−1と前記
出力信号55−2のアンド条件による信号を使用しても
同様効果を得る事が出来るものである。第6図は本発明
の更に他の実施例に係る制御整流装置のプロツク図で、
同図中、16−1,16−2はバイパスペア制御回路、
17−1,17−2はオア回路である。
In addition, in the configuration of FIG. 5, the same result can be obtained even if a signal based on the AND condition of the failure signal 51-1 and the output signal 55-2 is used instead of the output signal 55-2 of the zero current detection circuit 15-1. It is something that can be effective. FIG. 6 is a block diagram of a controlled rectifier according to still another embodiment of the present invention.
In the figure, 16-1 and 16-2 are bypass pair control circuits,
17-1 and 17-2 are OR circuits.

かかる構成に於いて、今、単位制御整流器4−1が故障
したとすると、故障信号51−1がロジツク”1゛とな
り、インヒビツト回路14−1により位相制御回路10
−1からの出力信号をプロツクする。
In this configuration, if the unit control rectifier 4-1 fails, the failure signal 51-1 becomes logic "1", and the phase control circuit 10 is output by the inhibit circuit 14-1.
Block the output signal from -1.

同時に、故障信号51−1はバイパスペア制御回路16
−1に送られ、該制御回路16−1からバイパスペアと
すべき相に点弧指令が発生され、オア回路17−1を通
して出力される。この結果、故障した単位制御整流器4
−1はバイパスペア状態となる。健全な単位制御整流器
4−2の保護運動については第3図の場合と同じである
。即ち、故障した単位制御整流器4−1はゲートプロツ
クではなくバイパスペア状態となり、直流回路が短絡さ
れ、故障した単位制御整流器4−1は交流側の影響を受
けない。また第6図の遅延回路に変えて、第5図に示し
た電流零検出回路を適用すれば第5図の実施例の場合と
同様の効果を持させる事も可能である。なお、アーム短
絡時のバイパスペア制御方式としては、特にバイパスペ
ア制御回路を設けなくとも、ゲートプロツク信号を適宜
時間遅らせて、バイパスペアになつた後にゲートプロツ
クしてもよい。
At the same time, the fault signal 51-1 is transmitted to the bypass pair control circuit 16.
-1, the control circuit 16-1 generates an ignition command for the phase to be a bypass pair, and outputs it through the OR circuit 17-1. As a result, the faulty unit control rectifier 4
-1 is in a bypass pair state. The protective movement of the healthy unit control rectifier 4-2 is the same as in the case of FIG. That is, the faulty unit control rectifier 4-1 is not in a gate block state but in a bypass pair state, the DC circuit is short-circuited, and the faulty unit control rectifier 4-1 is not affected by the AC side. Furthermore, if the zero current detection circuit shown in FIG. 5 is applied instead of the delay circuit shown in FIG. 6, it is possible to obtain the same effect as in the embodiment shown in FIG. As a bypass pair control method when an arm is short-circuited, the gate block signal may be delayed by an appropriate time and the gate block may be performed after the bypass pair is established, without the need to provide a bypass pair control circuit.

この場合の故障した単位制御整流器の相電圧波形を第7
図の波形図に示す( TO,tl,t2の表示は第2図
の場合に同じ)。また、上記各実施例に於いては、単位
制御整流器を2台用いた12相の制御整流装置を例示し
たが、本発明の実施はこれに限定されるものではなく、
更に多相の場合でも適用可能である事は勿論である。
The phase voltage waveform of the faulty unit control rectifier in this case is
(TO, tl, t2 indications are the same as in Fig. 2). Further, in each of the above embodiments, a 12-phase controlled rectifier using two unit controlled rectifiers is illustrated, but the implementation of the present invention is not limited to this.
Furthermore, it goes without saying that it is also applicable to polyphase cases.

以上述べた如く、本発明に依れば、単位制御整流器を複
数個並列に接続した多相の制御整流装置において、1つ
以上の単位制御整流器が故障した場合、故障した単位制
御整流器を瞬時にゲートプロツクまたはバイパスペアす
ると共に、健全な単位制御整流器を一定時間または故障
した単位制御整流器の電流が零になるまで順変換領域で
運転し得るような保護方式とした為、故障した単位制御
整流器の電流が零となつたことを確認し該整流器を停止
状態にした後、健全な単位制御整流器をゲートシフトし
直流電流を交流側に回生出来、従つて故障した単位制御
整流器への電流集中とか、負荷の時定数に依る長時間の
電流継続等の不都合を排し、速やかな保護動作をとる事
の出来る新規の制御整流装置の保護方式を得る事が出来
るものである。
As described above, according to the present invention, in a polyphase controlled rectifier in which a plurality of unit controlled rectifiers are connected in parallel, when one or more of the unit controlled rectifiers fails, the failed unit controlled rectifier is instantly replaced. In addition to gate protection or bypass pairing, we have adopted a protection method that allows a healthy unit control rectifier to operate in the forward conversion region for a certain period of time or until the current of the failed unit control rectifier becomes zero, so that the current of the failed unit control rectifier can be reduced. After confirming that the current has become zero and stopping the rectifier, the normal unit control rectifier can be gate-shifted and the DC current can be regenerated to the AC side. Accordingly, it is possible to obtain a new protection method for a controlled rectifier that eliminates inconveniences such as long-term current continuation due to the time constant of , and can take prompt protective action.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単位制御整流器を2個並列接続した周知の12
相制御整流装置の主回路結線図、第2図は第1図の制御
整流装置の故障発生時の相電圧波形を示す波形図、第3
図は本発明の一実施例に係る制御整流装置のプロツク図
、第4図は第3図の構成の動作を説明するタイムシーケ
ンス、第5図は本発明の他の実施例に係る制御整流装置
の部分プロツク図、第6図は本発明の更に他の実施例に
係る制御整流装置のプロツク図、第T図は第6図の構成
の動作を説明する波形図である。 4 −1,4− 2・・・・・・単位制御整流器、56
−1,56−2・・・・・・整流器匍脚回路、T−1,
T−2・・・・・・制御回路、8−1,8− 2・・・
・・・点弧角決定回路、9−1,9− 2・・・・・・
ゲートシフト位相決定回路、10−1,10− 2・・
・・・・位相制御回路、12−1,12−2・・・・・
・遅延回路、13−1,13−2・・・・・・フリツプ
フ頭ノプ回路。
Figure 1 shows a well-known 12-unit rectifier in which two unit control rectifiers are connected in parallel.
Figure 2 is a main circuit wiring diagram of the phase control rectifier, and Figure 2 is a waveform diagram showing the phase voltage waveform when a failure occurs in the control rectifier in Figure 1.
The figure is a block diagram of a controlled rectifier according to one embodiment of the present invention, FIG. 4 is a time sequence explaining the operation of the configuration of FIG. 3, and FIG. 5 is a controlled rectifier according to another embodiment of the present invention. FIG. 6 is a partial block diagram of a controlled rectifier according to still another embodiment of the present invention, and FIG. T is a waveform diagram illustrating the operation of the configuration of FIG. 6. 4-1, 4-2...Unit control rectifier, 56
-1,56-2... Rectifier leg circuit, T-1,
T-2... Control circuit, 8-1, 8-2...
... Firing angle determination circuit, 9-1, 9-2...
Gate shift phase determining circuit, 10-1, 10-2...
...Phase control circuit, 12-1, 12-2...
・Delay circuit, 13-1, 13-2...Flip head knob circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも2台以上の単位制御整流器を並列に接続
し多相整流を行う制御整流装置において、前記少なくと
も1台以上の単位制御整流器が故障した際、該故障の単
位制御整流器をゲートブロックまたはバイパスペアする
と共に、健全な単位制御整流器を一定時間または前記故
障の単位制御整流器の電流が零になるまでの間、順変換
領域にて運転することを特徴とする制御整流装置の保護
方式。
1. In a controlled rectifier that connects at least two unit-controlled rectifiers in parallel and performs multiphase rectification, when at least one unit-controlled rectifier fails, the failed unit-controlled rectifier is connected to a gate block or a bypass pair. A protection method for a controlled rectifier, characterized in that a healthy unit controlled rectifier is operated in a forward conversion region for a certain period of time or until the current of the failed unit controlled rectifier becomes zero.
JP11031878A 1978-09-08 1978-09-08 Protection method of controlled rectifier Expired JPS5936510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11031878A JPS5936510B2 (en) 1978-09-08 1978-09-08 Protection method of controlled rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11031878A JPS5936510B2 (en) 1978-09-08 1978-09-08 Protection method of controlled rectifier

Publications (2)

Publication Number Publication Date
JPS5537861A JPS5537861A (en) 1980-03-17
JPS5936510B2 true JPS5936510B2 (en) 1984-09-04

Family

ID=14532671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11031878A Expired JPS5936510B2 (en) 1978-09-08 1978-09-08 Protection method of controlled rectifier

Country Status (1)

Country Link
JP (1) JPS5936510B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275103A (en) * 1988-09-09 1990-03-14 Hinokibun Kk Light receiving method using light tunnel and device thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731374A (en) * 1980-07-31 1982-02-19 Toshiba Corp Protecting system for controlled rectifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275103A (en) * 1988-09-09 1990-03-14 Hinokibun Kk Light receiving method using light tunnel and device thereof

Also Published As

Publication number Publication date
JPS5537861A (en) 1980-03-17

Similar Documents

Publication Publication Date Title
JP2695941B2 (en) Uninterruptible power system
CA2012578C (en) Semiconductor electric power conversion system
US4757435A (en) Static-controlled current-source AC/DC power converter and DC/AC power converter, and protection system embodying the same
US4896242A (en) Direct AC-DC converter fault protection system
JP3437685B2 (en) Control and protection system for AC / DC converter
JPS60249824A (en) Method of controlling ac/dc converter
CA2051030C (en) Semiconductor power conversion system having a multiphase bridge circuit
US3530360A (en) High-speed protective means for uninterruptible power systems
JPS5936510B2 (en) Protection method of controlled rectifier
US6385066B1 (en) Method and system for detecting a zero current level in a line commutated converter
US4197575A (en) Conduction through sensing and inverter protection system
JP3132814B2 (en) Semiconductor power conversion system
JP2801770B2 (en) Monitoring circuit of AC / DC converter
JPH10337029A (en) Thyristor converter
JPS6238931B2 (en)
JP3162586B2 (en) Control device of AC / DC converter
JP3746552B2 (en) Abnormality confirmation method of instantaneous voltage drop countermeasure device
JPS61164423A (en) Method of detecting trouble of direct current wire
JPS5825032B2 (en) Bypass pair control device for thyristor conversion device
JPH07177743A (en) Controller for ac-dc converter
JPH08223921A (en) Control device of ac-dc conversion apparatus
JP2727277B2 (en) Method and apparatus for protecting thyristor converter
JP3162546B2 (en) Control device of AC / DC converter
JPS62100176A (en) Detecting method for open-phase of power converter
JPS5927184B2 (en) Stopping method of converter