JPS63200075A - Method and apparatus for measuring shield effect of electrically conductive material - Google Patents

Method and apparatus for measuring shield effect of electrically conductive material

Info

Publication number
JPS63200075A
JPS63200075A JP3219687A JP3219687A JPS63200075A JP S63200075 A JPS63200075 A JP S63200075A JP 3219687 A JP3219687 A JP 3219687A JP 3219687 A JP3219687 A JP 3219687A JP S63200075 A JPS63200075 A JP S63200075A
Authority
JP
Japan
Prior art keywords
metal
test sample
flat plate
back side
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3219687A
Other languages
Japanese (ja)
Other versions
JPH0573180B2 (en
Inventor
Nozomi Hasebe
長谷部 望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3219687A priority Critical patent/JPS63200075A/en
Publication of JPS63200075A publication Critical patent/JPS63200075A/en
Publication of JPH0573180B2 publication Critical patent/JPH0573180B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the effect of a power feeding part on a measuring result, by vertically installing a pair of antennae on the surface of an earthed metal plate at a predetermined interval and generating imaging effect on the rear surface side of the metal plate. CONSTITUTION:A pair of semi-loop antennae 8a, 8b are vertically installed on the surface of an earthed metal plate 2 at a predetermined interval. A power is fed to the feeding point of the antenna 8a from the back surface side of the metal plate 2 through a connector 10a so that imaging effect is generated on the back surface side of the metal plate 2 and the receiving output from the receiving point of the antenna 8b is taken out from the back surface side through a connector 10b. Then, shield effect is evaluated on the basis of the ratio of the receiving output in such a state that a test sample is not arranged and the space between the antennae 8a, 8b continues and the receiving output in such a state that the test sample 1 composed of a cup-shaped half-split body made of a conductive material is arranged and the space between the antennae 8a, 8b is blocked by the test sample 1. Further, a monopole antenna is used in the measurement of magnetic field shielding effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性材料の電界波と磁界波に対するシールド
効果を測定するための測定法及び測定測定装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a measuring method and a measuring device for measuring the shielding effect of a conductive material against electric field waves and magnetic field waves.

〔従来の技術〕[Conventional technology]

シールドハウジングのシールド効果のN 定11 ニは
MILSTD−285法があり、遠近両電磁界および水
平垂直両帰波について測定を行うものとして知られてい
る。この方法では、定められた基準距離において送受信
アンテナを対向させて基準レベルS0を測定し、次に同
一距離でシールド壁を挾んで測定して測定レベルS、を
求め、56−S□をもってシールド効果とするものであ
る。また平面波法(電波法)と呼ばれるものもあり、こ
れはシーリド室内外の電界強度をそれぞれS、、 S、
とし、50−S、をもってシールド効果とするものであ
る。この他には補助的にスニツファー法、サーチコイル
法、高周波c’r法等がある。スニッファー法はシール
ド壁を100kl[z程度の低周波で励振し、パーアン
テナで壁面を掃引して相対レベルの読みにより漏れを探
す方法である。サーチコイル法はシールド壁に電波を放
射してサーチコイルで壁面からの漏れを探す方法である
。また高周波CT法は大地と絶縁した機器、シールド室
床、グラウンドプレーンなどに一点接地を施し、接地線
に高周波変流器を挿入してシールド効果の変化を知るも
のである。
The N constant 11 d of the shielding effect of the shield housing is determined by the MILSTD-285 method, which is known to measure both near and far electromagnetic fields and both horizontal and vertical return waves. In this method, the transmitting and receiving antennas are placed opposite each other at a predetermined reference distance to measure the reference level S0, and then the shield wall is measured at the same distance to obtain the measured level S, and the shielding effect is determined by 56-S□. That is. There is also a method called the plane wave method (radio wave method), which calculates the electric field strength inside and outside the ceiling room as S, , S, respectively.
The shielding effect is defined as 50-S. In addition to this, there are auxiliary methods such as a sniffer method, a search coil method, and a high frequency C'R method. The sniffer method is a method in which a shield wall is excited with a low frequency of about 100 kl [z, the wall surface is swept with a par antenna, and leakage is searched for by reading the relative level. The search coil method is a method in which radio waves are radiated onto a shield wall and a search coil is used to search for leakage from the wall surface. In the high-frequency CT method, equipment isolated from the earth, the shield room floor, a ground plane, etc. are grounded at a single point, and a high-frequency current transformer is inserted into the ground wire to determine changes in shielding effectiveness.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の従来技術は、何れもシールドハウジングまたはシ
ールド室自体のシールド効果を測定するための手法であ
り、シールド構造体を構成するための導電性材料の特性
ともいうべき材料自体のシールド効果を評価するための
測定法は未だ確立されていない。
The above-mentioned conventional techniques are all methods for measuring the shielding effect of the shield housing or the shield chamber itself, and evaluate the shielding effect of the material itself, which can also be called the characteristics of the conductive material that constitutes the shield structure. A measurement method for this has not yet been established.

材料の特性を測定する場合、通常、測定対象の導電性材
料からテストサンプルをとり、このサンプノ[について
測定を行う。シールド効果の推定に直接的指軒を与える
測定法としては、例えば球形シールド材のシールド効果
を測定する方法が考えられるが、この場合の測定におい
ては、サンプルを例えば球体に成形し、球体内外での電
磁界強度の比較をする必要があり、この場合、球体内で
の電磁波の放射のために、球体内の放射素子への給電を
球体壁を介して行わなければならず、球体壁の給電部が
シールド効果に影響して正確な測定ができないという不
都合がある。
When measuring the characteristics of a material, a test sample is usually taken from the conductive material to be measured and the sample is measured. One possible measurement method that directly estimates the shielding effect is to measure the shielding effect of a spherical shielding material. It is necessary to compare the electromagnetic field strength of However, there is a problem in that the portion affects the shielding effect, making accurate measurement impossible.

本発明の課題は、前述の不都合に鑑みて、所定形状に成
形されたテストサンプルについて給電部の影響を少なく
シ、実質的に球形シールド材と同等の測定結果を半割体
テストサンプルによって得ることのできる導電性材料の
シールド効果測定方法と装置を提供することにある。
In view of the above-mentioned disadvantages, it is an object of the present invention to reduce the influence of the power feeding part on a test sample molded into a predetermined shape, and to obtain measurement results substantially equivalent to those of a spherical shield material using a half-split test sample. An object of the present invention is to provide a method and apparatus for measuring the shielding effect of a conductive material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の導電性材料のシールド効果測定法では、前述の
課題を達成するために、接地された金属平板の表面に所
定間隔を隔てて一対の微小アンテナ素子を立設しておき
、夫々金属平板の裏面側に影像効果を生じるように、一
方のアンテナ素子の前記金属平板表面近傍の給電点に金
属平板裏面側から給電して金属平板表面側に電界または
磁界彼を放射するとともに、他方のアンテナ素子の金属
平板表面近例の受電点からの受信出力を同様に金属平板
11面側から取出し、更Zこ前記一方のアンテナ素子の
上に被測定射撃の導電性材料製のカップ状半割体からな
るテストサンプルをアンテナ素子の給電点と同心状に被
せて該サンプルの口縁全周で金属平板に接地させ、前記
テストサンプルを配置せずに両アンテナ素子間の空間が
連続した状態での受信出力と、前記テストサンプルを配
置して両アンテナ素子間の空間が前記テストサンプルで
遮断された状態での受信出力との比に基づいてシールド
効果の評価を与えるものである。
In order to achieve the above-mentioned problems in the method for measuring the shielding effect of conductive materials of the present invention, a pair of micro antenna elements are erected on the surface of a grounded metal flat plate at a predetermined interval, and each In order to produce an image effect on the back side of the antenna element, power is supplied from the back side of the metal plate to the feed point near the surface of the metal flat plate of one antenna element, and an electric or magnetic field is radiated to the front side of the metal plate, and the electric field or magnetic field is radiated to the front side of the metal flat plate. The received output from the power receiving point near the metal flat plate surface of the element is similarly taken out from the metal flat plate 11 side, and a cup-shaped half body made of a conductive material of the shot to be measured is placed on top of one of the antenna elements. A test sample consisting of is placed concentrically with the feeding point of the antenna element, and the entire circumference of the mouth edge of the sample is grounded to a metal flat plate. The shielding effect is evaluated based on the ratio of the received output to the received output when the test sample is placed and the space between both antenna elements is blocked by the test sample.

好ましくは測定は予め設定した周波数範囲にわたって連
続的に行われ、一つの実施態様では両アンテナ素子に半
ループ状アンテナを用いて磁界シールド効果の測定が行
われ、別の実施態様では両アンテナ素子にモノボール7
ンテナを用いて電界シールド効果の測定が行われる。
Preferably, the measurements are carried out continuously over a predetermined frequency range; in one embodiment, the magnetic field shielding effect is measured using a half-loop antenna for both antenna elements, and in another embodiment for both antenna elements. Monoball 7
The electric field shielding effect is measured using the antenna.

また本発明の前述測定法を実施するための測定装置は、
被測定対象の導電性材料製のカップ状半割体からなるデ
ス1−サンプルと、 該サンプルの口縁外周形状に合致する開口部を有する金
属平板と、 テストサンプルの口縁内周形状に合致する外形の平らな
上面部を有し該上面部が金属平板表面と面一になるよう
に金属平板裏面側から金属平板に取付けられる金具と、 該金具を着脱可能に金属平板に裏面側から固定するとと
もに固定状態で前記サンプル口縁全周を前記開口部の前
記上面部との隙間に挾持固定可能な連結機構と、 金属平板裏面側に影像効果を生じるように前記金具の上
面部の中央部に立設された第1の微小アンテナ素子と、 同様に金属平板裏面側に影像効果を生じるように前記金
属平板の表面の開口部中心から予め定められた距離だけ
離れた位置に立設された第2の微小アンテナ素子と、 金属平板裏面側から前記金具の第1の微小アンニ↓孕ヱ
、ハ前すコ木ば1砺11庄轟舊lハ込轡占II”古川波
信号を給電するための信号給電手段と、前記第2の微小
アンテナ素子の金属平板表面近傍の受電点から受信出力
を金属平板裏面側において取出すための信号取出手段と
、 信号給電手段に前記高周波信号を供給する信号送出手段
と、 信号取出手段からの受信出力を受け、前記テストサンプ
ルを配置せずに両アシテナ素子間の空間が連続した状態
での受信出力と、前記テストサンプルを配置して両アン
テナ素了間の空間が前記テストサンプルで遮断された状
態での受信出力との比に基づいてシールド効果の評価を
与える分析手段、 とをpi〃えている。
Further, the measuring device for carrying out the above-mentioned measuring method of the present invention includes:
A sample consisting of a cup-shaped half body made of a conductive material to be measured, a metal flat plate having an opening that matches the outer circumference shape of the mouth edge of the sample, and a metal plate that matches the inner circumference shape of the mouth edge of the test sample. A metal fitting that has a flat upper surface with an external shape and is attached to the flat metal plate from the back side of the metal flat plate so that the upper surface is flush with the surface of the metal flat plate, and the metal fitting is removably fixed to the metal flat plate from the back side. and a connecting mechanism capable of clamping and fixing the entire periphery of the sample mouth rim in a fixed state in the gap between the sample opening and the upper surface of the opening, and a central portion of the upper surface of the metal fitting so as to produce an image effect on the back side of the metal plate. a first micro antenna element erected; and a first micro antenna element erected at a predetermined distance away from the center of the opening on the surface of the flat metal plate so as to similarly produce an image effect on the back side of the flat metal plate; The second minute antenna element and the first minute antenna of the metal fitting are fed from the back side of the flat metal plate with the Furukawa wave signal. signal feeding means for extracting the received output from the power receiving point near the surface of the metal flat plate of the second micro antenna element on the back side of the metal flat plate; and a signal for supplying the high frequency signal to the signal feeding means. Receiving outputs from the transmitting means and the signal extracting means, receiving outputs when the space between both antenna elements is continuous without placing the test sample, and receiving output when the space between the two antenna elements is continuous with the test sample being placed. analysis means for evaluating the shielding effect based on the ratio to the received output in a state where the space of the test sample is blocked by the test sample;

本発明の好ましい実施態様では、測定すべき導電性材料
のテストサンプルが金属平板表面上で半球形状をなす形
状に成形されており、別の態様ではテストサンプルが金
属平板表向上で立方体の半割形状をなす。
In a preferred embodiment of the invention, the test sample of the conductive material to be measured is formed into a hemispherical shape on the surface of a flat metal plate; in another aspect, the test sample is formed on the surface of a flat metal plate into half a cube form a shape.

本発明の装置の一つの実施太陽に従又は、両7ンテナ素
子は半ループ状アンテナであり、別の実施太陽に従えば
両アンテナ素子はモノポールアンテナである。
According to one implementation of the device of the invention, both seven antenna elements are half-loop antennas, and according to another implementation, both antenna elements are monopole antennas.

〔作用〕[Effect]

導電性材料のシールド構造体のシールド効果を評価する
一方法として、損失性(導電性)媒質でできた球殻を考
え、この中に微小Wa流源Jまたは微小磁流源JffI
が存在するとき、球殻外部の電磁界を求め、球殻が存在
しないときの同じ距離の点における電磁界との比をとっ
てこれをシールド効果の評価値とする。この場合、波源
が微小電流によるときは電界の、微小磁流によるときは
磁界のシールド効果が求められる。これは通常のシール
ド用ハウジングでは回路または部品を立方体形状のカバ
ーで覆うことから、このハウジングを模す一方法として
球形構造を導入したものであり、この構造を採用するこ
とで、実際のシールド効果を成る程度定量的に把握す今
ことができると共に、理論的には厳密解が存在すること
になる。もっとも本発明ではシールドハウジングを球形
のものとして限定的に考えるオ)けではなく、立方体そ
のものであってもよいが、ここでは説明の便宜上、球形
で説明する。
As a method to evaluate the shielding effect of a shielding structure made of conductive material, consider a spherical shell made of a lossy (conductive) medium, and insert a minute Wa current source J or a minute magnetic current source JffI into the shell.
When the spherical shell exists, the electromagnetic field outside the spherical shell is determined, and the ratio to the electromagnetic field at the same distance when the spherical shell does not exist is calculated and used as the evaluation value of the shielding effect. In this case, when the wave source is a microcurrent, the shielding effect of the electric field is required, and when the wave source is a micromagnetic current, the shielding effect of the magnetic field is required. This is because a normal shielding housing covers the circuit or component with a cubic cover, so we introduced a spherical structure as a way to imitate this housing, and by adopting this structure, we can improve the actual shielding effect. It is now possible to understand quantitatively to a certain extent, and theoretically an exact solution exists. However, in the present invention, the shield housing is not limited to a spherical shape, and may be a cube itself, but for convenience of explanation, a spherical shape will be described here.

本発明では、上記のような球形シールドハウジングを模
すサンプル形状としてその半割体を用い、接地面に対す
る影像効果を利用して、球形サンプルの場合と等価の測
定結果を得ろものである。サンプルに半割体を用いるこ
とで接地面の裏側からサンプル中心の波源にケーブルを
介して給電できるようにし、またサンプル外の受信点か
らの受信出力も接地面裏側からケーブルで取出せるよう
にし、測定に対するアンテナの給電部の影響を影像効果
によって無視できる程度にまで軽減するものである。
In the present invention, half of the spherical shield housing is used as a sample shape imitating the above-mentioned spherical shield housing, and the image effect on the ground plane is used to obtain measurement results equivalent to those of the spherical sample. By using a half body for the sample, it is possible to feed power from the back side of the ground plane to the wave source at the center of the sample via a cable, and also to make it possible to take out the reception output from the receiving point outside the sample using a cable from the back side of the ground plane. This reduces the influence of the feeding part of the antenna on measurements to a negligible extent due to the imaging effect.

本発明の特徴と利点をさらに明確にするため、本発明の
好適な実施例を図面と共に説明すれば以下の通りである
In order to further clarify the features and advantages of the present invention, preferred embodiments of the present invention will be described below with reference to the drawings.

〔実施例〕〔Example〕

第1図に磁界シールド効果を測定するための本発明の実
施例装置の要部の構成を、また第2図に電界シールド効
果を測定するための本発明の実施例装置の要部の構成を
示す。第3図は測定系のブロック図である。
Fig. 1 shows the configuration of the main parts of the apparatus according to the present invention for measuring the magnetic field shielding effect, and Fig. 2 shows the structure of the main parts of the apparatus according to the present invention for measuring the electric field shielding effect. show. FIG. 3 is a block diagram of the measurement system.

第1,2図において、1は測定対象の導電性材料を成形
して1りたカップ状半割体の形状をもっテストサンプル
であり、金属平板2の円形開口部3にその口縁てはまり
込んで金属平板表面上に前記開口ぼと同径の外径の半球
殻を形成している。4は金具であり、金属平板2の裏面
に固定設置されたソケット5にねじ込まれて開口部3に
取り付けられ、サンプル1の口縁フランジ部6をその周
囲肩部で金属平板裏面に圧着すると共に上面部7が固定
状態で金属平板2の表面と面一になるように形成されて
いる。この場合、前記上回部7の外径はサンプル1の内
径と合致する寸法にされており、金属平板2の開口部3
との間にサンプル口縁を挟持するようにしである。尚、
金属平板2とサンプル1及び金具4を電気的に確実に接
触鎖せるために、サンプル1の口縁フランジ部6の表裏
面に導電材製網状パラキノ具を介防するのがよい一金具
4の上面部7の中心には、磁界シールド効!1!測定用
に第1図のような半ループアンテナ8a。
In Figures 1 and 2, 1 is a test sample having the shape of a cup-shaped half formed by molding the conductive material to be measured, and the test sample 1 fits into the circular opening 3 of the flat metal plate 2. A hemispherical shell having the same outer diameter as the aperture is formed on the surface of the flat metal plate. Reference numeral 4 denotes a metal fitting, which is screwed into a socket 5 fixedly installed on the back surface of the metal flat plate 2 and attached to the opening 3, and crimps the lip flange portion 6 of the sample 1 to the back surface of the metal flat plate with its peripheral shoulder. The upper surface portion 7 is formed to be flush with the surface of the metal flat plate 2 in a fixed state. In this case, the outer diameter of the upper portion 7 is sized to match the inner diameter of the sample 1, and the opening 3 of the metal flat plate 2 is dimensioned to match the inner diameter of the sample 1.
The rim of the sample is held between them. still,
In order to ensure electrical contact between the flat metal plate 2, the sample 1, and the metal fitting 4, it is preferable to interpose mesh-like metal fittings made of a conductive material on the front and back surfaces of the mouth flange portion 6 of the sample 1. The center of the upper surface part 7 has a magnetic field shielding effect! 1! A half-loop antenna 8a as shown in FIG. 1 is used for measurement.

または電界シールド効果測定用に第2図のようなモノポ
ールアンテナ9aが立設されており、また金属平板2の
表面上にも、対応するように第1図に示した半ループア
ンテナ8bまたは第2図に示したモノポールアンテナ9
bが立設されている。
Alternatively, for measuring the electric field shielding effect, a monopole antenna 9a as shown in FIG. Monopole antenna 9 shown in Figure 2
b is erected.

サンプル内外のアンテナ素子間の間隔寸法は、間隔があ
まり狭いと外側のアンテナ素子とサンプルとの間の相互
誘導作用が生じるので、これが生じない範囲でしかも受
信出力レベルが測定周波数範囲内で充分な受信感度レベ
ルとなるよう設定する。
The spacing between the antenna elements inside and outside the sample must be within a range that does not cause mutual induction between the antenna elements on the outside and the sample if the spacing is too narrow, and that the received output level is sufficient within the measurement frequency range. Set the reception sensitivity level.

これらアンテナ素子の給電点はいずれも金属平板表面レ
ベルにあり、これら給電点には金属平板裏面側からコネ
クタIon、b、lla、bが接続されている。金具4
内のコネクタ10a、11aは、ケーブルを介して送ら
れてくる第3図のパワーアンケ21で増幅された送受信
機セット22からの測定用高周波信号をアンテナ10a
、11゜に給電する。第3図では第1,2図の系を測定
チャンバ20として示しである。受信側のアンテナ8b
、9bからの受信出力はコネクタ10b、11bを介し
てケーブルにより第3図の信号分析装置23に送られ、
ここでシールド効果の評価計算に利用される。測定結果
は記録装置24によって記録される。
The feeding points of these antenna elements are all located at the surface level of the metal flat plate, and connectors Ion, b, lla, and b are connected to these feeding points from the back side of the metal flat plate. Metal fittings 4
The connectors 10a and 11a in the antenna 10a transmit high frequency signals for measurement from the transmitter/receiver set 22 amplified by the power amplifier 21 shown in FIG.
, 11°. In FIG. 3, the system of FIGS. 1 and 2 is shown as a measurement chamber 20. In FIG. Receiving side antenna 8b
, 9b is sent to the signal analyzer 23 shown in FIG. 3 by a cable via connectors 10b and 11b.
Here, it is used to evaluate the shielding effect. The measurement results are recorded by a recording device 24.

ここで分析装置23によるシールド効果の評価計算は、
例えば次のようにして行えばよい。
Here, the evaluation calculation of the shielding effect by the analyzer 23 is as follows:
For example, you can do it as follows.

−mにアンテナから放射される電磁界を求めるに?よ、
例えば良く知られたストラットンのri磁理論(J、人
、5tratton  +Electromagnet
ic  Theory−McGrow 1lill 1
941)に記述されているベクトル波動関数を用いて、
対象系に適合した座標における波動方程式の一般解に、
そこに存在する媒質でのfaal界の不連続性を満足す
る境界条件を導入して求められる。ここでは極座標での
波動方程式に電磁界の境界面での接線成分が等しいとい
う境界条件をあてはめることにより、任意の座標点での
電磁界強度が求められる。
-How to find the electromagnetic field radiated from the antenna in m? Yo,
For example, the well-known Stratton's magnetic theory (J, Man, 5tratton + Electromagnet
ic Theory-McGrow 1lill 1
Using the vector wave function described in 941),
For the general solution of the wave equation in coordinates adapted to the target system,
It is obtained by introducing a boundary condition that satisfies the discontinuity of the faal field in the medium that exists there. Here, the electromagnetic field strength at any coordinate point is determined by applying a boundary condition that the tangential components of the electromagnetic field at the boundary surface are equal to the wave equation in polar coordinates.

この発明では、前述のように金属平板2の表面が接地面
を与え、この接地面を境にして表面側のサシプルおよび
両アンテナ素子を含む半割形の系が影像効果によって裏
面側にも現れることになるので、半割形サンプルを球形
サンプルと看なして扱うことができる。従って前述の電
磁界強度の計算を、球殻として測定対象の導電性材料を
あてはめた場合と、導電率が零、比誘電率ε7=1.比
透磁率μm−1,即ち自由空間とした場合とについて行
って、両m磁界強度の比をとってシールド効果の評gF
Jt1とする。
In this invention, as mentioned above, the surface of the metal flat plate 2 provides a ground plane, and the half-shaped system including the sasiple on the front side and both antenna elements appears on the back side due to the image effect, with this ground plane as a boundary. Therefore, the half-split sample can be treated as a spherical sample. Therefore, the calculation of the electromagnetic field strength described above is performed when the conductive material to be measured is applied as a spherical shell, and when the conductivity is zero and the dielectric constant ε7=1. The relative magnetic permeability is μm-1, that is, the shielding effect is evaluated by taking the ratio of the magnetic field strength of both m and that of free space.
Let it be Jt1.

即ち磁界シールド効果S bは、サンプルがない場合の
磁界強度H0とサンプルが介在する場合の磁界強度■1
゜とから、 S h−201ag1.) (t−t I / II 
o)で求められる。また同様に電界シールド効果SL、
は、サンプルがない場合の磁界強度H、とサンプルが介
在する場合の磁界強度H0とから、S 、= 20 l
oguo (E t / E o)で求められる。
In other words, the magnetic field shielding effect S b is the magnetic field strength H0 when there is no sample and the magnetic field strength ■1 when there is a sample.
From ゜, Sh-201ag1. ) (t-t I/II
o). Similarly, the electric field shield effect SL,
From the magnetic field strength H when there is no sample and the magnetic field strength H0 when there is a sample, S , = 20 l
oguo (Et/Eo).

尚、本発明においてサンプルの寸法やアンテナ素子の寸
法は、測定する周波数の範囲内において各アンテナ素子
が微小アンテナと看なせ、共振状態が生じることなく、
アンテナ間の伝送特性ができる限り広いダイナミックレ
ンジを確保できるように決定されるのが望ましい。
In addition, in the present invention, the dimensions of the sample and the dimensions of the antenna elements are such that each antenna element can be regarded as a minute antenna within the frequency range to be measured, and a resonance state does not occur.
It is desirable that the transmission characteristics between the antennas be determined so as to ensure as wide a dynamic range as possible.

第4および5図に、3IIIm厚のプラスチック試料に
導電ペーストを塗布した内径50−の半球状サンプルに
ついて測定を行った結果を示す。図中の実線は計算値で
あるが、測定値との比較でも良い一致が見られる。
FIGS. 4 and 5 show the results of measurements performed on a hemispherical sample with an inner diameter of 50 mm, which is a 3IIIm thick plastic sample coated with conductive paste. Although the solid lines in the figure are calculated values, good agreement can be seen when compared with measured values.

〔発明の効果〕〔Effect of the invention〕

以上に述べたよう1こ、本発明によれば、導電性材料の
サンプル形状を半割体とすると共に、接地面に対する影
像効果を利用して測定を行うので、アンテナ素子へのケ
ーブル接続が通常の手法によって容易に行え、給電部の
影響が測定結果に現れにくいという利点を有するので、
各種導電性材料のシールド効果の評価手法として汎用性
に富んだ測定法と装置を提供できるものである。
As mentioned above, 1. According to the present invention, the sample shape of the conductive material is made into a half body, and measurement is performed using the image effect on the ground plane, so that the cable connection to the antenna element is usually This method has the advantage that it is easy to perform and the influence of the power supply part is less likely to appear in the measurement results.
It is possible to provide a versatile measuring method and device for evaluating the shielding effectiveness of various conductive materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁界シールド効果を測定するための本発明の実
施例装置の要部の構成を示す断面図、第2図は電界シー
ルド効果を測定するための本発明の実施例装置の要部の
構成を示す断面図、第3図は測定系のブロック図、第4
図と第5図は本発明の方法と装置による測定結果の一例
を示す線図である。 図において同一符号は同一または相当部分を示し、lは
テストサンプル、2は金属平板、3は開口部、4は金具
、5はソケッ1−16はフラシジ部、7は上面部、8a
、8bは半ループアンテナ、9a、9bばモノポールア
ンテナ、10a、bおよびlla、bはコネクタ、20
は測定チャンバ、21はパワーアンプ、22は送受信機
セット、23は分析装置、24は記録装置を示す。
FIG. 1 is a cross-sectional view showing the configuration of the main parts of an apparatus according to an embodiment of the present invention for measuring magnetic field shielding effects, and FIG. 2 is a sectional view showing the main parts of an apparatus according to an embodiment of the invention for measuring electric field shielding effects. A sectional view showing the configuration, Figure 3 is a block diagram of the measurement system, and Figure 4 is a block diagram of the measurement system.
5 and 5 are diagrams showing an example of measurement results obtained by the method and apparatus of the present invention. In the figures, the same reference numerals indicate the same or equivalent parts, l is the test sample, 2 is the metal flat plate, 3 is the opening, 4 is the metal fitting, 5 is the socket, 1-16 is the flush part, 7 is the top part, 8a
, 8b is a half-loop antenna, 9a, 9b are monopole antennas, 10a, b and lla, b are connectors, 20
21 is a measurement chamber, 21 is a power amplifier, 22 is a transceiver set, 23 is an analysis device, and 24 is a recording device.

Claims (1)

【特許請求の範囲】 1、接地された金属平板の表面に所定間隔を隔てて一対
の微小アンテナ素子を立設しておき、夫々金属平板の裏
面側に影像効果を生じるように、一方のアンテナ素子の
前記金属平板表面近傍の給電点に金属平板裏面側から給
電して金属平板表面側に電界または磁界波を放射すると
ともに、他方のアンテナ素子の金属平板表面近傍の受電
点からの受信出力を同様に金属平板裏面側から取出し、
更に前記一方のアンテナ素子の上に被測定対象の導電性
材料製のカップ状半割体からなるテストサンプルをアン
テナ素子の給電点と同心状に被せて該サンプルの口縁全
周で金属平板に接地させ、前記テストサンプルを配置せ
ずに両アンテナ素子間の空間が連続した状態での受信出
力と、前記テストサンプルを配置して両アンテナ素子間
の空間が前記テストサンプルで遮断された状態での受信
出力との比に基づいてシールド効果の評価を与えること
を特徴とする導電性材料のシールド効果測定法。 2、予め設定した周波数範囲にわたって連続的に測定す
る特許請求の範囲第1項に記載の測定法。 3、両アンテナ素子に半ループ状アンテナを用いて磁界
シールド効果の測定を行う特許請求の範囲第1項に記載
の測定法。 4、両アンテナ素子にモノポールアンテナを用いて電界
シールド効果の測定を行う特許請求の範囲第1項に記載
の測定法。 5、被測定対象の導電性材料製のカップ状半割体からな
るテストサンプルと、 該サンプルの口縁外周形状に合致する開口部を有する金
属平板と、 テストサンプルの口縁内周形状に合致する外形の平らな
上面部を有し該上面部が金属平板表面と面一になるよう
に金属平板裏面側から金属平板に取付けられる金具と、 該金具を着脱可能に金属平板に裏面側から固定するとと
もに固定状態で前記サンプル口縁全周を前記開口部の前
記上面部との隙間に挾持固定可能な連結機構と、 金属平板裏面側に影像効果を生じるように前記金具の上
面部の中央部に立設された第1の微小アンテナ素子と、 同様に金属平板裏面側に影像効果を生じるように前記金
属平板の表面の開口部中心から予め定められた距離だけ
離れた位置に立設された第2の微小アンテナ素子と、 金属平板裏面側から前記金具の第1の微小アンテナ素子
の前記金属平板表面近傍の給電点に高周波信号を給電す
るための信号給電手段と、 前記第2の微小アンテナ素子の金属平板表面近傍の受電
点から受信出力を金属平板裏面側において取出すための
信号取出手段と、 信号給電手段に前記高周波信号を供給する信号送出手段
と、 信号取出手段からの受信出力を受け、前記テストサンプ
ルを配置せずに両アンテナ素子間の空間が連続した状態
での受信出力と、前記テストサンプルを配置して両アン
テナ素子間の空間が前記テストサンプルで遮断された状
態での受信出力との比に基づいてシールド効果の評価を
与える分析手段、 とを備えたことを特徴とする導電性材料のシールド効果
測定装置。 6、テストサンプルが金属平板表面上で半球形状をなす
ことを特徴とする特許請求の範囲第5項に記載の測定装
置。 7、テストサンプルが金属平板表面上で立方体の半割形
状をなすことを特徴とする特許請求の範囲第5項に記載
の測定装置。 8、両アンテナ素子が半ループ状アンテナであることを
特徴とする特許請求の範囲第5項に記載の測定装置。 9、両アンテナ素子がモノポールアンテナであることを
特徴とする特許請求の範囲第5項に記載の測定装置。
[Scope of Claims] 1. A pair of micro antenna elements are erected at a predetermined distance on the surface of a grounded metal plate, and one of the antennas is arranged so as to produce an image effect on the back side of the metal plate. Power is fed from the back side of the metal flat plate to the power feeding point near the surface of the flat metal plate of the element, and an electric field or magnetic field wave is radiated to the front side of the metal flat plate, while receiving output from the power receiving point near the surface of the metal flat plate of the other antenna element. Similarly, take it out from the back side of the metal flat plate,
Furthermore, a test sample consisting of a cup-shaped half body made of a conductive material to be measured is placed on top of the one antenna element concentrically with the feeding point of the antenna element, and the entire periphery of the sample is covered with a metal flat plate. Reception output when grounded and the space between both antenna elements is continuous without placing the test sample, and when the test sample is placed and the space between both antenna elements is blocked by the test sample. A method for measuring the shielding effect of conductive materials, characterized by giving an evaluation of the shielding effect based on the ratio of the received output of the . 2. The measurement method according to claim 1, which continuously measures over a preset frequency range. 3. The measurement method according to claim 1, wherein the magnetic field shielding effect is measured using half-loop antennas for both antenna elements. 4. The measurement method according to claim 1, wherein the electric field shielding effect is measured using monopole antennas for both antenna elements. 5. A test sample consisting of a cup-shaped half body made of a conductive material to be measured, a metal flat plate having an opening that matches the outer circumference shape of the mouth edge of the sample, and a test sample that matches the inner circumference shape of the mouth edge of the test sample. A metal fitting that has a flat upper surface with an external shape and is attached to the flat metal plate from the back side of the metal flat plate so that the upper surface is flush with the surface of the metal flat plate, and the metal fitting is removably fixed to the metal flat plate from the back side. and a connecting mechanism capable of clamping and fixing the entire periphery of the sample mouth rim in a fixed state in the gap between the sample opening and the upper surface of the opening, and a central portion of the upper surface of the metal fitting so as to produce an image effect on the back side of the metal plate. a first micro antenna element erected; and a first micro antenna element erected at a predetermined distance away from the center of the opening on the surface of the flat metal plate so as to similarly produce an image effect on the back side of the flat metal plate; a second micro antenna element; a signal feeding means for feeding a high frequency signal from the back side of the metal flat plate to a feeding point near the surface of the metal flat plate of the first micro antenna element of the metal fitting; and the second micro antenna. Signal extraction means for extracting the received output from the power receiving point near the surface of the metal flat plate of the element on the back side of the metal flat plate; Signal output means for supplying the high frequency signal to the signal feeding means; Receiving the reception output from the signal extraction means. , Reception output when the test sample is not placed and the space between both antenna elements is continuous, and reception when the test sample is placed and the space between both antenna elements is blocked by the test sample. An apparatus for measuring the shielding effect of a conductive material, comprising: an analysis means for evaluating the shielding effect based on the ratio to the output. 6. The measuring device according to claim 5, wherein the test sample has a hemispherical shape on the surface of a flat metal plate. 7. The measuring device according to claim 5, wherein the test sample has a half-cubic shape on the surface of a flat metal plate. 8. The measuring device according to claim 5, wherein both antenna elements are half-loop antennas. 9. The measuring device according to claim 5, wherein both antenna elements are monopole antennas.
JP3219687A 1987-02-14 1987-02-14 Method and apparatus for measuring shield effect of electrically conductive material Granted JPS63200075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3219687A JPS63200075A (en) 1987-02-14 1987-02-14 Method and apparatus for measuring shield effect of electrically conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3219687A JPS63200075A (en) 1987-02-14 1987-02-14 Method and apparatus for measuring shield effect of electrically conductive material

Publications (2)

Publication Number Publication Date
JPS63200075A true JPS63200075A (en) 1988-08-18
JPH0573180B2 JPH0573180B2 (en) 1993-10-13

Family

ID=12352151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3219687A Granted JPS63200075A (en) 1987-02-14 1987-02-14 Method and apparatus for measuring shield effect of electrically conductive material

Country Status (1)

Country Link
JP (1) JPS63200075A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047297A (en) * 2004-07-05 2006-02-16 Ntt Docomo Inc Apparatus for measuring specific absorption rate
WO2014125563A1 (en) * 2013-02-12 2014-08-21 三菱電機株式会社 Partial discharge sensor evaluation method and partial discharge sensor evaluation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047297A (en) * 2004-07-05 2006-02-16 Ntt Docomo Inc Apparatus for measuring specific absorption rate
WO2014125563A1 (en) * 2013-02-12 2014-08-21 三菱電機株式会社 Partial discharge sensor evaluation method and partial discharge sensor evaluation device
GB2524686A (en) * 2013-02-12 2015-09-30 Mitsubishi Electric Corp Partial discharge sensor evaluation method and partial discharge sensor evaluation device
GB2524686B (en) * 2013-02-12 2017-12-27 Mitsubishi Electric Corp Partial discharge sensor evaluation method and partial discharge sensor evaluation apparatus
US10215794B2 (en) 2013-02-12 2019-02-26 Mitsubishi Electric Corporation Partial discharge sensor evaluation method and partial discharge sensor evaluation device apparatus

Also Published As

Publication number Publication date
JPH0573180B2 (en) 1993-10-13

Similar Documents

Publication Publication Date Title
US9699678B2 (en) Plane wave generation within a small volume of space for evaluation of wireless devices
JP3883847B2 (en) In-vehicle signal processor
US5633648A (en) RF current-sensing coupled antenna device
Hill et al. Radiated emissions and immunity of microstrip transmission lines: Theory and reverberation chamber measurements
RU2498332C2 (en) Portable device for detection of partial discharge
US10101489B2 (en) System for exploring underground geophysical properties and method for analyzing underground geophysical properties using the same
CN105116249B (en) A kind of the wide-band shield effectiveness test device and method of small-sized shielding case
CN106405661A (en) Hand-held safety-check device and safety-check method
CN207926604U (en) Antenna performance detecting system for intelligence instrument
JPS63200075A (en) Method and apparatus for measuring shield effect of electrically conductive material
JP4137111B2 (en) In-vehicle signal processing apparatus and in-vehicle radar apparatus
US20180325413A1 (en) Quantification of inhomogeneities in objects by electromagnetic fields
CN108519622B (en) Underground electric target detection method and device based on natural field source excitation
JPH10332754A (en) Proximity electromagnetic field probe, electromagnetic field measuring device using it, and method thereof
Ustuner et al. A method for evaluating the shielding effectiveness of small enclosures
Fujii Effects of feed gap arrangements of loop antennas on site validation for EMI measurements below 30 MHz
JP2831450B2 (en) Corona discharge detector
JP3208484U (en) Contact radar detector
US9509052B1 (en) Animal body antenna
Yukhanov et al. Error Analysis of the Resonant Input Impedance Meter of Vertical Antennas
JPH0523393B2 (en)
Soliman et al. Numerical and experimental study on three-dimensional localization for ultra-wideband impulsive noise sources
JP3205295B2 (en) Underground object detection device
JP2011017535A (en) Distant electromagnetic field noise measuring method and device
André et al. Integrateci modeling of near-field ground-penetrating radar and electromagnetic induction data for reconstructing multilayered media