JPS63200316A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPS63200316A JPS63200316A JP3226387A JP3226387A JPS63200316A JP S63200316 A JPS63200316 A JP S63200316A JP 3226387 A JP3226387 A JP 3226387A JP 3226387 A JP3226387 A JP 3226387A JP S63200316 A JPS63200316 A JP S63200316A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetic
- alloy
- recording medium
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 106
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 239000002131 composite material Substances 0.000 claims abstract description 20
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910001004 magnetic alloy Inorganic materials 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052735 hafnium Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052713 technetium Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052703 rhodium Inorganic materials 0.000 claims description 5
- 229910052707 ruthenium Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 53
- 239000000956 alloy Substances 0.000 abstract description 53
- 230000000694 effects Effects 0.000 abstract description 12
- 238000004544 sputter deposition Methods 0.000 abstract description 9
- 229910052804 chromium Inorganic materials 0.000 abstract description 7
- 230000005294 ferromagnetic effect Effects 0.000 abstract description 7
- 230000005415 magnetization Effects 0.000 abstract description 7
- 238000001552 radio frequency sputter deposition Methods 0.000 abstract description 5
- 239000005341 toughened glass Substances 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 199
- 239000002585 base Substances 0.000 description 51
- 229910017060 Fe Cr Inorganic materials 0.000 description 36
- 229910002544 Fe-Cr Inorganic materials 0.000 description 36
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 36
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 239000000654 additive Substances 0.000 description 12
- 230000000996 additive effect Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 8
- 229910000599 Cr alloy Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910002056 binary alloy Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000002233 thin-film X-ray diffraction Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
利用産業分野
この発明は、非磁性金属板、セラミックスやガラス等の
非金属非磁性基板上に、成膜する下地膜を介して磁性薄
膜を設けてなる磁気ディスク等に用いられる磁気記録媒
体の改良に係り、下地膜を非磁性もしくは弱磁性のFe
−Cr合金膜またはFe−Cr系合金膜とCr膜との複
合膜にて形成し、経済性にすぐれ、厚い下地膜であって
もクラックや剥離が少ない磁気記録媒体に関する。[Detailed Description of the Invention] Field of Application This invention is applicable to magnetic disks, etc., in which a magnetic thin film is provided on a non-metallic non-magnetic substrate such as a non-magnetic metal plate, ceramics or glass via a base film to be formed. In order to improve the magnetic recording media used, the underlayer is made of non-magnetic or weakly magnetic Fe.
The present invention relates to a magnetic recording medium formed of a -Cr alloy film or a composite film of a Fe-Cr alloy film and a Cr film, which is excellent in economic efficiency, and which has few cracks and peeling even with a thick base film.
背景技術
磁気ディスク装置は、コンピュータ等の情報処理システ
ムにおける記憶装置として多用されている。今日では、
情報処理能力を高めるため、磁気ディスク装置の高密度
、大容量化が望まれており、磁気ディスクの磁気記録層
として、スパッタリング、イオンブレーティングなどに
よる金属薄膜が実用化されつつある。BACKGROUND ART Magnetic disk drives are frequently used as storage devices in information processing systems such as computers. Nowadays,
In order to increase information processing ability, it is desired that magnetic disk devices have higher density and larger capacity, and metal thin films produced by sputtering, ion blating, etc. are being put into practical use as magnetic recording layers of magnetic disks.
かかる磁気記録媒体として、非磁性基板上に、Cr膜を
形成した後、該Cr膜上にCo膜を、スパッタ法や蒸着
法にて形成した構成が知られている。As such a magnetic recording medium, a configuration is known in which a Cr film is formed on a nonmagnetic substrate, and then a Co film is formed on the Cr film by sputtering or vapor deposition.
この磁気記録媒体は、面内方向で高い保磁力を有し、面
内記録型の磁気ディスクに用いられている。This magnetic recording medium has a high coercive force in the in-plane direction and is used in an in-plane recording type magnetic disk.
さらに、前記のCo膜に変えて、磁性膜にCo−Ni膜
、Co−Ni−Cr膜を用いた磁気記録媒体が知られて
いる。Furthermore, magnetic recording media are known in which a Co--Ni film or a Co--Ni--Cr film is used as a magnetic film instead of the above-mentioned Co film.
一方、下地膜には、前記のいずれの組成の磁性膜にもか
かわらず、Co系磁性膜の面内配向を促進し、保磁力を
増大させるためにCr膜が用いられている。On the other hand, regardless of the composition of the magnetic film described above, a Cr film is used as the base film in order to promote in-plane orientation of the Co-based magnetic film and increase coercive force.
しかし、かかるCr下地膜は、その保磁力を増大させる
ためには、磁性膜厚みの500A〜800八に比べて、
遥かに厚い2000人〜6000Aの膜厚に被着形成す
る必要がある。However, in order to increase the coercive force of such a Cr underlayer, compared to the magnetic film thickness of 500A to 800A,
It is necessary to deposit the film to a much thicker film thickness of 2,000 to 6,000 Å.
従って、高価なCrを多量に消費するため、その製造コ
ストが増大し、また、Crが本質的に脆化し易く、膜厚
が比較的厚い場合は、基板との熱膨張係数差や成膜時の
内部応力等により、微細なりラックを招来し易いことか
ら、磁気記録媒体の下地膜としての靭性、強度に欠ける
という問題点があった。Therefore, a large amount of expensive Cr is consumed, which increases the manufacturing cost.Also, Cr is inherently prone to embrittlement, and if the film is relatively thick, there may be a difference in the coefficient of thermal expansion with the substrate or during film formation. Since it tends to cause fine racks due to internal stress, etc., it has a problem that it lacks toughness and strength as a base film for magnetic recording media.
発明の目的
この発明は、非磁性基板上に下地膜を介して磁性膜を設
けた磁気ディスクなどに用いられる磁気記録媒体におい
て、従来のCr下地膜の問題点を解消し、Cr下地膜と
同様の磁性膜の保磁力増大効果を有し、Cr下地膜に比
べて経済性にすぐれ、かつクラック発生や剥離の問題が
ない新規な下地膜を有する磁気記録媒体を目的としてい
る。Purpose of the Invention The present invention solves the problems of conventional Cr underlayers in magnetic recording media used in magnetic disks, etc. in which a magnetic film is provided on a non-magnetic substrate via an underlayer, and is similar to Cr underlayers. The object of the present invention is to provide a magnetic recording medium having a novel underlayer that has the effect of increasing the coercive force of a magnetic film, is more economical than a Cr underlayer, and is free from cracking and peeling problems.
発明の構成と効果
この発明は、従来のCr下地膜の問題を解消できる新規
な下地膜を有する磁気記録媒体を目的に種々検討した結
果、従来の純Cr下地膜に代えて、平衡相とは異なる結
晶構造を有すると考えられる非磁性もしくは弱磁性のF
e−Cr2元合金膜(以下Fe−Cr2元合金膜を単に
Fe−Cr合金膜という)、またはFe及びCr以外の
元素を含むFe−Cr系合金膜と、Cr膜との複合膜を
用いることにより、従来Cr下地剥離の問題が少ない磁
気記録媒体が得られることを知見し、この発明を完成し
たものである。Structure and Effects of the Invention As a result of various studies aimed at creating a magnetic recording medium with a novel underlayer that can solve the problems of conventional Cr underlayers, the present invention has developed a magnetic recording medium with an equilibrium phase instead of the conventional pure Cr underlayer. Nonmagnetic or weakly magnetic F that is thought to have a different crystal structure
Using an e-Cr binary alloy film (hereinafter the Fe-Cr binary alloy film is simply referred to as Fe-Cr alloy film) or a composite film of a Fe-Cr alloy film containing an element other than Fe and Cr and a Cr film. The present invention was completed based on the finding that a magnetic recording medium with fewer problems of conventional Cr underlayer peeling could be obtained.
すなわち、この発明は、
非磁性基板上に、下地膜及び磁性膜を積層被膜した磁気
記録媒体において、前記下地膜が、Cr 37at%〜
60 at%、残部Fe及び不可避的不純物からなる非
磁性もしくは弱磁性合金膜または下記組成式にて表され
る非磁性もしくは弱磁性合金膜と、Cr膜との複合膜で
あることを特徴とする磁気記録媒体である。That is, the present invention provides a magnetic recording medium in which a base film and a magnetic film are laminated and coated on a non-magnetic substrate, wherein the base film contains Cr 37 at% to
60 at%, the balance being Fe and unavoidable impurities, or a composite film of a nonmagnetic or weakly magnetic alloy film represented by the following composition formula and a Cr film. It is a magnetic recording medium.
FexCryMz
組し、式中Mは、
AI、 5i1Ti、 VSMn、 Co、 Ni、
Cu、 Zr5Nb、Mo、 Tc、 Ru、 Rh、
Pd、 Y、 Hf、 T!a、 W、から選ばれる
少なくとも1種であり、
xzytzは、各々の元素のat%を表し、かつ下記条
件を満足する。FexCryMz, where M is AI, 5i1Ti, VSMn, Co, Ni,
Cu, Zr5Nb, Mo, Tc, Ru, Rh,
Pd, Y, Hf, T! is at least one selected from a, W, xzytz represents at% of each element, and satisfies the following conditions.
x−1−y−1−z:100.
35≦y−f−z≦60゜
Qn<へl
(イ)MがAI、Siから選ばれる少なくとも1種の場
合、2≦25
(0)MがTi、Nb、Mo、Tc、Ru、Rh、Pd
、Wから選ばれる少なくとも1種の場合、2≦15
(/’)MがV、Mnから選ばれる少なくとも1種の場
合、2≦20
(ニ)MがZr、Y、Ta、Hfから選ばれる少なくと
も1種の場合、2≦10
(ホ)MがCo、Ni、Cuから選ばれる少なくとも1
種の場合、2≦8
詳述すると、一般に、磁気記録媒体の下地膜は、磁性膜
の面内配向を促進し、磁性膜に大きな保磁力を付与する
目的で設けられるため、かかる下地膜が強磁性であると
Z磁気的相互作用により、例えば、下地膜の保磁力が数
Oe〜数十Oeと低い場合は、磁性膜の保磁力も100
0eないし2000e程度と小さくなり、磁性膜の特性
を劣化させることが知られている。x-1-y-1-z: 100. 35≦y-f-z≦60゜Qn<H (a) When M is at least one selected from AI and Si, 2≦25 (0) M is Ti, Nb, Mo, Tc, Ru, Rh , Pd
, in the case of at least one kind selected from W, 2≦15 (/') In the case of at least one kind selected from V and Mn, 2≦20 (d) M is selected from Zr, Y, Ta, Hf In the case of at least one type, 2≦10 (e) M is at least one selected from Co, Ni, and Cu.
In the case of seeds, 2≦8.To be more specific, in general, the base film of a magnetic recording medium is provided for the purpose of promoting in-plane orientation of the magnetic film and imparting a large coercive force to the magnetic film. If it is ferromagnetic, due to Z magnetic interaction, for example, if the coercive force of the underlying film is low, from several Oe to several tens of Oe, the coercive force of the magnetic film will also be 100
It is known that this decreases to about 0e to 2000e and deteriorates the characteristics of the magnetic film.
ところで、公知のFe−Cr合金は、Or金含有70a
t%程度まで、常温で強磁性を示すことが知られており
、上記説明からも明らかな如く、従来、磁気記録媒体の
下地膜としては、適用不可能と考えられていた。By the way, the known Fe-Cr alloy is Or gold-containing 70a
It is known that it exhibits ferromagnetism at room temperature up to about t%, and as is clear from the above description, it was conventionally thought that it could not be used as an underlayer for magnetic recording media.
しかし、発明者らは、種々実験の結果、Cr 37at
%〜60at%、残部Fe及び不可避的不純物からなる
Fe−Cr合金膜、並びに20at%以上Orと、AI
、 Si、Ti、 V、 Mn、 Co、 Ni、 C
u、 Zr%Nb、 Mo、 Tc。However, as a result of various experiments, the inventors found that Cr 37at
% to 60 at%, the balance being Fe and inevitable impurities, and 20 at% or more Or, and AI
, Si, Ti, V, Mn, Co, Ni, C
u, Zr%Nb, Mo, Tc.
Ru、 Rh、 P<i、 Y、 Hf、 Ta、 W
lから選ばれる少なくとも1種との合計で、35at%
以上、60at%以下を含有し、残部FeからなるFe
−Cr系合金膜が、所要条件の気相成膜法にて基板上に
成膜されると、磁気記録媒体用下地膜として、Cr膜に
比べてすぐれた特性を有する実質的な非磁性膜となるこ
とを知見し、さらに、Fe−Cr合金膜またはFe−C
r系合金膜とCr膜との複合膜とすることにより、Cr
膜に比べてすぐれた特性を有する磁気記録媒体用下地膜
が得られることを知見し、この発明を完成したものであ
る。Ru, Rh, P<i, Y, Hf, Ta, W
35at% in total with at least one species selected from
Above, Fe containing 60 at% or less and the balance consisting of Fe
- When a Cr-based alloy film is formed on a substrate by a vapor deposition method under the required conditions, it can be used as an underlying film for a magnetic recording medium as a substantially non-magnetic film with superior properties compared to a Cr film. Furthermore, we found that Fe-Cr alloy film or Fe-C
By forming a composite film of an r-based alloy film and a Cr film, Cr
This invention was completed based on the discovery that an underlayer film for magnetic recording media having superior properties compared to other films can be obtained.
この発明において、非磁性もしくは弱磁性とは、実質的
非磁性、すなわち、磁性膜の磁気特性を著しく損なった
りあるいは磁気ヘッドの再生信号に影響を及ぼしたりす
ることのない程度の実用的な非磁性もしくは弱磁性を意
味している。In this invention, non-magnetism or weak magnetism refers to substantially non-magnetic property, that is, practical non-magnetic property that does not significantly impair the magnetic properties of the magnetic film or affect the reproduction signal of the magnetic head. Or it means weak magnetism.
従って、下地膜が、非磁性相と若干の強磁性相との混合
相から構成されていても、全体として数emu/g程度
の磁化を有する程度であれば実用上問題ないと考えられ
る。Therefore, even if the base film is composed of a mixed phase of a non-magnetic phase and some ferromagnetic phase, it is considered that there is no practical problem as long as the base film has a magnetization of about several emu/g as a whole.
組成の限定理由
この発明の磁気記録媒体の特徴であるFe−Cr下地膜
またはFe−0r系下地膜には、基板の材質や下地膜の
上に被着する磁性層の組成等に応じて、Cr含有量及び
添加元素種類とその含有量を適宜選定して用いることが
できる。Reasons for limiting the composition The Fe-Cr base film or Fe-0r base film, which is a feature of the magnetic recording medium of the present invention, has various compositions depending on the material of the substrate, the composition of the magnetic layer deposited on the base film, etc. The Cr content and the type and content of added elements can be appropriately selected and used.
Fe−Cr下地膜の場合、Crが37at%未満の場合
は、通常の成膜法では形成された膜が強磁性となり、O
rが60at%を越える場合には膜の靭性や強度が低下
するので好ましくない。望ましくは、CrCr39at
%〜55at%、さらに望ましくは40at%〜50a
t%が良い。In the case of a Fe-Cr base film, if the Cr content is less than 37 at%, the film formed by the normal film forming method becomes ferromagnetic and O
If r exceeds 60 at%, it is not preferable because the toughness and strength of the film decrease. Preferably, CrCr39at
% to 55at%, more preferably 40at% to 50a
t% is good.
Fe−Cr系合金下地膜において、Crが20at%未
満の場合及びCrと添加元素M(Mは
AI、St、Ti、V、Mn、Co、Ni、Zr、Nb
、Mo、Tc、Ru、Rh、Pd、Y、Hf。In the Fe-Cr alloy base film, when Cr is less than 20 at%, Cr and additive element M (M is AI, St, Ti, V, Mn, Co, Ni, Zr, Nb
, Mo, Tc, Ru, Rh, Pd, Y, Hf.
Ta、Wから選ばれる少なくとも1種)とCrとの合計
が35at%未満の場合は、通常の成膜法では形成され
た膜が強磁性となり、Crと添加元素Mとの合計が60
at%を越える場合には膜の靭性や強度が低下するので
好ましくない。望ましい範囲は
37at%〜50at%、さらに望ましくは39at%
〜45at%が良い。また、Orは25原子%以上が好
ましく、さらに好ましくは、30原子%以上である。If the total of at least one element selected from Ta and W) and Cr is less than 35 at%, the formed film becomes ferromagnetic with the normal film forming method, and the total of Cr and the additive element M is less than 60 at%.
If it exceeds at %, the toughness and strength of the film will decrease, which is not preferable. The desirable range is 37 at% to 50 at%, more preferably 39 at%.
~45at% is good. Moreover, Or is preferably 25 atom % or more, more preferably 30 atom % or more.
下地膜のFe−Cr系合金は添加元素Mの種類により、
その特性が異なる。Depending on the type of additive element M, the Fe-Cr alloy of the base film has
Their characteristics are different.
(イ)添加元素MがAI、Siから選ばれる少なくとも
1種の場合、下地膜が非平衡構造をとりゃすく、より完
全な非磁性にする効果があるが、25原子%を越えて添
加すると、かえって磁化が大きくなったり、機械的強度
が低下したりするため、25原子%以下にする必要があ
り、望ましくは15原子%以下がよい。(a) When the additive element M is at least one selected from AI and Si, it is effective to prevent the underlayer from having a non-equilibrium structure and make it more completely non-magnetic; however, if it is added in an amount exceeding 25 at.%, On the contrary, the magnetization increases and the mechanical strength decreases, so the content needs to be 25 atomic % or less, and preferably 15 atomic % or less.
(ロ)添加元素MがTi、Nb、Mo、Tc、Ru、R
h、Pd、Wから選ばれる少なくとも1種の場合、下地
膜をより完全な非磁性にし、かつ耐食性を向上させる効
果を有するが、15at%を越えて添加すると、通常の
成膜法では形成された下地膜が非晶質構造をとり易くな
り、この膜上に形成される磁性膜の保磁力を向上させる
目的を達成し難くなるため、15at%以下の添加とす
る。好ましくは10at%以下の添加がよい。(b) The additive element M is Ti, Nb, Mo, Tc, Ru, R
When at least one element selected from H, Pd, and W is added, it has the effect of making the base film more completely non-magnetic and improving corrosion resistance, but if it is added in an amount exceeding 15 at%, the base film cannot be formed using normal film forming methods. The amount of addition is set at 15 at % or less because the underlying film tends to take on an amorphous structure, making it difficult to achieve the purpose of improving the coercive force of the magnetic film formed on this film. Preferably, it is added in an amount of 10 at% or less.
(ハ)添加元素MがV、Mnから選ばれる少なくとも1
種の場合、下地膜が非平衡構造をとりやすく、より完全
な非磁性にする効果があるが、20at%を越えて添加
すると、逆に磁性を帯びるため、20at%以下の添加
とする。好ましくは10at%以下の添加がよい。(c) The additive element M is at least one selected from V and Mn.
In the case of seeds, the base film tends to take a non-equilibrium structure and has the effect of making it more completely non-magnetic.However, if it is added in an amount exceeding 20 at%, it becomes magnetic, so it should be added in an amount of 20 at% or less. Preferably, it is added in an amount of 10 at% or less.
(ニ)添加元素MがZr、Y、Ta、Hfから選ばれる
少なくとも1種の場合、下地膜が非平衡構造をとりやず
く、より完全な非磁性にする効果があるが、10at%
を越えて添加すると、通常の成膜法では形成された下地
膜が非晶質構造をとりやすくなり、この膜上に形成され
る磁性膜の保磁力を向上させる目的を達成し難くなるた
め、10at%以下の添加とする。好ましくは5at%
以下の添加がよい。(d) When the additive element M is at least one selected from Zr, Y, Ta, and Hf, the underlayer has the effect of eliminating the nonequilibrium structure and making it more completely nonmagnetic;
If more than 20% is added, the base film formed using normal film forming methods tends to take on an amorphous structure, making it difficult to achieve the purpose of improving the coercive force of the magnetic film formed on this film. Addition should be 10 at% or less. Preferably 5at%
The following additions are recommended.
(ホ)添加元素MがCo、Ni、Cuから選ばれる少な
くとも1種の場合、下地膜の機械的強度を向上させる効
果を有するが、8原子%を越えて添加されると、形成さ
れた膜が強磁性となるため、8原子%以下の添加とする
。好ましくは5原子%以下、さらに好ましくは2原子%
以下の添加がよい。(E) When the additive element M is at least one selected from Co, Ni, and Cu, it has the effect of improving the mechanical strength of the base film, but if it is added in an amount exceeding 8 at%, the formed film Since it becomes ferromagnetic, it should be added in an amount of 8 atomic % or less. Preferably 5 at% or less, more preferably 2 at%
The following additions are recommended.
この発明において、上記の(イ)〜(ホ)の各選択群よ
り、所要の特性に応じて選択群を2以上の組み合わせに
て添加することは、さらに好ましい実施態様である。In this invention, it is a more preferable embodiment to add two or more selected groups from the above-mentioned selected groups (a) to (e) in accordance with the required characteristics.
また、Fe−Cr合金下地膜、Fe−Cr系合金下地膜
を被膜するだめの合金ターゲット等は、その製造時の脱
酸などの目的での微量添加元素あるいは不可避的な不純
物元素が含有されていても、この発明の複合膜の特性を
損ねることがない。In addition, the alloy target used to coat the Fe-Cr alloy base film or Fe-Cr alloy base film may contain trace amounts of added elements or unavoidable impurity elements for purposes such as deoxidation during manufacturing. However, the properties of the composite membrane of the present invention will not be impaired.
また、酸素を数十ppmから数百ppm含む場合は、下
地膜をより完全な非磁性にする効果があると考えられる
。Furthermore, it is thought that containing oxygen in an amount of several tens of ppm to several hundreds of ppm has the effect of making the base film more completely nonmagnetic.
また、Cr膜は、一般的に用いられているCr膜であれ
ばよく、不可避的な不純物含有されていても、この発明
の目的を達成することができる。Further, the Cr film may be any commonly used Cr film, and even if it contains unavoidable impurities, the object of the present invention can be achieved.
発明の好ましい実施態様
この発明における磁気記録媒体の基板には、非磁性の基
板であればいずれの材質でも良く、例えば、N1−Pメ
ッキやアルマイト処理、ガラスコーティングされたアル
ミニウム基板の他、アルミナ、炭化けい素、炭化チタン
、ジルコニア、窒化けい素、アルミナ−酸化けい素など
の各種セラミックスの他、強化ガラスや結晶化ガラスな
どの非金属基板を用いることができ、さらに、アルミナ
等のセラミック基板にガラスクレージングした某Nを田
いること力;で5Aふ−
この発明において、Fe−Cr合金膜およびlまたはF
e−Cr系合金膜とCr膜との複合下地膜の複合形態は
、基板から外表面に向かっての膜種の組み合わせ、積層
順位は、目的に応じていかなるものであっても適用でき
る。Preferred Embodiment of the Invention The substrate of the magnetic recording medium in this invention may be made of any material as long as it is a non-magnetic substrate. For example, in addition to an aluminum substrate coated with N1-P plating, alumite treatment, or glass coating, alumina, In addition to various ceramics such as silicon carbide, titanium carbide, zirconia, silicon nitride, and alumina-silicon oxide, non-metallic substrates such as tempered glass and crystallized glass can be used.Furthermore, ceramic substrates such as alumina can be used. In this invention, an Fe-Cr alloy film and a l or F
The composite form of the composite base film of the e-Cr alloy film and the Cr film can be applied to any combination of film types and stacking order from the substrate to the outer surface depending on the purpose.
Fe−Cr合金膜とCr膜の組み合わせで、Fe−Cr
合金膜、Cr膜、磁性膜の順に被膜すれば、Cr膜と磁
性膜のみの従来膜に比較して、同等の磁気特性を有しか
つ膜の機械的性質にすぐれた磁気記録媒体が、より経済
的に得られる。By combining Fe-Cr alloy film and Cr film, Fe-Cr
If an alloy film, a Cr film, and a magnetic film are coated in this order, a magnetic recording medium with equivalent magnetic properties and superior mechanical properties can be produced compared to a conventional film consisting of only a Cr film and a magnetic film. Economically obtainable.
さら、Cr膜、Fe−Cr合金膜、磁性膜の被膜順序は
、N1−PめっきしたAI基板に最適である。Furthermore, the coating order of the Cr film, Fe-Cr alloy film, and magnetic film is optimal for the N1-P plated AI substrate.
また、Fe−Cr系合金膜の中で、Mo、Cu、AI、
Si、Ni等を含有する合金膜は、Crと比較してアル
カリイオンに対する耐食性にすぐれるため、特に、強化
ガラス基板を用いる場合には、Fe−Cr系合金膜、C
r膜、磁性膜の被膜順序が好ましい。In addition, among the Fe-Cr alloy films, Mo, Cu, AI,
An alloy film containing Si, Ni, etc. has better corrosion resistance against alkali ions than Cr, so in particular, when using a reinforced glass substrate, an Fe-Cr alloy film, a C
The coating order of the r film and the magnetic film is preferable.
さらに、Cr膜、Fe−Cr系合金膜、磁性膜の被膜順
序は、N1−PめっきしたAI基板に最適である。Furthermore, the coating order of the Cr film, Fe-Cr alloy film, and magnetic film is optimal for the N1-P plated AI substrate.
また、この発明において、Cr膜とFe−Cr合金膜お
よびFe−Cr系合金膜との複合膜とすることもできる
。Further, in the present invention, a composite film of a Cr film, a Fe-Cr alloy film, and a Fe-Cr alloy film can also be used.
また、この発明による複合下地膜の厚さは、一般に厚い
程、磁性膜の保磁力が増大する効果があり、少なくとも
500A以上で10000λ以下、さらに望ましくは2
000人〜5000A程度が良い。In addition, the thickness of the composite base film according to the present invention generally has the effect of increasing the coercive force of the magnetic film, and is preferably at least 500 A and 10,000 λ or less, more preferably 2
000 people to about 5000A is good.
複合下地膜の全厚みにおいて、Fe−Cr合金膜または
Fe−Cr系合金膜とCr膜の各膜層厚みは、前記の膜
種の組み合わせ、積層順序により、適宜選定すればよい
が、実施例1に示す如く、Fe−Cr合金膜の上にCr
膜を成膜する場合、Cr膜は約100Å以上あれば、こ
の発明の効果を発揮でき、好ましくは200Å以上であ
り、さらに好ましくは500Å以上である。しかし、2
000人を越えるCr膜を設けた場合は、この発明の複
合膜としての効果が薄れるため、2000λ以下が好ま
しく、さらに好ましくは1000Å以下である。In the total thickness of the composite base film, the thickness of each layer of the Fe-Cr alloy film or the Fe-Cr alloy film and the Cr film may be appropriately selected depending on the combination of film types and the order of lamination. As shown in Figure 1, Cr is deposited on the Fe-Cr alloy film.
When forming a film, the effect of the present invention can be exhibited if the Cr film has a thickness of about 100 Å or more, preferably 200 Å or more, and more preferably 500 Å or more. However, 2
If more than 1,000 Cr films are provided, the effect of the composite film of the present invention will be diminished, so the thickness is preferably 2,000 λ or less, more preferably 1,000 Å or less.
Fe−Cr合金膜、Fe−Cr系合金膜の上にCr膜を
成膜する場合も同様であり、Cr膜を第1層として用い
る場合は、少なくとも200Å以上が望ましい。The same applies to the case where a Cr film is formed on an Fe-Cr alloy film or a Fe-Cr alloy film, and when a Cr film is used as the first layer, the thickness is preferably at least 200 Å or more.
さらに、前記非金属基板とこの発明による複合下地膜と
の間に、
Ti、 Zr、 Hf、 Cr、 Nb、 Ta、 M
o、W、Vのうち少なくとも1種の元素を含む金属の酸
化物層単独または、前記酸化物層と、前記酸化物を構成
する金属または合金層とを順次積層した中間層を介在さ
せるか、あるいはさらに、該中間層の厚み方向の酸素濃
度が金属下地層方向に連続的または段階的に減少する特
性有する上記元素を含む金属の酸化物層と、前記酸化物
を構成する金属または合金からなる層とを順次積層した
中間層を介在させるのもよい。Further, between the non-metallic substrate and the composite base film according to the present invention, Ti, Zr, Hf, Cr, Nb, Ta, M
A single oxide layer of a metal containing at least one element among o, W, and V, or an intermediate layer formed by sequentially laminating the oxide layer and a metal or alloy layer constituting the oxide, Alternatively, the intermediate layer may be made of a metal oxide layer containing the above-mentioned element and having a characteristic that the oxygen concentration in the thickness direction of the intermediate layer decreases continuously or stepwise in the direction of the metal base layer, and a metal or an alloy constituting the oxide. It is also good to interpose an intermediate layer in which layers are sequentially laminated.
すなわち、前記構成とすることにより、Fe−Cr合金
またはFe−Cr系合金下地層が、酸化物層単独、酸化
物層及び金属層からなる中間層を介して非金属基板に強
固に結合するため、強度的に安定して剥離を生じること
がなく、長期間にわたって磁気ヘッドのC8S時のすぐ
れた耐久性を発揮する。That is, by having the above structure, the Fe-Cr alloy or Fe-Cr based alloy base layer is firmly bonded to the non-metallic substrate through the oxide layer alone or the intermediate layer consisting of the oxide layer and the metal layer. It is stable in terms of strength, does not cause peeling, and exhibits excellent durability during C8S of the magnetic head over a long period of time.
また、中間層の酸化物層に、その厚み方向の酸素濃度が
Fe−Cr合金またはFe−Cr系合金下地層方向に連
続的または段階的に減少する特性をもたせることにより
、被着強度を高めるほかに、非金属基板と金属下地層と
の熱膨張係数の差による歪を緩和することができるため
、耐剥離強度が向上し、製造時の加熱、冷却が容易にな
る利点がある。In addition, by giving the intermediate oxide layer a property in which the oxygen concentration in the thickness direction decreases continuously or stepwise toward the Fe-Cr alloy or Fe-Cr alloy base layer, the adhesion strength is increased. In addition, since strain caused by the difference in thermal expansion coefficient between the nonmetallic substrate and the metal underlayer can be alleviated, peel resistance is improved, and heating and cooling during manufacturing are facilitated.
また、該特定金属の総量は、中間層の全元素中、10a
t%以上は必要であり、また、中間層の酸化物層を構成
する金属は元素中、少なくとも30at%は必要であり
、望ましくは50at%以上である。In addition, the total amount of the specific metal is 10a out of all the elements in the intermediate layer.
t% or more is required, and the metal constituting the intermediate oxide layer needs to be at least 30 at% of the elements, preferably 50 at% or more.
上記の特定金属を少なくとも1種を含む金属の酸化物か
らなる中間層の被着厚みは、その上に被着する金属下地
層厚みの1/100〜5倍が望ましい。The thickness of the intermediate layer made of a metal oxide containing at least one of the above specific metals is preferably 1/100 to 5 times the thickness of the metal base layer deposited thereon.
また、中間層の酸化物層と金属層との層厚みの好ましい
関係は、酸化物層厚さに対して金属層厚み’Aτ111
0〜10(涛で、181ふ一次に、磁性膜は、C01C
o−Ni、 Co−Ni−Cr、 Co−Cr合金等の
hcp構造からなり、面内磁気異方性を有する硬質磁性
膜であれば、いずれの合金も成膜することができる。ま
た、下地膜に対する磁性膜のエピタキシャル性を高める
ために、各種の添加元素を添加することは、磁気特性を
高めるために有効な手段である。磁性膜の膜厚も従来か
ら使用されている薄膜媒体と同様に数百〜2000人程
度に適宜選定すれば良い。Further, the preferable relationship between the layer thicknesses of the intermediate oxide layer and the metal layer is that the metal layer thickness is 'Aτ111 with respect to the oxide layer thickness.
0 to 10 (in order of 181 degrees, the magnetic film is C01C
Any hard magnetic film having an hcp structure such as o-Ni, Co-Ni-Cr, or Co-Cr alloy and having in-plane magnetic anisotropy can be formed. Further, in order to improve the epitaxial properties of the magnetic film with respect to the base film, adding various additive elements is an effective means for improving the magnetic properties. The thickness of the magnetic film may also be appropriately selected from several hundred to 2,000 people, similar to the thin film media conventionally used.
また、必要に応じて、磁性膜の上に公知の各種保護膜i
適宜選定し、(例えばカーボン膜、5i02膜、その他
のセラミックス膜等)百〜数百人設けることは、媒体の
長寿命化に有効であり、さらに、潤滑膜を塗布しても良
い。In addition, if necessary, various known protective films may be applied on the magnetic film.
It is effective to extend the life of the medium by appropriately selecting and providing one hundred to several hundred layers (for example, carbon film, 5i02 film, other ceramic films, etc.).Furthermore, a lubricating film may be applied.
この発明の下地膜の形成方法としては、公知の気相成膜
法を適宜選定すれば良いが、特に、スパッタ法、又はイ
オンビームスパッタ法、イオンブレーティング法等が有
効である。As a method for forming the base film of the present invention, any known vapor phase film forming method may be appropriately selected, but sputtering, ion beam sputtering, ion blating, etc. are particularly effective.
また、下地膜の成膜スパッタ法の条件としては、スパッ
タガス圧が1〜100mTorr、基板温度は室温〜4
00℃以下が望ましい。In addition, the conditions for the sputtering method for forming the base film are that the sputtering gas pressure is 1 to 100 mTorr, and the substrate temperature is room temperature to 4 mTorr.
00°C or less is desirable.
また、磁性膜、保護膜はスパッタ法の他、蒸着法、イオ
ンブレーティング法、プラズマCVD法等の公知の成膜
法を適宜選定して製造することができる。In addition to the sputtering method, the magnetic film and the protective film can be manufactured by appropriately selecting a known film forming method such as a vapor deposition method, an ion blating method, or a plasma CVD method.
実施例
失態」2
25mmX25mmX厚み1.2mmの強化ガラス基板
に、平板マグネトロンRFスパッタ装置を用い、下記条
件にて、第1表に示す組成からなる2種のFe−Cr合
金ターゲットと、Crターゲットを使用し、基板ガラス
表面に、Fe−Cr合金膜、さらにその上にCr膜を積
層した複合下地膜(下地膜No、1〜2)を被着した。Example Failure" 2 Two types of Fe-Cr alloy targets having the compositions shown in Table 1 and a Cr target were applied to a 25 mm x 25 mm x 1.2 mm thick tempered glass substrate using a flat plate magnetron RF sputtering device under the following conditions. A composite base film (base film No. 1 to 2) consisting of an Fe-Cr alloy film and a Cr film laminated thereon was deposited on the surface of the glass substrate.
上記基板に被膜させたFe−Cr合金下地膜の組成と磁
化値を第1表に示す。Table 1 shows the composition and magnetization value of the Fe--Cr alloy base film coated on the above substrate.
到達真空度; 1〜2X10−’I’orrスパッタ時
雰囲気; 99.99%Ar 6mTorr投入電力
;300W
極間隔; 70mm
基板温度;100℃
なお、分析は合金膜にはX線マイクロアナライザー、タ
ーゲットにはプラズマ発光分光分析装置及びガス分析装
置を用いた。Ultimate vacuum: 1 to 2X10-'I'orr Atmosphere during sputtering: 99.99% Ar 6 mTorr Input power: 300 W Pole spacing: 70 mm Substrate temperature: 100°C The analysis was performed using an X-ray microanalyzer for the alloy film and an X-ray microanalyzer for the target. used a plasma emission spectrometer and a gas analyzer.
表中、合金膜については、Fe、 Cr及び添加元素以
外の元素は検出限界以下であった。また、ターゲットの
その他の元素とは、Ni、 Mg、 AI、 P等であ
り、いずれも0.04at%以下であった。また、磁気
特性の測定には、振動試料型磁力計を用いた。In the table, for the alloy film, elements other than Fe, Cr, and additive elements were below the detection limit. In addition, other elements in the target were Ni, Mg, AI, P, etc., all of which were 0.04 at% or less. In addition, a vibrating sample magnetometer was used to measure the magnetic properties.
第1表の結果から明らかなように、この発明によるFe
−Cr系合金下地膜は、はとんどが1.Oemu/g以
下の磁化値を示し、下地膜として不可欠な実質的な非磁
性膜であることが分る。なお、1.Oemu/g以下と
表示したのは測定限界のためである。As is clear from the results in Table 1, Fe
-Cr-based alloy base film is mostly 1. It can be seen that the magnetization value is less than Oemu/g, and it is a substantially nonmagnetic film that is essential as an underlayer. In addition, 1. The reason why it is displayed as Oemu/g or less is due to the measurement limit.
去1世徨
25mm X 25mmX厚み1.0皿の強化ガラス基
板に、平板マグネトロンRFスパッタ装置を用い、実施
例1と同条件にて、第1表に示す組成からなる2種のF
e−Cr合金ターゲットと、Fe−Cr合金ターゲット
に添加元素のチップ(10mmX 10mmX 1mm
t)を配置した複合ターゲット、並びにCrターゲット
を使用し、基板ガラス表面に、Fe−Cr系合金膜、さ
らにその上にCr膜を積層した複合下地膜(下地膜No
、3〜16)を被着した。Two types of F having the compositions shown in Table 1 were applied to a tempered glass substrate with a size of 25mm x 25mm x 1.0mm thick under the same conditions as in Example 1 using a flat plate magnetron RF sputtering device.
Chips of additive elements (10 mm x 10 mm x 1 mm) are added to the e-Cr alloy target and the Fe-Cr alloy target.
t) and a Cr target, a composite base film (base film No.
, 3 to 16) were applied.
基板に被膜させたFe−Cr系合金下地膜の組成と磁化
値を第1表に示す。Table 1 shows the composition and magnetization value of the Fe--Cr alloy base film coated on the substrate.
表中、合金膜については、Fe、 Cr及び添加元素以
外の元素は検出限界以下であった。また、ターゲットの
その他の元素とは、Ni、 Mg、 AL P等であり
、いずれも0.06at%以下であった。また、磁気特
性の測定には、振動試料型磁力計を用いた。In the table, for the alloy film, elements other than Fe, Cr, and additive elements were below the detection limit. Further, the other elements in the target were Ni, Mg, ALP, etc., and all of them were 0.06 at% or less. In addition, a vibrating sample magnetometer was used to measure the magnetic properties.
第1表の結果から明らかなように、この発明によるFe
−Cr系合金下地膜は、全てが数emu/g以下の磁化
値を示し、下地膜として不可欠な実質的な非磁性膜であ
ることが分る。なお、1.Oemu/g以下と表示した
のは測定限界のためである。As is clear from the results in Table 1, Fe
It can be seen that all of the -Cr-based alloy base films exhibit magnetization values of several emu/g or less, and are essentially nonmagnetic films essential as base films. In addition, 1. The reason why it is displayed as Oemu/g or less is due to the measurement limit.
第1表(成分at%)
実」1担
第1表中の下地膜No、1.2のFe−40Cr、 F
e−50Cr2元合金下地膜の薄膜X線回折結果を第1
図に示す。Table 1 (components at%) Base film No. 1.2 in Table 1, Fe-40Cr, F
The first thin film X-ray diffraction results of the e-50Cr binary alloy base film
As shown in the figure.
また、比較のため、Fe−40Cr合金ターゲット粉末
のX線回折結果を合わせて示す。For comparison, the X-ray diffraction results of Fe-40Cr alloy target powder are also shown.
X線回折結果に明らかなように、比較のためのFe−4
00r合金ターゲット粉末は、bee構造であることを
示すが、この発明による下地膜のFe−Cr合金及びF
e−Cr系合金の場合は、いずれもターゲットとは異な
る結晶構造であることが分かる。As evident in the X-ray diffraction results, Fe-4 for comparison
The 00r alloy target powder has a bee structure, but the Fe-Cr alloy and F
It can be seen that in the case of e-Cr alloys, the crystal structure is different from that of the target.
この発明による下地膜のFe−0r合金及びFe−Cr
系合金は本来強磁性を有すると考えられる組成にも拘わ
らず、実質的に非磁性となるのは、結晶構造が既知の平
衡相とは異なる結晶構造を有するためであろうと考えら
れる。Fe-0r alloy and Fe-Cr of the base film according to the present invention
The reason why the system alloy becomes substantially non-magnetic despite its composition which is considered to be inherently ferromagnetic is thought to be because it has a crystal structure different from the known equilibrium phase.
実施例4
外径95mmX内径25mmX厚み1.2皿の強化ガラ
ス基板に、平板マグネトロンRFスパッタ装置を用い、
実施例1,2と同条件にて、第1表に示す下地膜No、
1の組成となるように、基板ガラス表面にFe−Cr合
金膜を200OA厚みに被着し、さらにその上にCr膜
を各種厚みにて積層したのち、Co−3ONi−7,5
0r合金ターゲットを用いて、磁性膜を800人厚みで
被着した。Example 4 A flat plate magnetron RF sputtering device was used on a tempered glass substrate with an outer diameter of 95 mm, an inner diameter of 25 mm, and a thickness of 1.2 plates.
Under the same conditions as Examples 1 and 2, the base film No. shown in Table 1,
After depositing a Fe-Cr alloy film to a thickness of 200 OA on the surface of the substrate glass so that the composition of Co-3ONi-7,5
A magnetic film was deposited to a thickness of 800 mm using an 0r alloy target.
比較のため、基板、装置、条件を同一にして、Cr膜を
種々厚みで被着したのち、Co−3ONi−7,5Cr
合金ターゲットを用いて、磁性膜を800人厚みで被着
した。For comparison, Co-3ONi-7,5Cr films were deposited with various thicknesses using the same substrate, equipment, and conditions.
A magnetic film was deposited to a thickness of 800 mm using an alloy target.
この発明と比較例との公正な比較のため、下地膜と磁性
膜の成膜のインターバルはすべて1分とした。In order to make a fair comparison between the present invention and the comparative example, the interval between the formation of the base film and the magnetic film was set to 1 minute.
得られた各種の下地膜及び磁性膜を、Cr膜厚みと保磁
力との関係を示す第2図にて評価した。The various underlying films and magnetic films obtained were evaluated using FIG. 2, which shows the relationship between Cr film thickness and coercive force.
第2図より明らかなように、Cr膜単独では、1000
Å以上のCr膜厚みで5000e以上の保磁力が得られ
、3000Å以上のCr膜厚みで6000e以上の保磁
力が得られている。As is clear from Figure 2, the Cr film alone has a
A coercive force of 5000e or more is obtained with a Cr film thickness of 3000 Å or more, and a coercive force of 6000e or more is obtained with a Cr film thickness of 3000 Å or more.
これに対して、この発明の複合膜の場合は、Cr膜厚み
が僅か200人で5200eの保磁力、500人厚みで
6000eの保磁力が得られ、この発明によるFe−C
r合金膜がCr膜と同様に磁気特性の向上効果を有して
いることが分かる。On the other hand, in the case of the composite film of the present invention, a coercive force of 5200e is obtained when the Cr film thickness is only 200 mm, and a coercive force of 6000 e is obtained when the Cr film thickness is 500 mm.
It can be seen that the r alloy film has the same effect of improving magnetic properties as the Cr film.
実施例5
外径130mm、内径40mm、厚み1.2mmのAl
2O3基板に、20pm厚みのガラスグレーズを施し、
表面を研摩した後、平板マグネトロンRFスパッタ装置
を用い、下記条件並びにターゲットを用いて、基板ガラ
スグレーズ表面に、FeFe−0r−合金膜を2800
人厚み、Cr膜を200人厚みで被膜し、さらに、磁性
膜を800AJ*みて被膜し、その後、カーボン膜を3
00人厚みで被膜した。Example 5 Al with an outer diameter of 130 mm, an inner diameter of 40 mm, and a thickness of 1.2 mm
A 20pm thick glass glaze is applied to the 2O3 substrate.
After polishing the surface, a FeFe-0r-alloy film was deposited on the glass glaze surface of the substrate using a flat plate magnetron RF sputtering device under the following conditions and target.
Coat a Cr film with a thickness of 200mm, then coat a magnetic film with a thickness of 800AJ*, and then apply a carbon film with a thickness of 3mm.
The film was coated to a thickness of 0.00 mm.
到達真空度; 1〜2X10−6Torrスパッタ時雰
囲気; 99.99%Ar 10mTorr投入電力
;300W
極間隔; 70mm
基板温度・150℃
下地膜用ターゲット; Fe−35Cr−10V下地膜
用ターゲツト・100Cr
磁性膜用ターゲット; Co−3ONi−7,5Cr保
護膜:高密度炭素
得られたこの発明による磁気記録媒体の電磁変換特性を
以下の条件で測定した。Ultimate vacuum: 1 to 2 x 10-6 Torr Atmosphere during sputtering: 99.99% Ar 10 mTorr Input power: 300 W Pole spacing: 70 mm Substrate temperature: 150°C Base film target: Fe-35Cr-10V base film target: 100Cr magnetic film Target: Co-3ONi-7,5Cr Protective film: High-density carbon The electromagnetic conversion characteristics of the obtained magnetic recording medium according to the present invention were measured under the following conditions.
使用ヘッド; Mn−Znフェライトミニウィンチェス
タ−
トラック輻16pm、ギャップ長1.0pm、ギャップ
深さ20pm 、巻数16’r X 2フライイングハ
イト; 0.3pm
1F ・1.25MHz
2F・2.5鼠−
ティスフ回転数; 3600rpm
測定箇所;ディスク中心からR=62mmの部分にて測
定
測定した再生出力特性は次のとおりであった。Head used: Mn-Zn ferrite mini Winchester - Track radius 16pm, gap length 1.0pm, gap depth 20pm, number of turns 16'r x 2 Flying height: 0.3pm 1F 1.25MHz 2F 2.5 mouse - Rotation speed: 3600 rpm Measurement location: Measurement at a portion R = 62 mm from the center of the disc The reproduction output characteristics measured were as follows.
再生出力(2,5MHz 、 Iw=80mA )=
1.2mV再生出力(5MHz 、 Iw = 80m
A )= 0.9mV分解能(Iw = 80mA )
= 87%オーバーライド=−30dB
測定結果から明らかなように、この発明による磁気記録
媒体は、高密度記録媒体としての特性を備えていること
が分る。Reproduction output (2.5MHz, Iw=80mA)=
1.2mV playback output (5MHz, Iw = 80m
A) = 0.9mV resolution (Iw = 80mA)
= 87% override = -30 dB As is clear from the measurement results, it can be seen that the magnetic recording medium according to the present invention has characteristics as a high-density recording medium.
実施例6
実施例4で得られた2種及び実施例4と同様方法にて製
造した1種の計3種の磁気記録媒体を引っ掻き試験に供
した。その結果を第2表に示す。Example 6 A total of three types of magnetic recording media, two types obtained in Example 4 and one type manufactured in the same manner as Example 4, were subjected to a scratch test. The results are shown in Table 2.
表中、本発明1は第1表の下地膜No、1を使用した磁
気記録媒体であり、本発明2は第1表の下地膜No、9
を使用した磁気記録媒体である。In the table, present invention 1 is a magnetic recording medium using base film No. 1 in Table 1, and present invention 2 is a magnetic recording medium using base film No. 9 in Table 1.
This is a magnetic recording medium that uses
試験は、先端直径が102のダイヤモンド針に種々の荷
重を旬加しなから、ディスクを移動して膜の剥離により
、被着強度を評価した。In the test, various loads were applied to a diamond needle with a tip diameter of 102 mm, and the adhesion strength was evaluated by moving the disk and peeling off the film.
以下余白 第2表Margin below Table 2
第1図a図はこの発明による複合下地膜の成分のX線回
折結果示すグラフであり、b図はターゲット合金の成分
のX線回折結果示すグラフである。第2図はCr膜厚み
と保磁力との関係を示すグラフである。FIG. 1A is a graph showing the results of X-ray diffraction of the components of the composite base film according to the present invention, and FIG. 1B is a graph showing the results of X-ray diffraction of the components of the target alloy. FIG. 2 is a graph showing the relationship between Cr film thickness and coercive force.
Claims (1)
記録媒体において、前記下地膜が、Cr37at%〜6
0at%、残部Fe及び不可避的不純物からなる非磁性
もしくは弱磁性合金膜とCr膜との複合膜であることを
特徴とする磁気記録媒体。 2 非磁性基板上に、下地膜及び磁性膜を積層被膜した磁気
記録媒体において、前記下地膜が、下記組成式にて表さ
れる非磁性もしくは弱磁性合金膜とCr膜との複合膜で
あることを特徴とする磁気記録媒体。 FexCryMz 組し、式中Mは、 Al、Si、Ti、V、Mn、Co、Ni、Cu、Zr
、Nb、Mo、Tc、Ru、Rh、Pd、Y、Hf、T
a、W、から選ばれる少なくとも1種であり、 x、y、zは、各々の元素のat%を表し、かつ下記条
件を満足する。 x+y+z=100、 35≦y+z≦60、 20≦y、 z; (イ)MがAl、Siから選ばれる少なくとも1種の場
合、z≦25 (ロ)MがTi、Nb、Mo、Tc、Ru、Rh、Pd
、Wから選ばれる少なくとも1種の場合、z≦15 (ハ)MがV、Mnから選ばれる少なくとも1種の場合
、z≦20 (ニ)MがZr、Y、Ta、Hfから選ばれる少なくと
も1種の場合、z≦10 (ホ)MがCo、Ni、Cuから選ばれる少なくとも1
種の場合、z≦8[Scope of Claims] 1. A magnetic recording medium in which a base film and a magnetic film are laminated on a non-magnetic substrate, wherein the base film contains Cr37 at% to 6 Cr.
1. A magnetic recording medium comprising a composite film of a Cr film and a nonmagnetic or weakly magnetic alloy film comprising 0 at%, the balance being Fe and unavoidable impurities. 2. A magnetic recording medium in which a base film and a magnetic film are laminated on a non-magnetic substrate, wherein the base film is a composite film of a non-magnetic or weakly magnetic alloy film and a Cr film represented by the following compositional formula. A magnetic recording medium characterized by: FexCryMz, where M is Al, Si, Ti, V, Mn, Co, Ni, Cu, Zr
, Nb, Mo, Tc, Ru, Rh, Pd, Y, Hf, T
is at least one selected from a, W, x, y, and z represent at% of each element, and satisfy the following conditions. x+y+z=100, 35≦y+z≦60, 20≦y, z; (a) When M is at least one selected from Al and Si, z≦25 (b) M is Ti, Nb, Mo, Tc, Ru , Rh, Pd
, W, z≦15 (c) When M is at least one selected from V, Mn, z≦20 (d) When M is at least one selected from Zr, Y, Ta, Hf In the case of one type, z≦10 (e) M is at least one selected from Co, Ni, and Cu
For seeds, z≦8
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3226387A JPS63200316A (en) | 1987-02-14 | 1987-02-14 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3226387A JPS63200316A (en) | 1987-02-14 | 1987-02-14 | Magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63200316A true JPS63200316A (en) | 1988-08-18 |
JPH0451884B2 JPH0451884B2 (en) | 1992-08-20 |
Family
ID=12354125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3226387A Granted JPS63200316A (en) | 1987-02-14 | 1987-02-14 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63200316A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57208631A (en) * | 1981-06-19 | 1982-12-21 | Hitachi Ltd | Vertical magnetic recording medium |
JPS6339128A (en) * | 1986-08-04 | 1988-02-19 | Furukawa Electric Co Ltd:The | Magnetic recording medium |
-
1987
- 1987-02-14 JP JP3226387A patent/JPS63200316A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57208631A (en) * | 1981-06-19 | 1982-12-21 | Hitachi Ltd | Vertical magnetic recording medium |
JPS6339128A (en) * | 1986-08-04 | 1988-02-19 | Furukawa Electric Co Ltd:The | Magnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPH0451884B2 (en) | 1992-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6112117B2 (en) | Magnetic recording medium | |
JP5999290B2 (en) | Magnetic recording medium | |
KR20070047678A (en) | Deposition of enhanced seed layer using tantalum alloy based sputter target | |
US7105240B2 (en) | Perpendicular media with improved corrosion performance | |
US4786553A (en) | Magnetic recording medium | |
JPS61253622A (en) | Magnetic recording medium and its production | |
WO2006030961A1 (en) | Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and magnetic recording/ reproducing apparatus | |
JP6406462B2 (en) | Magnetic recording medium | |
JP6327357B2 (en) | Magnetic recording medium | |
JPS63200316A (en) | Magnetic recording medium | |
US10741207B2 (en) | Magnetic recording medium having an FePtRh magnetic layer | |
JPWO2016203693A1 (en) | Magnetic recording medium | |
JPS6313118A (en) | Magnetic recording medium | |
JPH0817032A (en) | Magnetic recording medium and its production | |
JPS63102033A (en) | Magnetic recording medium | |
JPS63102043A (en) | Production of magnetic recording medium | |
JPS63184913A (en) | Magnetic recording medium | |
JPS62293511A (en) | Magnetic recording medium | |
JPS61246914A (en) | Magnetic recording medium and its production | |
JPH10289437A (en) | Magnetic recording medium and magnetic storage device | |
JPS62293512A (en) | Magnetic recording medium | |
JP3194578B2 (en) | Multilayer ferromagnetic material | |
JP2001243618A (en) | Magnetic recording medium, its manufacturing method sputtering target and magnetic recording/reproducing device | |
JPS6154019A (en) | Magnetic recording medium provided with protective film | |
JPS61224122A (en) | Magnetic recording medium and its production |