JPS63201094A - Diamondlike material - Google Patents

Diamondlike material

Info

Publication number
JPS63201094A
JPS63201094A JP62034231A JP3423187A JPS63201094A JP S63201094 A JPS63201094 A JP S63201094A JP 62034231 A JP62034231 A JP 62034231A JP 3423187 A JP3423187 A JP 3423187A JP S63201094 A JPS63201094 A JP S63201094A
Authority
JP
Japan
Prior art keywords
diamond
fluorine
carbon
layer
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62034231A
Other languages
Japanese (ja)
Inventor
Katsunori Oshima
大島 桂典
Teruichiro Matsumura
松村 輝一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62034231A priority Critical patent/JPS63201094A/en
Publication of JPS63201094A publication Critical patent/JPS63201094A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop a diamondlike material having improved coefft. of surface friction by forming an F-contg. layer on the surface of thin film of synthetic diamond by allowing the surface to contact with gaseous F or gaseous F compd. under specified conditions. CONSTITUTION:A thin layer of artificial diamond is formed on the surface of several kinds of substrate comprising diamond, Mo, W, Ta, Cu, Au, Si, graphite, carbon, glass, sapphire, BN, AlN, cermet, etc. by the hot CVD process, etc. An F.C contg. layer consisting of 0.5-1.1 ratio of number of F atom to C atom and having 200Angstrom -1nm thickness is formed on the surface of the thin layer by heating the thin layer at 350-550 deg.C in F gas under 10-300Torr, or by activating with plasma generated from gaseous F compd. such as mono-, di-, tri-, tetra fluoromethane, or several kinds of fluoroethane and diluted with N2, Ar. Thus, a diamondlike material having small coefft. of surface friction is prepd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、合成繊維の紡糸、延伸、並びに軸受等の社々
の機械的摺動部分等の高い熱伝導率、耐摩耗性に加え、
低い摩擦抵抗が要求される分野において利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to spinning and drawing of synthetic fibers, as well as high thermal conductivity and wear resistance of mechanical sliding parts such as bearings.
Used in fields where low frictional resistance is required.

[従来の技術] 熱の供給または熱の除去が要求される慴動面に使用され
る材料は高い熱伝導率、耐摩耗性に加え、低い摩擦係数
が必要である。この三つの特性をすべて満足する材料は
これまでになく、例えば、種々の金属は熱伝導率は高い
が耐摩耗性に劣り、種々のセラミクスは耐摩耗性が比較
的高いが熱伝導率が低く、また極限材料と言われるダイ
ヤモンドでも熱伝導率と耐摩耗性は優れているが摩擦係
数が高いと云う欠点を有している。
[Prior Art] Materials used for sliding surfaces that require heat supply or heat removal must have high thermal conductivity, wear resistance, and a low coefficient of friction. Until now, there has been no material that satisfies all three properties; for example, various metals have high thermal conductivity but poor wear resistance, and various ceramics have relatively high wear resistance but low thermal conductivity. Also, diamond, which is said to be an extreme material, has excellent thermal conductivity and wear resistance, but has the drawback of a high coefficient of friction.

[発明が解決しようとする問題点] 本発明においては摩擦係数が改良されたダイヤモンド状
物質を提供することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a diamond-like material with an improved coefficient of friction.

[問題点を解決するための手段] 本発明は、上記目的を達成するために、下記の構成を有
する。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

すなわち、本発明は、表面にフッ素および炭素を含有す
る層を有することを特徴とするダイヤモンド状物質に関
する。
That is, the present invention relates to a diamond-like material characterized by having a layer containing fluorine and carbon on its surface.

本発明におけるダイヤモンド状物質とは、フッ素および
炭素を含有する層とダイヤモンドとからなる。ここでい
うダイヤモンドとは、ダイヤモンドを50重量%以上含
有する組成物であり、その池の部分としては、炭素−炭
素間の結合の70%以上がsp3結合であればよく、か
ならずしも結晶性である必要はない。また、炭素および
水素以外の成分を全体の20重工%以下の割合で含んで
いてもよい。
The diamond-like material in the present invention consists of a layer containing fluorine and carbon and diamond. The term diamond here refers to a composition containing 50% by weight or more of diamond, and the pond portion may have sp3 bonds in which 70% or more of the carbon-carbon bonds are necessarily crystalline. There's no need. Further, components other than carbon and hydrogen may be included in a proportion of 20% or less of the total weight.

本発明においてはCVDおよびスパッタ等のPVDの方
法で合成されるダイヤモンド薄膜、天然ダイヤモンド、
高圧法合成ダイヤモンド等が用いられる。CVDおよび
PVDによるダイヤモンドの合成方法は特開昭59−2
32991号公報、特開昭60−54995号公報、特
開昭59−63732号公報等にみられる。ダイヤモン
ド膜は通常基板の上に生成させる。基板としては種々の
ものが用いられ、たとえば、ダイヤモンド、モリブデン
、タングステン、タンタル、銅、金、シリコン、黒鉛、
炭素、ガラス、サファイア、窒化硼素、窒化アルミニウ
ム、サーメット等多岐にわたる。基板の形態も膜状、繊
維状、およびバルク等必要に応じ適宜選択可能である。
In the present invention, diamond thin films synthesized by CVD and PVD methods such as sputtering, natural diamond,
High-pressure synthetic diamond or the like is used. The method of synthesizing diamond by CVD and PVD is disclosed in Japanese Patent Application Laid-open No. 59-2.
This can be seen in JP-A No. 32991, JP-A-60-54995, JP-A-59-63732, and the like. Diamond films are typically grown on a substrate. Various substrates are used, including diamond, molybdenum, tungsten, tantalum, copper, gold, silicon, graphite,
A wide variety of materials including carbon, glass, sapphire, boron nitride, aluminum nitride, and cermet. The form of the substrate can also be appropriately selected as required, such as film, fiber, and bulk.

本発明におけるフッ素および炭素を含有する層は表面の
摩擦係数がダイヤモンドの値と比較して低下していれば
よく、その厚さとしては、特別の制限はないが、通常1
μ以下で200人程度までが好適である。
The layer containing fluorine and carbon in the present invention only needs to have a surface friction coefficient lower than that of diamond, and there is no particular limit to its thickness, but it is usually 1.
μ or less and up to about 200 people is suitable.

この層におけるフッ素と炭素の原子数比については、フ
ッ化が充分に進行していれば1である。
The atomic ratio of fluorine to carbon in this layer is 1 if fluorination has progressed sufficiently.

一部の炭素がフッ化されていない場合、またフッ化が完
全に進行しさらに余分のフッ素が炭素の層間に侵入した
場合もあり、広い範囲で選択可能であるが、通常炭素に
対するフッ素の原子数比は、0.5〜1.1の範囲が好
ましい。
There are cases where some of the carbon is not fluorinated, and cases where fluorination has progressed completely and extra fluorine has entered between the carbon layers.Although it can be selected within a wide range, usually the fluorine atoms relative to carbon The numerical ratio is preferably in the range of 0.5 to 1.1.

ついでダイヤモンドの表面にフッ素を含有する層を形成
する方法について述べる。これはダイヤモンドを合成し
た後ダイヤモンドとフッ素とを適当な方法で接触させる
ことにより達成することができる。
Next, a method for forming a fluorine-containing layer on the surface of diamond will be described. This can be achieved by bringing the diamond into contact with fluorine in a suitable manner after the diamond has been synthesized.

フッ素の接触の速度は温度、フッ素の圧力、ダイヤモン
ドの結晶性等により変化する。フッ素の圧力は通常1気
圧以下、10Torrがら300Torrの範囲で好ま
しく選択される。フッ素は100%でも良いが、窒素等
の不活性ガスで希釈して行なうことがより適している。
The rate of contact with fluorine varies depending on temperature, pressure of fluorine, crystallinity of diamond, etc. The pressure of fluorine is usually selected preferably from 1 atm or less, in the range of 10 Torr to 300 Torr. Although 100% fluorine may be used, it is more suitable to dilute it with an inert gas such as nitrogen.

反応の温度は350〜550℃が適している。これより
低温では速度は低く、高温ではフッ化炭素の分解が始ま
り、F/C(原子数比)の割合が低くなる。フッ素ガス
は腐蝕性がきわめて高いのでニッケル、モネル等の耐フ
ツ素材からなる反応器が必要であり、さらに水の混入は
好ましくない。フッ素によるフッ化は上述の熱的に活性
化する方法以外にプラズマでも活性化可能である。つい
でフッ化物によりダイヤモンドの表面にフッ素を含有す
る層を形成する方法について述べる。この方法において
はフッ化物はプラズマで活性化される。本方法において
利用できるフッ化物は好適には炭素とフッ素とを含有す
る化合物である。例を挙げれば、モノ、ジ、トリおよび
テトラフルオロメタン、種種の置換度のフルオロエタン
、プロパン等のフッ化炭化水素、およびこれらのフッ素
の一部を他のハロゲンで置換したフッ化物、種々のフル
オロベンゼン等、テトラフルオロエチレンおよびこの一
部を他のハロゲンで置換した不飽和フルオロ炭化水素等
種種の化合物が使用できる。これらの原料は単独で用い
てもよく、また2種以上混合して用いてもよく、さらに
水素、並びに窒素、アルゴン等の不活性ガスで希釈して
使用してもよい。これらの不活性ガス中のフッ化物濃度
はとくに限定がなく2%から100%の広い範囲で選択
される。
A suitable reaction temperature is 350 to 550°C. At lower temperatures, the rate is lower, and at higher temperatures, fluorocarbon begins to decompose, resulting in a lower F/C (atomic ratio) ratio. Since fluorine gas is extremely corrosive, a reactor made of a dust-resistant material such as nickel or Monel is required, and contamination with water is undesirable. Fluorination using fluorine can be activated by plasma in addition to the above-mentioned thermal activation method. Next, a method of forming a fluorine-containing layer on the surface of diamond using fluoride will be described. In this method, fluoride is activated with a plasma. The fluoride that can be utilized in this method is preferably a compound containing carbon and fluorine. Examples include mono-, di-, tri- and tetrafluoromethane, fluoroethane with various degrees of substitution, fluorinated hydrocarbons such as propane, and fluorides in which some of these fluorines are replaced by other halogens, various Various compounds such as fluorobenzene, tetrafluoroethylene, and unsaturated fluorohydrocarbons partially substituted with other halogens can be used. These raw materials may be used alone, or may be used in combination of two or more, and may be further diluted with hydrogen or an inert gas such as nitrogen or argon. The fluoride concentration in these inert gases is not particularly limited and is selected within a wide range of 2% to 100%.

これらのフッ化物の活性化に用いられるプラズマは直流
放電、ラジオ波、マイクロ波等の電磁波等により励起さ
れる。マイクロ波で励起しプラズマを発生させる場合に
は、マイクロ波電力および周波数は広い範囲、たとえば
数Wから数KW、10〜1011Hzにわたり2択可能
である。
The plasma used to activate these fluorides is excited by direct current discharge, electromagnetic waves such as radio waves, microwaves, etc. In the case of generating plasma by excitation with microwaves, the microwave power and frequency can be selected from a wide range, for example, from several watts to several kilowatts, and from 10 to 1011 Hz.

ダイヤモンドをマイクロ波の中に置くことも、マイクロ
波の後に置くことも可能である。ダイヤモンドはマイク
ロ波により発生するプラズマにより熱せられるが、これ
とは別に適当な方法で熱し、または冷却し温度を調節す
ることも可能である。
It is possible to place the diamond in the microwave or after the microwave. Although diamond is heated by plasma generated by microwaves, it is also possible to adjust the temperature by heating or cooling it by other suitable methods.

ラジオ波で原料を活性化する場合、電源の結合は誘導的
でも容量的でもかまわない。この場合も周波数および電
力は広い範囲で2択できる。たとえば周波数は102〜
107Hzに渡り這択可能である。また必要に応じダイ
ヤモンドにバイアス電圧をかけることも可能である。こ
の場合バイアス電圧は通常数KV以下である。
When activating raw materials with radio waves, the coupling of the power source may be inductive or capacitive. In this case as well, two choices of frequency and power can be made within a wide range. For example, the frequency is 102~
It is selectable over 107Hz. It is also possible to apply a bias voltage to the diamond if necessary. In this case, the bias voltage is usually less than a few kilovolts.

反応の圧力は原料の活性化方法にもよるが、通常0.1
−100Torr、とくに1−40T o r r前後
が好適である。
The reaction pressure depends on the activation method of the raw materials, but is usually 0.1
-100 Torr, especially around 1-40 Torr is suitable.

[実施例] 以下の実施例において更に具体的に説明するが本発明は
、これらに限定されるものではない。
[Examples] The present invention will be described in more detail in the following examples, but the present invention is not limited thereto.

実施例1 熱CVD法により合成した3μのダイヤモンド層を有す
る5X5mmの炭化ケイ素試料をモネル製の反応器の中
で500°Cに加熱し、20Torrの圧力で窒素で3
0%に希釈したフッ素を30m1/minの流速で通し
1.5hr処理した。反応後試料表面のフッ素と炭素を
ESCAで定量し、F/C(原子数比)として0.92
の値を得た。この様にして表面にフッ素および炭素を含
有する層を有するダイヤモンド状物質の摩擦係数は常温
で0.15であり、これはフッ化前のダイヤモンドの摩
擦係数の値0.6に比較して顕著に低下している。
Example 1 A 5 x 5 mm silicon carbide sample with a 3 μ diamond layer synthesized by thermal CVD method was heated to 500 °C in a Monel reactor and heated with nitrogen at a pressure of 20 Torr.
Fluorine diluted to 0% was passed through at a flow rate of 30 ml/min and treated for 1.5 hours. After the reaction, fluorine and carbon on the sample surface were quantified by ESCA, and the F/C (atomic ratio) was 0.92.
obtained the value of The coefficient of friction of a diamond-like material having a layer containing fluorine and carbon on its surface is 0.15 at room temperature, which is remarkable compared to the coefficient of friction of diamond before fluorination, which is 0.6. has declined to

実施例2 マイクロ波発振装置(2,5GIZ 、1 、2KW)
で発生した電磁波を導波管により直径40mmの石英製
反応管に導びいな。5X10mmの窒化硼素にマイクロ
波CVD法により2μのダイヤモンドをつけた試料を反
応管の内部にセットした。系の圧力を15Torrとし
、反応管上部からジクロロジフルオロメタンを10%含
有する水素を流量40m1/mi口で導入しな。系で消
費されたマイクロ波エネルギーは0.6KWであった。
Example 2 Microwave oscillator (2,5GIZ, 1,2KW)
The electromagnetic waves generated were guided into a quartz reaction tube with a diameter of 40 mm using a waveguide. A sample of 5×10 mm boron nitride with 2μ diamonds attached by microwave CVD was set inside a reaction tube. The pressure of the system was set to 15 Torr, and hydrogen containing 10% dichlorodifluoromethane was introduced from the top of the reaction tube at a flow rate of 40 ml/mi. The microwave energy consumed by the system was 0.6 KW.

1時間反応後試料を取り出し、試料表面のフッ素と炭素
をESCAで定量し、F/C(原子数比)として0.8
5の値を得た。この様にして表面にフッ沿および炭素を
含有する層を有するダイヤモンド状物質の摩擦係数は常
温で0.10であり、これはフッ化前のダイヤモンドの
摩擦係数の値0.6に比較して顕著に低下している。
After reacting for 1 hour, the sample was taken out, and the fluorine and carbon on the sample surface were determined by ESCA, and the F/C (atomic ratio) was 0.8.
A value of 5 was obtained. The coefficient of friction of a diamond-like material having a fluorine-containing layer and a carbon-containing layer on its surface is 0.10 at room temperature, which is compared to 0.6 for diamond before fluoridation. It has decreased significantly.

実施例3 外径30mmの石英管に内径4ommの銅コイルを10
回巻きこれを13.58H2,2闇のラジオ波電源に容
量的に結合した。5X1mmのシリコンウェハにマイク
ロ波CVD法により2μのダイヤモンドをつけた試料を
反応管の内部にセットした。
Example 3 Ten copper coils with an inner diameter of 4 om are placed in a quartz tube with an outer diameter of 30 mm.
The winding was capacitively coupled to a 13.58H2,2 dark radio wave power source. A sample of 5×1 mm silicon wafer with 2 μm diamonds attached by microwave CVD was set inside a reaction tube.

系の圧力を5 T o r rとし、反応管上部からク
ロロトリフロロメタンを5%含有する水素を流量20m
1/minで導入し、lhr反応させた。反応後試料を
取り出し、試料表面のフッ素と炭素をESCAで定量し
、F/C(原子数比)として0.99値を得た。この様
にして表面にフッ素および炭素を含有する層を有するダ
イヤモンド状物質の摩擦係数は常温で0513であり、
これはフッ化前のダイヤモンドの摩擦係数の値0.6に
比較して顕著に低下している。
The pressure of the system was set to 5 Torr, and hydrogen containing 5% chlorotrifluoromethane was introduced from the top of the reaction tube at a flow rate of 20 m.
The mixture was introduced at a rate of 1/min and an lhr reaction was performed. After the reaction, the sample was taken out, and fluorine and carbon on the sample surface were determined by ESCA, and a value of 0.99 was obtained as F/C (atomic ratio). The coefficient of friction of a diamond-like material having a layer containing fluorine and carbon on its surface is 0513 at room temperature.
This is significantly lower than the coefficient of friction of diamond before fluorination, which is 0.6.

[発明の効果] 本発明により、低い摩擦係数を有するダイヤモンド状物
質を提供することができる。
[Effects of the Invention] According to the present invention, a diamond-like material having a low coefficient of friction can be provided.

Claims (2)

【特許請求の範囲】[Claims] (1)フッ素および炭素を含有する表面層とダイヤモン
ドとからなることを特徴とするダイヤモンド状物質。
(1) A diamond-like material characterized by comprising a surface layer containing fluorine and carbon and diamond.
(2)フッ素および炭素が、炭素に対するフッ素の原子
数比で0.5以上、1.1以下の割合で含有されること
を特徴とする特許請求の範囲第(1)項記載のダイヤモ
ンド状物質。
(2) A diamond-like material according to claim (1), characterized in that fluorine and carbon are contained in an atomic ratio of fluorine to carbon of 0.5 or more and 1.1 or less. .
JP62034231A 1987-02-17 1987-02-17 Diamondlike material Pending JPS63201094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62034231A JPS63201094A (en) 1987-02-17 1987-02-17 Diamondlike material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034231A JPS63201094A (en) 1987-02-17 1987-02-17 Diamondlike material

Publications (1)

Publication Number Publication Date
JPS63201094A true JPS63201094A (en) 1988-08-19

Family

ID=12408371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034231A Pending JPS63201094A (en) 1987-02-17 1987-02-17 Diamondlike material

Country Status (1)

Country Link
JP (1) JPS63201094A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306928A (en) * 1989-10-04 1994-04-26 Sumitomo Electric Industries, Ltd. Diamond semiconductor device having a non-doped diamond layer formed between a BN substrate and an active diamond layer
JP2005060135A (en) * 2003-08-08 2005-03-10 National Institute Of Advanced Industrial & Technology Diamond or diamond membrane and method for surface-treating the same
JP2006151711A (en) * 2004-11-26 2006-06-15 National Institute Of Advanced Industrial & Technology Nanodiamond or nanodiamond film and method for treating surface of the same
JP2011084443A (en) * 2009-10-17 2011-04-28 Univ Of Fukui Fluorinated carbon particulate
CN112941475A (en) * 2021-01-26 2021-06-11 苏州涂冠镀膜科技有限公司 DLC film for removing floating oil in water treatment process and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306928A (en) * 1989-10-04 1994-04-26 Sumitomo Electric Industries, Ltd. Diamond semiconductor device having a non-doped diamond layer formed between a BN substrate and an active diamond layer
JP2005060135A (en) * 2003-08-08 2005-03-10 National Institute Of Advanced Industrial & Technology Diamond or diamond membrane and method for surface-treating the same
JP2006151711A (en) * 2004-11-26 2006-06-15 National Institute Of Advanced Industrial & Technology Nanodiamond or nanodiamond film and method for treating surface of the same
JP2011084443A (en) * 2009-10-17 2011-04-28 Univ Of Fukui Fluorinated carbon particulate
CN112941475A (en) * 2021-01-26 2021-06-11 苏州涂冠镀膜科技有限公司 DLC film for removing floating oil in water treatment process and preparation method thereof

Similar Documents

Publication Publication Date Title
US5186973A (en) HFCVD method for producing thick, adherent and coherent polycrystalline diamonds films
US5869133A (en) Method of producing articles by chemical vapor deposition and the support mandrels used therein
US5126206A (en) Diamond-on-a-substrate for electronic applications
US5071677A (en) Halogen-assisted chemical vapor deposition of diamond
US5380557A (en) Carbon fluoride compositions
US5286524A (en) Method for producing CVD diamond film substantially free of thermal stress-induced cracks
US5147687A (en) Hot filament CVD of thick, adherent and coherent polycrystalline diamond films
US5176803A (en) Method for making smooth substrate mandrels
EP0437830B1 (en) CVD diamond coated annulus components and method of their fabrication
JPS63201094A (en) Diamondlike material
US5316795A (en) Halogen-assisted chemical vapor deposition of diamond
Ali et al. Role of surface pre-treatment in the CVD of diamond films on copper
JPS6241800A (en) Smoothening of diamond film
EP0534729A2 (en) Method for obtaining thick, adherent diamond coatings
WO2002034960A2 (en) Method for synthesizing diamond
JP3008050B2 (en) Carbon material production equipment
JP3190100B2 (en) Carbon material production equipment
JP2975972B2 (en) Carbon material production method
JPH075432B2 (en) Gas phase synthesis of diamond
JP2636167B2 (en) Gas phase synthesis of diamond
JP2995358B2 (en) Carbon material production method
JPH0616499A (en) Diamond coated member
Ling et al. A Recent Patent on Microwave Plasma Chemical Vapor-Deposited Diamond Film on Cutting Tools
FUJIMORI DEPOSITION OF DIAMOND BY HOT FILAMENT AND DC-PLASMA CO-ENHANCEMENT CVD NAOJI FUJIMORI, AKIHIKO IKEGAYA, TAKAHIRO IMAI KAZUHIKO FUKUSHIMA AND NOBUHIRO OTA
JPH101332A (en) Chemical resistant member