JPS63200913A - Automatic tapping device - Google Patents

Automatic tapping device

Info

Publication number
JPS63200913A
JPS63200913A JP3214887A JP3214887A JPS63200913A JP S63200913 A JPS63200913 A JP S63200913A JP 3214887 A JP3214887 A JP 3214887A JP 3214887 A JP3214887 A JP 3214887A JP S63200913 A JPS63200913 A JP S63200913A
Authority
JP
Japan
Prior art keywords
main shaft
spindle
feed
tap
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3214887A
Other languages
Japanese (ja)
Inventor
Keiichi Matsumoto
敬一 松本
Haruhisa Hirose
晴久 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Seiki Co Ltd
Original Assignee
Hitachi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiki Co Ltd filed Critical Hitachi Seiki Co Ltd
Priority to JP3214887A priority Critical patent/JPS63200913A/en
Publication of JPS63200913A publication Critical patent/JPS63200913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To contrive adaptive control of a tap by providing with a means to calculate a rotation stop position for setting a rotation stop position of a main shaft just before the position of the bottom of a hole and a means to apply an acceleration/reduction time constant to let the action of a feed control means correspond with the action of a main shaft driving means. CONSTITUTION:A rotation stop position calculating means 9 preliminarily sets a stop position of a main shaft just before the position of the bottom of a hole, and if an arrival position detecting means 11 detects arrival of a tap, a main shaft driving means 6 starts reduction. In the mean time, an acceleration/ reduction time constant applying means 10 applies a predetermined time constant to a feed control means 8 so as to smooth reduction in Z-axis and stop the tap at the position of the bottom of a hole. For returning, the arrival position detecting means 11 commands feed for reversing and returning the main shaft, and the acceleration/reduction time constant applying means 10 applies a time constant to the feed control means to smooth acceleration in Z-axis, so that rotation of the main shaft and return in Z-axis correspond with each other. Thus high grade tapping is made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、工作機械における自動ねじ加工装置に関し、
特に、タップの適応制御による自動ねし加工装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic thread processing device for a machine tool,
In particular, it relates to an automatic threading machine with adaptive control of taps.

〔従来の技術〕[Conventional technology]

従来より、工作機械におけるねし加工装置は、第5図に
示す如く、タップ工具Tを主軸Hに保持し、タップを主
軸により回転させつつワークWにねじ穴を穿孔するよう
になっていて、主軸の回転数を数値制御すると共に、主
軸方向をZ軸とする座標で、イニシャル点I、アプロー
チ点R2大底位Wzoを設定し、この間の送り速度とし
て普通、イニシャル点■からアプローチ点Rまでは早送
り速度F1で接近させ、アプローチ点Rから穴底位置z
0までは切削速度F2で加工し、加工が終了すると、主
軸を逆転させつつ穴底位置Z0からアプローチ点Rまで
切削速度F2で戻したのちイニシャル点Iへ早送り速度
F1で復帰させるように数値制御するのが普通であった
Conventionally, as shown in FIG. 5, a threading device for a machine tool holds a tap tool T on a main shaft H, and drills a threaded hole in a workpiece W while rotating the tap by the main shaft. In addition to numerically controlling the rotation speed of the spindle, the initial point I and the approach point R2 are set at the bottom position Wzo in coordinates with the spindle direction as the Z axis, and the feed rate during this period is normally from the initial point ■ to the approach point R. is approached at a rapid traverse speed F1, and from the approach point R to the hole bottom position z
Numerical control is performed so that machining is performed at cutting speed F2 up to 0, and when machining is completed, the spindle is reversed while returning from hole bottom position Z0 to approach point R at cutting speed F2, and then returned to initial point I at rapid traverse speed F1. It was common to do so.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来の装置においては、機械動作の慣性遅
れや電気制御関係の遅れのため、主軸の回転停止と送り
停止とが合わず、下記の如き問題点がある。
However, in the above-mentioned conventional apparatus, due to the inertia delay in mechanical operation and the delay in electrical control, the rotation stop of the main shaft does not coincide with the stop of the feed, resulting in the following problems.

即ち、その工つは、穴底位置Z0で送り動作を停止して
も、回転モーメントの慣性により主軸が回転を続け、ね
じ切りが進んで、第5図で点Zeとして示すような位置
まで穿孔することである。
In other words, even if the machine stops the feeding operation at the hole bottom position Z0, the main shaft continues to rotate due to the inertia of the rotational moment, and the thread cutting progresses until the hole is drilled to the position shown as point Ze in Figure 5. That's true.

もう1つは、タップに伸びや縮みの力が働くことで、そ
の理由は主軸の駆動動作と送り動作のスタート時期にズ
レがあったり、またその加減速時定数に差があるためで
、タップ工具Tは取付は部にスプリングBが介設されて
いるので、機構上の破壊はないが、加工結果は誤差をと
もなう。
Another reason is that an elongating or contracting force acts on the tap.The reason for this is that there is a difference in the start timing of the spindle drive operation and the feed operation, or there is a difference in the acceleration/deceleration time constants. Since the spring B is interposed in the attachment part of the tool T, there will be no mechanical damage, but the machining result will be subject to errors.

第4図は、主軸の駆動動作と送り動作との関係を対照す
るグラフで、横軸に時間を示し、縦軸に主軸の回転数及
び送り速度を示している。第4図において、時期t0に
回転及び送りの停止を指令したとすると、Z軸はサーボ
モータで駆動されていて、その切削送り速度時の惰性は
僅かで、時期t1に停止するが、主軸回転の方は、まず
制御信号の遅れ時間T1により時期t2に減速し始め、
更に主軸の減速時定数が大きいため機械動作の遅れ時間
T2により時期t3でやっと停止する。戻り動作は、通
常は、直ちに逆転動作に移るべきであるが、やはり制御
信号の遅れ時間T3により時期t4でようやく逆転し始
め、その逆転信号を送り動作側が受信してやっとZ軸が
駆動され、正しい戻し送りになるのは時期t5になる。
FIG. 4 is a graph comparing the relationship between the drive operation and the feed operation of the main shaft, with the horizontal axis showing time and the vertical axis showing the rotational speed and feed speed of the main shaft. In Fig. 4, if a command is given to stop rotation and feed at time t0, the Z-axis is driven by a servo motor, and the inertia at the cutting feed rate is slight, and it stops at time t1, but the main shaft rotation In the case of , first, the speed starts to decelerate at time t2 due to the delay time T1 of the control signal,
Furthermore, since the deceleration time constant of the main shaft is large, the mechanical operation finally stops at time t3 due to delay time T2. Normally, the return operation should immediately shift to reverse operation, but due to the delay time T3 of the control signal, the reverse operation finally begins at time t4, and the Z-axis is driven only when the reverse signal is sent and received by the operation side, and the Z-axis is driven correctly. It will be sent back at time t5.

図中斜線で示される領域L1はタップの伸びを示し、同
じく領域L2はタップの縮みを示す。
A region L1 indicated by diagonal lines in the figure shows the expansion of the tap, and a region L2 shows the contraction of the tap.

このタップの伸びは穴底位置を狂わせ、底入との噛付き
等を生じ、タップの縮みは穴の出口を破損したりする。
This elongation of the tap disturbs the position of the bottom of the hole, resulting in interference with the bottom insert, and shrinkage of the tap may damage the outlet of the hole.

特に、アルミ材などの小径のタップは主軸回転数が高い
ため、上記傾向は更に強く、精度を要する加工は更に難
しくなる。例えば主軸の駆動にもサーボモータを用いて
同期させるなどの対策もあるが、特殊なNC装置が必要
で、極めて高価になる場合が多かった。
In particular, since small-diameter taps made of aluminum or the like have a high spindle rotation speed, the above-mentioned tendency is even stronger, and machining that requires precision becomes even more difficult. For example, countermeasures include synchronizing the drive of the main shaft using servo motors, but this requires a special NC device and is often extremely expensive.

本発明は、このような問題点に鑑みて創案されたもので
、タップ加工時に機械動作や制御の遅れを遅い方の制御
パターンに早い方の制御パターンを合わせ、比較的簡単
かつ安価なハードウェアで上質のタップ加工が可能な自
動ねし加工装置を提供することを目的とする。
The present invention was devised in view of these problems, and it combines the slow control pattern with the fast control pattern to reduce delays in machine operation and control during tapping, and uses relatively simple and inexpensive hardware. The purpose of the present invention is to provide an automatic threading machine capable of high-quality tapping.

〔問題点を解決するための手段〕[Means for solving problems]

本発明において、上記の問題点を解決するために講じら
れた手段は、NC加工プログラムにより主軸の回転速度
を指示する主軸駆動手段と、NG加工プログラムにより
タップの穴底位置及び主軸の送り速度を指示する送り制
御手段とを備えた自動ねし加工装置において、予め回転
動作の遅れを演算し、穴底位置の手前に主軸の回転停止
位置を設定する回転停止位置演算手段と、送り制御手段
の動作を主軸駆動手段の動作にほぼ一致させる加減速時
定数付加手段とを備え、タップの適応制御を行う自動ね
し加工装置とするものである。
In the present invention, the measures taken to solve the above problems include a spindle drive means that instructs the rotation speed of the spindle using an NC machining program, and a spindle drive means that controls the tap hole bottom position and the feed rate of the spindle using an NG machining program. The automatic threading machine is equipped with a feed control means that calculates a delay in rotational operation in advance and sets a rotation stop position of the main spindle before the hole bottom position, and a feed control means. The present invention is an automatic threading device that adaptively controls taps, and includes acceleration/deceleration time constant adding means for making the operation substantially coincide with the operation of the spindle drive means.

〔作用〕[Effect]

本発明では、主軸駆動手段が主軸の回転速度を指示した
際に発生する穴底位置のズレの対策として、回転停止位
置演算手段が回転動作の遅れを予め演算し、穴加工完了
位置の手前に主軸の回転停止位置を設定する。また、送
り制御手段から送り速度が指示された際の実行は主軸駆
動手段に比べてかなり迅速なので、加減速時定数付加手
段が送り制御手段の動作に時定数を付与して、主軸駆動
手段の動作にほぼ一致させる。このように時期と動作を
予め調整することにより、本発明はタップの適応制御を
行うものである。
In the present invention, as a countermeasure for the deviation of the hole bottom position that occurs when the spindle driving means instructs the rotational speed of the spindle, the rotation stop position calculation means calculates the delay in the rotational operation in advance, Set the spindle rotation stop position. Furthermore, when the feed rate is instructed by the feed control means, execution is much faster than that of the spindle drive means, so the acceleration/deceleration time constant adding means adds a time constant to the operation of the feed control means, Almost match the action. By adjusting the timing and operation in advance in this manner, the present invention performs adaptive tap control.

〔実施例〕〔Example〕

以下、図面を参照して、本発明の実施例を詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明を実施した自動ねし加工装置の基本的
構成を示すブロック図である。第1図において、自動ね
し加工装置は、CPU1と、キーボード付きディスプレ
イ2及びその入出力ボート2aと、NG加工プログラム
を格納するNC加工プログラムメモリ3と、そのNC加
工プログラムからイニシャル点、アプローチ点及び穴底
位置の座標値を取出して一時格納する座標値設定メモリ
4と、NC加工プログラムにより主軸モータ5の回転速
度を指示する主軸駆動手段6と、NC加工プログラムに
よりZ軸上−タ7に主軸の送り速度を指示する送り制御
手段8と、穴底位置の手前に主軸の回転停止位置を設定
する回転停止位置演算手段9と、送り制御手段8の動作
を主軸駆動手段6の動作にほぼ一致させる加減速時定数
付加手段10と、タップ到達位置を検出する到達位置検
出手段11とで構成されている。主軸モータ5にはタコ
ゼネレータ5aが付設され、Z軸上−タ7にはパルスゼ
ネレータ7aが付設されて、主軸駆動手段6及び送り制
御手段8にそれぞれの回転数をフィードバックする。
FIG. 1 is a block diagram showing the basic configuration of an automatic threading machine embodying the present invention. In FIG. 1, the automatic cutting machine includes a CPU 1, a display 2 with a keyboard, an input/output board 2a thereof, an NC processing program memory 3 for storing an NG processing program, and initial points and approach points from the NC processing program. and a coordinate value setting memory 4 for extracting and temporarily storing the coordinate values of the hole bottom position, a spindle driving means 6 for instructing the rotational speed of the spindle motor 5 according to the NC machining program, and a coordinate value setting memory 4 for extracting and temporarily storing the coordinate values of the hole bottom position; The feed control means 8 instructs the feed speed of the spindle, the rotation stop position calculation means 9 sets the spindle rotation stop position before the hole bottom position, and the operation of the feed control means 8 is almost the same as the operation of the spindle drive means 6. It is comprised of an acceleration/deceleration time constant adding means 10 for matching, and an arrival position detection means 11 for detecting the tap arrival position. A tachometer generator 5a is attached to the main shaft motor 5, and a pulse generator 7a is attached to the Z-axis motor 7, which feeds back the respective rotational speeds to the main shaft drive means 6 and the feed control means 8.

回転停止位置演算手段9は、予め主軸回転速度の減速時
間を切削送り速度に適用して穴底位置の手前に主軸の回
転停止位置を設定し、到達位置検出手段11によりタッ
プが回転停止位置に達したことを検出すると、主軸駆動
手段6は減速を開始し、一方、加減速時定数付加手段1
0は送り制御手段8に所定の時定数を付与して、Z軸の
減速を緩やかにし、前記回転停止位置から送りの減速を
開始して所望の穴底位置で主軸の回転停止と同時にタッ
プが停止するようにする。戻し動作の場合には、到達位
置検出手段11によりタップが穴底位置に達したことを
検出すると、主軸の逆転及び戻し方向の送りが同時に指
令され、送り制御手段8に加減速時定数付加手段10が
所定の時定数を付与することにより、Z軸の加速を緩や
かにし、主軸の回転とZ軸の戻しを調和させる。
The rotation stop position calculation means 9 sets the rotation stop position of the spindle before the hole bottom position by applying the deceleration time of the spindle rotation speed to the cutting feed rate in advance, and the reached position detection means 11 causes the tap to reach the rotation stop position. When it is detected that the acceleration/deceleration time constant has been reached, the main shaft driving means 6 starts decelerating, while
0 gives a predetermined time constant to the feed control means 8 to slow the deceleration of the Z axis, starts decelerating the feed from the rotation stop position, and simultaneously stops the spindle rotation at the desired hole bottom position and taps. Make it stop. In the case of a return operation, when the reaching position detection means 11 detects that the tap has reached the hole bottom position, a command is given to reverse the spindle and feed in the return direction at the same time, and the feed control means 8 is given an acceleration/deceleration time constant adding means. 10 provides a predetermined time constant, thereby slowing down the acceleration of the Z axis and harmonizing the rotation of the main shaft and the return of the Z axis.

第2図は、上記構成の信号処理の一例を具体的に示す回
路図である。同図において、イニシャル点座標値メモリ
4a、アプローチ点座標値メモリ4b及び大成位置座標
値メモIJ 4 Cは、第1図における座標値設定メモ
リ4内の各メモリであり、それらに接続された一致検出
回路11a、llb及びllcが、第1図における到達
位置検出手段11を形成している。又、回転停止位置演
算手段9の演算結果は、回転停止位置座標値メモIJ 
9 aに設定され、−数構出回路9bに入力される。
FIG. 2 is a circuit diagram specifically showing an example of signal processing with the above configuration. In the same figure, an initial point coordinate value memory 4a, an approach point coordinate value memory 4b, and a Taisei position coordinate value memo IJ4C are each memory in the coordinate value setting memory 4 in FIG. The detection circuits 11a, llb, and llc form the reached position detection means 11 in FIG. Further, the calculation result of the rotation stop position calculation means 9 is stored in the rotation stop position coordinate value memo IJ.
9a, and is input to the minus number output circuit 9b.

これらの−数構出回路11a、flb、llc及び9b
には、送り制御手段8からZ軸現在位置座標値データが
入力され、各座標値メモリからのデータと一致した場合
、イニシャル点到達信号。
These -number configuration circuits 11a, flb, llc and 9b
The Z-axis current position coordinate value data is inputted from the feed control means 8, and when it matches the data from each coordinate value memory, an initial point arrival signal is generated.

アプローチ点到達信号、穴底位置到達信号もしくは回転
停止位置到達信号をそれぞれ発する。以後の信号処理は
、タップが既に穴底位置に達した後の動作であるか否か
で異なるので、後記する穴底位置到達メモ+J 11 
dに到達の有無が登録され、その登録結果は各アンドゲ
ート12a、12b。
An approach point arrival signal, a hole bottom position arrival signal, or a rotation stop position arrival signal is issued, respectively. The subsequent signal processing differs depending on whether the operation is performed after the tap has already reached the hole bottom position, so please refer to the hole bottom position arrival memo + J 11, which will be described later.
d is registered, and the registration result is each AND gate 12a, 12b.

12 c、  12 d、  12 e及び12gなど
へ確認信号として送られる。まずイニシャル点到達信号
は、アントゲ−)12aで穴底位置到達以前であること
を確認されたのち、早送り前進信号として送り制御手段
8へ指令される。アプローチ点到達信号はアンドゲート
12bもしくは12Cで穴底位置到達以前と以後に区別
され、穴底位置到達以前はアンドゲート12bから切削
送り前進信号として送り制御手段8へ指令され、到達以
後はアンドゲート12Cから早送り戻り信号として送り
制御手段8へ指令される。また、このアプローチ点到達
信号はアントゲ−)12eで穴底位置到達以前であるこ
とを確認されたのち、主軸正転信号として主軸駆動手段
6へ指令される。穴底位置到達信号はアンドゲート12
dで穴底位置到達以前であることと主軸回転速度がゼロ
に達したこととを確認されたのち切削送り戻り信号とし
て送り制御手段8へ指令される。この切削送り戻り信号
が指令されたことは穴底位置到達以後になったことを意
味するので、取出されて前記穴底位置到達メモリ11d
に入力され、到達の有無を登録することになる。この切
削送り戻り信号は、アンドゲート12gへも入力され、
主軸の逆転状態を示す信号との一致がオペアンプ12h
に設定された時間内に得られなければ、主軸駆動手段6
及び送り制御手段8の双方へアラームを発する。回転停
止位置到達信号はアントゲ−)12fで穴底位置到達以
前であることを確認されたのち、主軸停止逆転信号とし
て主軸駆動手段6へ指令される。
12c, 12d, 12e, 12g, etc. as a confirmation signal. First, the initial point arrival signal is confirmed by the angle controller 12a to be before reaching the hole bottom position, and then is commanded to the feed control means 8 as a rapid forward advance signal. The approach point arrival signal is distinguished by the AND gate 12b or 12C before and after reaching the hole bottom position, and before reaching the hole bottom position, the AND gate 12b commands the feed control means 8 as a cutting feed advance signal, and after reaching the hole bottom position, the AND gate 12C sends a command to the feed control means 8 as a fast forward return signal. Further, after this approach point arrival signal is confirmed by the controller 12e to be before reaching the hole bottom position, it is commanded to the main shaft driving means 6 as a normal rotation signal of the main shaft. The hole bottom position arrival signal is AND gate 12
After confirming at step d that the hole bottom position has not yet been reached and that the spindle rotational speed has reached zero, a command is sent to the feed control means 8 as a cutting feed return signal. The fact that this cutting feed-back signal is commanded means that the hole bottom position has been reached, so it is taken out and sent to the hole bottom position arrival memory 11d.
The arrival or non-arrival will be registered. This cutting feed back signal is also input to the AND gate 12g,
The operational amplifier 12h matches the signal indicating the reverse state of the main shaft.
If it is not obtained within the set time, the main shaft drive means 6
and the feed control means 8. After confirming that the rotation stop position arrival signal has not yet reached the hole bottom position at the angle controller 12f, it is commanded to the spindle drive means 6 as a spindle stop reverse rotation signal.

主軸駆動手段6からは、主軸回転速度が取出され、ゼロ
一致検出回路6a及びマイナス−数構出回路6bでゼロ
に達したこととマイナス側へ逆転したこととを検出され
、主軸回転ゼロ信号は前記穴底位置到達の確認に使用さ
れ、主軸逆転中信号は前記アラームの判断に使用される
The spindle rotation speed is taken out from the spindle drive means 6, and the zero coincidence detection circuit 6a and the minus number configuration circuit 6b detect that it has reached zero and that it has reversed to the minus side, and the spindle rotation zero signal is It is used to confirm that the hole bottom position has been reached, and the main shaft reversal signal is used to determine the alarm.

第3図は本発明における主軸の駆動動作と送り動作との
関係を対照するグラフで、横軸に時間を示し、縦軸に主
軸の回転数及び送り速度を示している。第3図において
、時期tsは回転停止位置到達信号が発せられた時期で
、回転及び送り動作は加減速時定数に従って減速し、時
期t0に停止する。穴底位置の到達と主軸の回転ゼロが
確認されると、切削送り戻り指令が発せられ、制御遅れ
時間を経たのちの時期tbに主軸の逆転が開始する。前
記切削送り戻り指令は、オペアンプ12h′により、時
期tbにタイミングを合せて戻り動作を開始させる。回
転及び送り動作は加減速時定数に従って調和して加速し
、時期tgに正常な回転数及び送り速度に復帰する。
FIG. 3 is a graph comparing the relationship between the drive operation and the feed operation of the main spindle in the present invention, with the horizontal axis showing time and the vertical axis showing the rotation speed and feed speed of the main spindle. In FIG. 3, time ts is the time when the rotation stop position arrival signal is issued, and the rotation and feeding operations are decelerated according to the acceleration/deceleration time constant and stopped at time t0. When the arrival at the hole bottom position and zero rotation of the spindle are confirmed, a cutting feed-back command is issued, and the spindle starts rotating in reverse at time tb after a control delay time has elapsed. The cutting send-back command causes the operational amplifier 12h' to start the return operation in time with time tb. The rotation and feed operations are accelerated in harmony according to the acceleration/deceleration time constant, and return to normal rotation speed and feed speed at time tg.

尚、本発明の加減速時定数を送り制御側だけでなく、主
軸駆動側へも付与し、両方の加減速時定数を一致させる
ことにより、主軸の回転とZ軸の戻しを一層完全に調和
させることができる。
By applying the acceleration/deceleration time constant of the present invention not only to the feed control side but also to the spindle drive side, and by matching both acceleration/deceleration time constants, the rotation of the spindle and the return of the Z-axis can be more perfectly harmonized. can be done.

〔発明の効果〕〔Effect of the invention〕

以上、説明したとおり、本発明によれば、タップ加工時
に機械動作や制御の遅れを自動検出して適応制御し、比
較的簡単かつ安価なハードウェアで上質のタップ加工が
可能な自動ねじ加工装置を提供することができる。
As explained above, according to the present invention, an automatic thread processing device that automatically detects and adaptively controls delays in machine operation and control during tapping, and is capable of high-quality tapping with relatively simple and inexpensive hardware. can be provided.

【図面の簡単な説明】 第1図は本発明の1実施例の構成図、第2図は実施例の
信号処理の一例の回路図、第3図は実施例のタイミング
の説明図、第4図は従来例のタイミングの説明図、第5
図はねじ切り加工の説明図である。 1;CPU。 3;NC加工プログラムメモリ、 6;主軸駆動手段、 8;送り制御手段、 9;回転停止位置演算手段、 10;加減速時定数付加手段。 特許出願人  日立精機株式会社 第2図 チ 第3図 s 第4図
[Brief Description of the Drawings] Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a circuit diagram of an example of signal processing of the embodiment, Fig. 3 is an explanatory diagram of timing of the embodiment, and Fig. 4 is a diagram illustrating the timing of the embodiment. The figure is an explanatory diagram of the timing of the conventional example.
The figure is an explanatory diagram of thread cutting. 1; CPU. 3; NC machining program memory; 6; spindle drive means; 8; feed control means; 9; rotation stop position calculation means; 10; acceleration/deceleration time constant addition means. Patent applicant Hitachi Seiki Co., Ltd. Figure 2, Figure 3, s Figure 4

Claims (1)

【特許請求の範囲】[Claims] NC加工プログラムにより主軸の回転速度を指示する主
軸駆動手段と、該NC加工プログラムによりタップの穴
底位置及び主軸の送り速度を指示する送り制御手段とを
備えた自動ねじ加工装置において、予め回転動作の遅れ
を演算し、穴底位置の手前に主軸の回転停止位置を設定
する回転停止位置演算手段と、送り制御手段の動作を主
軸駆動手段の動作にほぼ一致させる加減速時定数付加手
段とを備え、タップの適応制御を行うことを特徴とする
自動ねじ加工装置。
In an automatic screw machining device, which is equipped with a spindle drive means that instructs the rotational speed of the spindle according to an NC machining program, and a feed control means that instructs the bottom position of the tap hole and the feed speed of the spindle according to the NC machining program, rotational operation is performed in advance. rotation stop position calculation means for calculating the delay of the spindle and setting the rotation stop position of the spindle before the hole bottom position; and acceleration/deceleration time constant adding means for making the operation of the feed control means substantially coincide with the operation of the spindle drive means. An automatic thread processing device characterized in that it is equipped with a tap and performs adaptive control of a tap.
JP3214887A 1987-02-13 1987-02-13 Automatic tapping device Pending JPS63200913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3214887A JPS63200913A (en) 1987-02-13 1987-02-13 Automatic tapping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3214887A JPS63200913A (en) 1987-02-13 1987-02-13 Automatic tapping device

Publications (1)

Publication Number Publication Date
JPS63200913A true JPS63200913A (en) 1988-08-19

Family

ID=12350824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3214887A Pending JPS63200913A (en) 1987-02-13 1987-02-13 Automatic tapping device

Country Status (1)

Country Link
JP (1) JPS63200913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292122A (en) * 1989-04-28 1990-12-03 Okuma Mach Works Ltd Nemerical control system and device thereof
JPH03178721A (en) * 1989-12-07 1991-08-02 Okuma Mach Works Ltd Synchronous tapping device of numerically controlled machine tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796722A (en) * 1980-11-28 1982-06-16 Fanuc Ltd Control method of tapping
JPS60167731A (en) * 1984-02-03 1985-08-31 Fanuc Ltd Method of tapping
JPS6389904A (en) * 1986-10-02 1988-04-20 Mitsubishi Electric Corp Numerical controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5796722A (en) * 1980-11-28 1982-06-16 Fanuc Ltd Control method of tapping
JPS60167731A (en) * 1984-02-03 1985-08-31 Fanuc Ltd Method of tapping
JPS6389904A (en) * 1986-10-02 1988-04-20 Mitsubishi Electric Corp Numerical controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292122A (en) * 1989-04-28 1990-12-03 Okuma Mach Works Ltd Nemerical control system and device thereof
JPH0777691B2 (en) * 1989-04-28 1995-08-23 オ−クマ株式会社 Numerical control method and apparatus thereof
JPH03178721A (en) * 1989-12-07 1991-08-02 Okuma Mach Works Ltd Synchronous tapping device of numerically controlled machine tool
JPH0796165B2 (en) * 1989-12-07 1995-10-18 オークマ株式会社 Synchronous tapping device for numerically controlled machine tools

Similar Documents

Publication Publication Date Title
JP2661422B2 (en) Processing device and processing method
US20110088523A1 (en) Numerical control method and numerical control device
KR900007295B1 (en) Nc controller
WO1988003451A1 (en) Tapping controller
US6111382A (en) Device for controlling tapping device provided with composite tool having boring and tapping sections
EP0439617A1 (en) Acceleration/deceleration control method of numeric controller
US5062744A (en) Apparatus for confirming movement of tap when rigid tapping
US5144214A (en) Numerical control system for moving work or cutter in synchronism with the rotation of a spindle
EP0364593A1 (en) Machine tool having two main spindles
JPS63200913A (en) Automatic tapping device
US4583433A (en) Turning control apparatus and method
JPH0885022A (en) Threading device
JP3729084B2 (en) Multi-axis synchronous control device and multi-axis synchronous control method
JP2588610B2 (en) Synchronous tapping control method
JPH048423A (en) Tapping method
JP2814278B2 (en) Two-spindle opposed type CNC lathe and work processing method
US20180173190A1 (en) Numerical controller
JP3327133B2 (en) Coolant outflow control method and outflow control device
JP2712881B2 (en) Numerical control unit
JP7481447B2 (en) Machine tool control device and control method
JP2585768B2 (en) Cutting feed setting device for machine tools
JPH0223285B2 (en)
JPH03178721A (en) Synchronous tapping device of numerically controlled machine tool
JPH03161248A (en) Indexing control device for tool rest of nc lathe
JP3097181B2 (en) Screw processing equipment