JPS63200052A - Interface potential measuring device - Google Patents
Interface potential measuring deviceInfo
- Publication number
- JPS63200052A JPS63200052A JP3428787A JP3428787A JPS63200052A JP S63200052 A JPS63200052 A JP S63200052A JP 3428787 A JP3428787 A JP 3428787A JP 3428787 A JP3428787 A JP 3428787A JP S63200052 A JPS63200052 A JP S63200052A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- potential
- liquid
- pressure
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は固−液分散系の界面に存在する電荷量(電位差
)を測定する装置に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a device for measuring the amount of charge (potential difference) present at the interface of a solid-liquid dispersion system.
〈従来の技術〉
一般に、固体粒子が液体内に懸濁してなる固−液分散系
においては、その界面に存在する電荷量は、液中の電位
を零として相対的に電圧で表されるが、これを表現する
値としては界面動電位(ゼータ電位)が−最北されてい
る。<Prior art> Generally, in a solid-liquid dispersion system in which solid particles are suspended in a liquid, the amount of charge existing at the interface is expressed as a relative voltage, with the potential in the liquid being zero. , as a value expressing this, the interfacial potential (zeta potential) is -northmost.
このゼータ電位の測定法には、大別して電気泳動法、電
気浸透法、流動電位法および沈降電位法がある。これら
の中で、粒子径10μm以下の比較的安定した分散系の
測定には、通常、電気泳動法が用いられ、また、粒子径
1μm以上の粒子又は繊維等の粗大粒子あるいは不安定
系の測定には流動電位法が主として用いられている。Methods for measuring this zeta potential are broadly classified into electrophoresis, electroosmosis, streaming potential, and sedimentation potential. Among these, electrophoresis is usually used to measure relatively stable dispersion systems with a particle size of 10 μm or less, and also to measure coarse particles such as particles or fibers with a particle size of 1 μm or more or unstable systems. The streaming potential method is mainly used.
〈発明が解決しようとする問題点〉
常用される測定法のうち電気泳動法は、被測定分散系に
電気エネルギを与えて測定を行なう関係上、試料内の電
気浸透流、ジュール熱の発生、電極分解反応等の妨害因
子が多く、測定が繁雑となる。また、この電気泳動法の
うち、顕微鏡電気泳動法は、被測定懸濁液内において個
々の粒子が識別できることが条件であり、更に、移動速
度の統計的処理を行なう必要があって、同じように測定
の繁雑さを伴う。<Problems to be solved by the invention> Among commonly used measurement methods, the electrophoresis method performs measurements by applying electrical energy to the dispersed system to be measured. There are many interfering factors such as electrode decomposition reactions, making measurements complicated. In addition, among these electrophoresis methods, microelectrophoresis requires that individual particles can be identified in the suspension to be measured, and furthermore, it is necessary to perform statistical processing of the movement speed, which is similar to the electrophoresis method. This is accompanied by the complexity of measurement.
一方、流動電位法は機械的エネルギを分散系に与えて、
これにより生ずる電気出力を測定するので、前述したよ
うな妨害因子は少なくなるものの、液のみ透過し得るよ
うな容器等に粒子を充填して測定するので、測定に先立
って固体と液体とを分離する必要があるとともに、1μ
m以下の微粒子では、界面二重層の重なりが生じ、測定
結果が真の値よりも小さくなる側に誤差を生じるという
問題があった。On the other hand, the streaming potential method applies mechanical energy to the dispersed system,
Since the electrical output generated by this is measured, the interfering factors mentioned above are reduced, but since the particles are filled in a container etc. through which only the liquid can pass, it is necessary to separate the solid and liquid before measurement. 1μ
In the case of fine particles smaller than m, there is a problem in that the interfacial double layer overlaps, resulting in an error in the measurement result being smaller than the true value.
そこで、本発明者は既に、被測定懸濁液中に置かれたフ
ィルタの面上に懸濁粒子を付着堆積させ、そのフィルタ
を面方向に沿って振動させ、その振動方向に配設された
一対の電極から、界面電位に相関する交流信号を得るよ
う構成することにより、流動電位法に基づく装置で、し
かも測定に先立つ固体と液体との分離作業を不要とし、
かつ、1μm以下の微小粒子についても界面二重層の重
なりによる誤差の生じにくい界面動電位測定装置を提案
している(特開昭61−77752号)。Therefore, the present inventor has already deposited suspended particles on the surface of a filter placed in the suspension to be measured, vibrated the filter along the surface direction, and By configuring a pair of electrodes to obtain an alternating current signal that correlates to the interfacial potential, this device is based on the streaming potential method, and it eliminates the need to separate solids and liquids prior to measurement.
Furthermore, they have proposed an interfacial electrodynamic potential measuring device that is less prone to errors due to overlapping interfacial double layers even for microparticles of 1 μm or less (Japanese Patent Application Laid-Open No. 77752/1983).
ところが、この提案に基づく装置においては、ゼータ電
位に比例する情報が得られるものの、ゼータ電位の絶対
値を算出するためには界面二重層の厚みを求める必要が
あって、この厚みの測定は困難であるという問題があっ
た。However, although the device based on this proposal can obtain information proportional to the zeta potential, it is necessary to determine the thickness of the interfacial double layer in order to calculate the absolute value of the zeta potential, which is difficult to measure. There was a problem that.
本発明は上記に鑑みてなされたもので、基本的に流動電
位法を採用して前述の妨害因子を少なくするとともに、
この流動電位法の欠点である微粒子測定時における界面
二重層の重なりによる誤差を少なくし、しかも、ゼータ
電位の絶対値を容易に求めることのできる装置の提供を
目的としている。The present invention has been made in view of the above, and basically adopts the streaming potential method to reduce the above-mentioned interfering factors, and
The object of the present invention is to provide an apparatus that can reduce errors caused by the overlap of interfacial double layers when measuring fine particles, which is a drawback of this streaming potential method, and can also easily determine the absolute value of the zeta potential.
〈問題点を解決するための手段〉
上記の目的を達成するための構成を、実施例に対応する
第1図を参照しつつ説明すると、本発明は、被測定懸濁
液内の微粒子を通さない絶縁材料製フィルタ(例えば焼
結体細管)1に囲まれた流路Cと、その流路C内を、こ
の流路の外部(空隙G)よりも高い圧力を保持しつつ被
測定懸濁液を流す手段(例えば圧力源と、キャピラリコ
イルRを含む配管系S)と、流路Cの両端間の電位差を
測定する手段(例えば一対の電極7a、7bと電位測定
器8)と、流路Cの両端間の圧力差を測定する手段(例
えば圧力検出器9a、9bと圧力測定器10)を備え、
測定された電位差と圧力差から被測定懸濁液の固−液界
面の界面動電位を求め得るよう構成したことによって、
特徴づけられる。<Means for Solving the Problems> The configuration for achieving the above object will be explained with reference to FIG. 1 corresponding to the embodiment. A flow path C surrounded by a filter made of an insulating material (for example, a sintered compact tube) 1, and a suspension to be measured while maintaining a higher pressure inside the flow path C than the outside of this flow path (gap G). A means for flowing a liquid (for example, a pressure source and a piping system S including a capillary coil R), a means for measuring a potential difference between both ends of a flow path C (for example, a pair of electrodes 7a and 7b and a potential measuring device 8), comprising means (for example, pressure detectors 9a, 9b and pressure measuring device 10) for measuring the pressure difference between both ends of the channel C;
By configuring it so that the interfacial dynamic potential at the solid-liquid interface of the suspension to be measured can be determined from the measured potential difference and pressure difference,
characterized.
〈作用〉
流路C内の圧力をその外部よりも高い圧力を保持しつつ
被測定態液を流せば、液の一部はフィルタ1を通過して
外部に流れ、このとき粒子はフィルタ1の内面に吸い付
けられて付着する。フィルタ1の内面が全て粒子で覆わ
れた状態で流路Cの両端間の電位差Eを測定すると、そ
のEは粒子の界面電位に関係した値となり、そのときの
流路Cの両端間の電圧差Pを用いて、ヘルムホルツ・ス
モルコフスキーの式からゼータ電位を算出することがで
きる。<Function> If the liquid to be measured is made to flow while maintaining the pressure inside the flow path C higher than the pressure outside the flow path C, a part of the liquid passes through the filter 1 and flows to the outside, and at this time, particles are absorbed by the filter 1. It is attracted and attached to the inner surface. When the potential difference E between both ends of the flow path C is measured with the entire inner surface of the filter 1 covered with particles, E becomes a value related to the interfacial potential of the particles, and the voltage between both ends of the flow path C at that time is Using the difference P, the zeta potential can be calculated from the Helmholtz-Smolkowski equation.
ここで、電位差Eは、フィルタ1の内面の粒子群の堆積
層の表面の電荷量に基づくから、界面二重層の重なりに
よる誤差が少ない。Here, since the potential difference E is based on the amount of charge on the surface of the deposited layer of particle groups on the inner surface of the filter 1, there is little error due to the overlap of the interfacial double layer.
〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.
第1図は本発明実施例の構成図で、第2図はその細管1
の管壁の部分拡大断面図である。Fig. 1 is a block diagram of an embodiment of the present invention, and Fig. 2 is a thin tube 1 thereof.
FIG. 3 is a partially enlarged sectional view of the tube wall of FIG.
絶縁性粒子d・・・dをパイプ状に焼結してなる細管1
の管壁には、外部に通ずる細孔が多数存在しており、こ
の細管1自体がその内部の流路Cとその外部の空隙Gと
を仕切るフィルタの機能を備えている。A thin tube 1 formed by sintering insulating particles d...d into a pipe shape
There are many pores communicating with the outside in the tube wall, and the thin tube 1 itself has the function of a filter that partitions the flow path C inside the tube and the gap G outside the tube.
細管1の両端は、樹脂等の絶縁性材料で形成された保持
具2a、2bに着脱自在に保持され、被測定懸濁液中の
粒子の大きさに応じて適宜の細孔径を有するものが装着
される。Both ends of the thin tube 1 are removably held in holders 2a and 2b made of an insulating material such as resin, and have appropriate pore diameters depending on the size of particles in the suspension to be measured. It will be installed.
保持具2aには、細管1の周囲を囲む空隙Gと、そ′の
空隙Gの下端部および上端部にそれぞれ連通ずる空隙人
口3と空隙出口4、および細管1の内部の流路Cの下端
に連通ずる細管人口5が形成されている。保持具2bに
は、細管1内の流路Cの上端に連通ずる細胞出口6が形
成されている。The holder 2a includes a gap G surrounding the thin tube 1, a gap hole 3 and a gap outlet 4 communicating with the lower and upper ends of the gap G, respectively, and the lower end of the channel C inside the thin tube 1. A tubule population 5 is formed that communicates with the . A cell outlet 6 that communicates with the upper end of the channel C in the thin tube 1 is formed in the holder 2b.
流路Cの下端および上端にそれぞれ近接して、互いに対
向する白金綿製の一対の電極7aおよび7bが配設され
ており、この電極7a、7b間には電位測定器8が接続
されている。また、流路Cの下端と細管人口5との間、
および流路Cの上端と細管出口6との間には、それぞれ
圧力検出器9aおよび9bが配設されており、この圧力
検出器9a。A pair of electrodes 7a and 7b made of platinum cotton and facing each other are arranged close to the lower and upper ends of the channel C, respectively, and a potential measuring device 8 is connected between the electrodes 7a and 7b. . Moreover, between the lower end of the flow path C and the thin tube population 5,
Pressure detectors 9a and 9b are disposed between the upper end of the flow path C and the thin tube outlet 6, respectively, and the pressure detector 9a.
9bの出力は圧力測定器1oに供給され、これによって
流路Cの両端間の差圧を測定することができる。The output of 9b is supplied to a pressure measuring device 1o, thereby making it possible to measure the differential pressure between both ends of the channel C.
空隙人口3、空隙出口4、細管人口5および細管出口6
は、それぞれ図示のような配管系Sにより、被測定懸濁
液を収容する密閉容器11または排液容器12に導かれ
ている。すなわち、細管人口5は開閉弁■1を介して、
空隙人口3は開閉弁■2を介して密閉容器11に接続さ
れ、また、細管出口1はキャピラリコイルRを介して、
空隙出口4は開閉弁■、を介して排液容器12に導かれ
ている。Void population 3, void outlet 4, capillary population 5 and capillary outlet 6
are led to a closed container 11 or a drainage container 12 containing a suspension to be measured, respectively, by a piping system S as shown. In other words, the tubular population 5 passes through the on-off valve ■1,
The air gap population 3 is connected to the closed container 11 via the on-off valve 2, and the thin tube outlet 1 is connected to the capillary coil R via the capillary coil R.
The air gap outlet 4 is led to a drain container 12 via an on-off valve (2).
更に、細管出口6と空隙出口4との間は開閉弁■4を介
して連通している。Furthermore, the narrow tube outlet 6 and the gap outlet 4 are communicated via an on-off valve 4.
密閉容器11には加圧域が接続されており、この密閉容
器11内の被測定懸濁液を所定の圧力のもとに開閉弁V
、、V、を介して細管人口5、空隙人口3に流入させる
ことができる。A pressurized region is connected to the closed container 11, and the suspension to be measured in the closed container 11 is controlled by an on-off valve V under a predetermined pressure.
, , V, into the tubular population 5 and the void population 3.
次に、本発明実施例の作用を、測定手順とともに述べる
。Next, the operation of the embodiment of the present invention will be described together with the measurement procedure.
まず、開閉弁v1〜■、を全て開き、加圧域を駆動する
。これにより、流路Cおよび空隙G内は被測定懸濁液で
満たされる。引き続き加圧域を駆動した状態で、開閉弁
v3を閉じると、流路C内および空隙G内の懸濁液はい
ずれもキャピラリコイルRを介して排出されるから、流
路Cおよび空隙G内の圧力はいずれも高くなるが、この
状態ではこれら両者の圧力は同圧である。この時点から
電位測定器8および圧力測定器10による測定を開始す
3 る。この状態においては、第3図(alに示すよう
に、懸濁液内の粒子g、、1gは流路C内において流れ
に沿って移動する。従って、その時点において測定され
る電極7a、7b間の電位差Eは、細管1の内壁面と液
との界面電位に関係した値となる。First, all the on-off valves v1 to {circle around (2)} are opened to drive the pressurized area. As a result, the flow path C and the gap G are filled with the suspension to be measured. When the on-off valve v3 is closed while the pressurized region is still being driven, the suspension in the flow path C and the gap G is discharged through the capillary coil R. Both pressures increase, but in this state, both pressures are the same. From this point on, measurements using the potential measuring device 8 and the pressure measuring device 10 are started. In this state, as shown in FIG. The potential difference E between them is a value related to the interfacial potential between the inner wall surface of the thin tube 1 and the liquid.
次に、開閉弁V2とV4を閉じ、■、を開く。これによ
り、空隙Gは大気圧、流路Cは加圧状態となるから、第
3図(b)に示すように、流路C内の液の一部は細管1
の壁の細孔を通って空隙G側に流出するが、細管1の細
孔径を懸濁液内の粒子径より小さくしておけば、流路C
内の粒子g、、、gは細管1の壁面に吸い付けられる状
態、いわゆる吸引濾過の状態となる。粒子g300gが
吸引されて停滞すると、粒子g0.gと液とが相対運動
する形となるので、電極7a、7b間の電位差Eには粒
子の電荷が含まれるようになる。細管1の内壁面が完全
に粒子g000gに覆われるまで濾過を行えば、その時
点における電極7a、?b間の電位差Eは粒子g 、0
. gの界面電位に関係した値となる。すなわち、この
時点における電位差Eおよび流路C両端の圧力差Pカラ
、下記のへルムホルツ・スモルコフスキーの式により被
測定懸濁液のゼータ電位ζを算出することができる。Next, close the on-off valves V2 and V4, and open (2). As a result, the gap G is at atmospheric pressure and the flow path C is under pressure, so as shown in FIG. 3(b), part of the liquid in the flow path C is
It flows out to the gap G side through the pores in the wall, but if the pore diameter of the thin tube 1 is made smaller than the particle diameter in the suspension, the flow path C
The particles g, . When particle g300g is sucked and stagnates, particle g0. Since the liquid and the liquid move relative to each other, the potential difference E between the electrodes 7a and 7b includes the charge of the particles. If filtration is performed until the inner wall surface of the thin tube 1 is completely covered with particles g000g, the electrodes 7a, ? The potential difference E between b is particle g, 0
.. The value is related to the interfacial potential of g. That is, the zeta potential ζ of the suspension to be measured can be calculated using the potential difference E at this point and the pressure difference P between both ends of the flow path C, and the Helmholtz-Smolkowski equation below.
4πη λE
ζ= □ ・ □
ε P
ここで、ηは液の粘性係数、εは液の誘電率、λは液の
導電率である。ここで、電位差Eは、細管1の内壁面の
粒子g031gの堆積層の表面の電荷量に基づく値であ
るから、界面二重層の重なりによる誤差は少ない。4πη λE ζ= □ · □ ε P Here, η is the viscosity coefficient of the liquid, ε is the dielectric constant of the liquid, and λ is the electrical conductivity of the liquid. Here, since the potential difference E is a value based on the amount of charge on the surface of the deposited layer of particles g031g on the inner wall surface of the thin tube 1, there is little error due to the overlap of the interfacial double layer.
なお、流路Cにおける流速■が大きければ粒子g、1g
が壁面から剥がされるので、流速■はある程度遅くする
必要があるが、キャピラリコイルRはこの流速Vを下げ
る機能をも有している。In addition, if the flow velocity ■ in the channel C is large, the particles g, 1 g
is peeled off from the wall surface, so the flow velocity (2) needs to be slowed down to some extent, but the capillary coil R also has the function of lowering this flow velocity (V).
また、細管1の内径、すなわち流路Cの径は通常1龍Φ
以下に設定されるが、ここに液を流したときにその圧力
損失がある程度大きくなるよう、流路Cの長さとの兼ね
あいにより、適宜の径に設定しておくことが望ましい。In addition, the inner diameter of the thin tube 1, that is, the diameter of the flow path C is usually 1.
Although the diameter is set as follows, it is desirable to set the diameter to an appropriate value in consideration of the length of the flow path C so that the pressure loss when the liquid flows here is increased to some extent.
以上の実施例では、流路C内の粒子を細管1の壁面に吸
引濾過すべく、キャピラリコイルRを設けて流路C内の
圧力を大気圧の空隙G内圧力よりも高くしたが、キャピ
ラリコイルRを設けず、空隙G内を減圧することによっ
て流路Cとの圧力差を生じさせるよう構成することもで
きる。In the above embodiment, a capillary coil R was provided to make the pressure in the channel C higher than the atmospheric pressure in the gap G in order to suction-filter the particles in the channel C to the wall surface of the thin tube 1. It is also possible to create a configuration in which the coil R is not provided and the pressure inside the gap G is reduced to create a pressure difference with the flow path C.
また、以上の実施例では、流路Cを焼結体よりなるパイ
プ状の細管1により形成したが、例えば第4図(a)ま
たは(b)に分解斜視図を示すように、平板状の焼結体
41a、41bを対向させて、あるいは目ざら板42a
、42bと濾紙43a、43bの組み合わせたものを互
いに対向させて、パツキン44a、44bを挟んで流路
Cを形成することもできる。Further, in the above embodiment, the flow path C was formed by the pipe-shaped thin tube 1 made of a sintered body, but for example, as shown in the exploded perspective view in FIG. The sintered bodies 41a and 41b are placed opposite each other, or the grout plate 42a
, 42b and the filter papers 43a, 43b may be made to face each other to form the flow path C with the gaskets 44a, 44b sandwiched therebetween.
〈発明の効果〉
以上説明したように、本発明によれば、フィルタで囲ま
れた流路内を、外部よりも高い圧力を保持しつつ被測定
懸濁液を流すことにより、その流路を形成するフィルタ
面上に懸濁液中の粒子を吸引付着させ、その流路の両端
の電位差および圧力差を測定し得るよう構成したから、
得られた電位差と圧力差を用いてヘルムホルツ・スモル
コフスキーの弐から直ちにゼータ電位を算出することが
できる。しかも、その測定原理は流動電位法に基づいて
おり、電気エネルギを加えないので、浸透流、ジュール
熱、分解等による妨害因子が少なく、その影響を受けな
いばかりでなく、従来の流動電位法のように18m以下
等の微粒子域での界面二重層の重なりによる誤差が少な
く、かつ測定に先立っての固液分離の必要がない。<Effects of the Invention> As explained above, according to the present invention, the suspension to be measured is allowed to flow through the flow path surrounded by a filter while maintaining a higher pressure than the outside. Because the structure is such that the particles in the suspension can be suctioned and adhered to the filter surface to be formed, and the potential difference and pressure difference between both ends of the flow path can be measured.
Using the obtained potential difference and pressure difference, the zeta potential can be immediately calculated from Helmholtz-Smolkowski's 2. Moreover, the measurement principle is based on the streaming potential method, and since no electrical energy is added, there are fewer interfering factors such as osmotic flow, Joule heat, decomposition, etc. As such, there is little error due to overlapping of interfacial double layers in the particle area of 18 m or less, and there is no need for solid-liquid separation prior to measurement.
第1図は本発明実施例の構成図、
第2図はその細管1の管壁の部分拡大断面図、第3図は
その作用説明図、
第4図は本発明の他の実施例の流路Cの説明図である。
1・・・細管(絶縁性粒子焼結体)
2a、>b・・・保持具
3・・・空隙入口
4・・・空隙出口
5・・・細管入口
6・・・細管出口
アa、7b・・・電極
8・・・電位測定器
9a、9b・・・圧力検出器
10・・・圧力測定器
11・・・密閉容器
C・・・流路
G・・・空隙
R・・・キャピラリコイル
V、〜■4・・・開閉弁
特許出願人 株式会社島津製作所代 理 人
弁理士 西1)新
築1図
第2図
(Q)
4b
第3図 (b)Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a partially enlarged sectional view of the tube wall of the thin tube 1, Fig. 3 is an explanatory diagram of its operation, and Fig. 4 is a flowchart of another embodiment of the present invention. It is an explanatory diagram of road C. 1... Thin tube (insulating particle sintered body) 2a,>b... Holder 3... Gap inlet 4... Gap outlet 5... Thin tube inlet 6... Thin tube outlet a, 7b ... Electrode 8 ... Potential measuring device 9a, 9b ... Pressure detector 10 ... Pressure measuring device 11 ... Closed container C ... Channel G ... Gap R ... Capillary coil V, ~■4... On-off valve patent applicant Representative of Shimadzu Corporation
Patent Attorney Nishi 1) New construction 1 diagram 2 (Q) 4b Figure 3 (b)
Claims (1)
てその固−液界面に存在する電荷量を測定する装置であ
って、被測定懸濁液内の微粒子を通さない絶縁材料製フ
ィルタによって囲まれた流路と、その流路内を、当該流
路の外部よりも高い圧力を保持しつつ被測定懸濁液を流
す手段と、上記流路の両端間の電位差を測定する手段と
、上記流路の両端間の圧力差を測定する手段を備え、上
記電位差および圧力差の測定値から被測定懸濁液の固−
液界面の界面動電位を求め得るよう構成したことを特徴
とする、界面電位測定装置。This is a device that measures the amount of charge existing at the solid-liquid interface in a solid-liquid dispersion system in which solid particles are suspended in a liquid. an enclosed flow path, means for flowing the suspension to be measured while maintaining a higher pressure within the flow path than the outside of the flow path, and means for measuring a potential difference between both ends of the flow path; A means for measuring the pressure difference between both ends of the flow path is provided, and the solid state of the suspension to be measured is determined based on the measured values of the potential difference and pressure difference.
An interfacial potential measuring device characterized by being configured to be able to determine the interfacial dynamic potential of a liquid interface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3428787A JPS63200052A (en) | 1987-02-16 | 1987-02-16 | Interface potential measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3428787A JPS63200052A (en) | 1987-02-16 | 1987-02-16 | Interface potential measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63200052A true JPS63200052A (en) | 1988-08-18 |
Family
ID=12409942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3428787A Pending JPS63200052A (en) | 1987-02-16 | 1987-02-16 | Interface potential measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63200052A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5498336A (en) * | 1991-02-22 | 1996-03-12 | Terumo Kabushiki Kaisha | Leukocyte-removing filter and leukocyte-removing apparatus furnished therewith |
US6051124A (en) * | 1996-09-27 | 2000-04-18 | Nec Corporation | Zeta-potential determining apparatus |
US7368053B2 (en) * | 2004-02-13 | 2008-05-06 | Chung Yuan Christian University | Membrane zeta potential measuring system |
-
1987
- 1987-02-16 JP JP3428787A patent/JPS63200052A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5498336A (en) * | 1991-02-22 | 1996-03-12 | Terumo Kabushiki Kaisha | Leukocyte-removing filter and leukocyte-removing apparatus furnished therewith |
US6051124A (en) * | 1996-09-27 | 2000-04-18 | Nec Corporation | Zeta-potential determining apparatus |
US7368053B2 (en) * | 2004-02-13 | 2008-05-06 | Chung Yuan Christian University | Membrane zeta potential measuring system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8721892B2 (en) | Integrated chromatography devices and systems for monitoring analytes in real time and methods for manufacturing the same | |
CN100348323C (en) | Microfluidic apparatus with integrated porous-substrates/sensor for real-time biochemical molecule detection | |
US4602989A (en) | Method and apparatus for determining the zeta potential of colloidal particles | |
EP2021092A2 (en) | A nanopore particle analyzer, method of preparation and use thereof | |
WO2005026665A2 (en) | Microfluidic flow monitoring device | |
EP1432500B1 (en) | Sieve electroosmotic flow pump | |
US9201058B2 (en) | Apparatus and method for sensing a time varying ionic current in an electrolytic system | |
WO2009014792A2 (en) | Electrical detection using confined fluids | |
CN107870055B (en) | System for detecting pressure in microfluidic channels, manufacturing method and detection method thereof | |
JP4152949B2 (en) | Method for measuring impedance in a liquid microsystem | |
US7037082B2 (en) | Corbino disc electroosmotic flow pump | |
CN105651643A (en) | Virtual impactor and particle separation and concentration detecting device and method based on 3D printing technology | |
JPS63200052A (en) | Interface potential measuring device | |
Pagliara et al. | Parallel sub-micrometre channels with different dimensions for laser scattering detection | |
Hochmuth et al. | The viscosity of neutrophils and their transit times through small pores | |
Liu et al. | Conductivity detection for monitoring mixing reactions in microfluidic devices | |
Ibanez et al. | Streaming potential and phenomenological coefficients in Nuclepore membranes | |
Biefer et al. | Electroosmosis and streaming in natural and synthetic fibers | |
Zhang et al. | Electrofiltration of aqueous suspensions | |
Paul et al. | Electrokinetic pump application in micro-total analysis systems mechanical actuation to HPLC | |
CN205506606U (en) | Virtual offend ware and particle separation and concentration detector based on 3D printing technique | |
KR101776134B1 (en) | Apparatus and method for label-free sensing by electrokinetic streaming potential in microfluidic-chip based pathogen detection | |
Rodier et al. | Streaming current measuring for determining the zeta potential of granular particles | |
JP5074934B2 (en) | Fine particle concentration measuring apparatus and fine particle concentration measuring method | |
JPS5818157A (en) | Zeta potential measuring device |