JPS63199283A - Solidifying material consisting of hydraulic fine powder - Google Patents

Solidifying material consisting of hydraulic fine powder

Info

Publication number
JPS63199283A
JPS63199283A JP62030282A JP3028287A JPS63199283A JP S63199283 A JPS63199283 A JP S63199283A JP 62030282 A JP62030282 A JP 62030282A JP 3028287 A JP3028287 A JP 3028287A JP S63199283 A JPS63199283 A JP S63199283A
Authority
JP
Japan
Prior art keywords
soil
blast furnace
gypsum
solidifying
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62030282A
Other languages
Japanese (ja)
Inventor
Yoshiji Koide
小出 儀治
Yoshiyuki Niizaki
新崎 義幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Cement Co Ltd
Original Assignee
Nittetsu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Cement Co Ltd filed Critical Nittetsu Cement Co Ltd
Priority to JP62030282A priority Critical patent/JPS63199283A/en
Publication of JPS63199283A publication Critical patent/JPS63199283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE:To obtain a solidifying material outstanding in curability and strength, for use in high-organic matter sludge of high water content and peat, by grinding or classifying a mixture of specified proportion of blast furnace granulated slag, Portland cement clinker and gypsum into ultrafine powder. CONSTITUTION:The objective solidifying agent for incorporation in pozzolana soil, sandy soil or soil predominant in sand content followed by agitation to develop high strength can be obtained by grinding or classifying a total of 1,000pts.wt. of a mixture prepared by blending (A) 100-900pts.wt. of blast furnace granulated slag, (B) 100-700pts.wt. of Portland cement clinker and (C) 50-200pts.wt. of gypsum into ultrafine powder with a fineness (Blaine value) of 6,000-14,000cm<2>/g beyond common sense for conventional cement-based materials.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、土壌有機物を多量に含む土や、微粒子が多く
含水比の高いヘドロなどの固化に、優れた硬化性を有し
、また、砂分の多い土に使用した場合、高い強度を発現
する固化材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention has excellent hardening properties for solidifying soil containing a large amount of soil organic matter and sludge with many fine particles and high water content. This relates to a solidification material that exhibits high strength when used in soil with a large amount of soil.

従来の技術 従来のセメント系固化材では、ポ・ルトランドセメント
系クリンカーに石こうなどの硫酸塩を混合し、クリンカ
ー鉱物あるいは土粒子中の人l、0.と反応させてエト
リンガイト(30aO−AI!雪03・3CasOa・
32H會0)を生成させることを主作月としてきた。
2. Description of the Related Art Conventional cement-based solidifying materials mix sulfates such as gypsum with Portland cement-based clinker, and remove carbon dioxide from clinker minerals or soil particles. By reacting with ettringite (30aO-AI! Snow 03, 3CasOa,
The main work has been to generate 32H meeting 0).

エトリンガイトは、多量の土中水を結合水として取り込
み、長い針状結晶によってネットワーク構造を発達させ
て、土粒子を拘束する効果がある。
Ettringite takes in a large amount of soil water as bound water, develops a network structure with long needle-like crystals, and has the effect of restraining soil particles.

しかしながら、ポルトランドセメントに含まれるAI!
、 O,量は、たかだか5%程であり、土粒子に作用し
て可溶性A/、0.と反応しなければエトリンガイドは
十分に発達しない。
However, the AI contained in Portland cement!
, O, amount is about 5% at most, and acts on soil particles to reduce soluble A/, 0. If it does not react with , the ettrin guide will not fully develop.

ヘドロなどの含水比の高い土では、土粒子量が少く、ま
た含まれている有機物は、固化材−土粒子の相互作用を
阻害するため固化効果は小さかった。
In soil with a high water content such as sludge, the amount of soil particles is small, and the organic matter contained inhibits the interaction between the solidification agent and the soil particles, so the solidification effect is small.

これに対して、高炉水砕には16%程の活性度の高いM
、01が含まれ、これを原料に有する固化材は固化反応
時にAJ!、0.が捕われるため、エトリンガイトの生
成が高進される。また、土中有機物は有機酸カルシウム
を沈着させて固化材の水和反応を妨害するが、高炉水砕
は余剰のカルシクムイオンを吸収するためそれらを緩和
する作用もある。
On the other hand, blast furnace granulation contains M with a high activity of about 16%.
, 01 is included, and the solidification material containing this as a raw material is AJ! during the solidification reaction. ,0. is captured, increasing the production of ettringite. In addition, organic matter in the soil deposits organic acid calcium and interferes with the hydration reaction of the solidifying material, but blast furnace granulation absorbs excess calcium ions and has the effect of alleviating this.

このような利点を有しながら、従来高炉水砕が固化材材
料として用いることが少なかったのは、以下の理由によ
ると考えられる。
Although it has such advantages, the reason why blast furnace granules have rarely been used as a solidifying material is thought to be due to the following reasons.

発明が解決しようとする問題点 (1)  初期反応性が低いため、AI!、0.の溶出
速度が小さく、エトリンガイトの生成が十分に行なわれ
ない。
Problems to be solved by the invention (1) Due to low initial reactivity, AI! ,0. The elution rate is low, and ettringite is not produced sufficiently.

(2)  温度による影響を受は易く、特に低温下での
強度発現性が小さい。
(2) Easily affected by temperature, especially low strength development at low temperatures.

(3)  ヘドロなどのへンドリンク性改善を目的に固
化材を使用する場合、混合時の粘性増加が小さく、効果
があがらない。
(3) When using a solidifying agent for the purpose of improving sludge and other sludge, the increase in viscosity during mixing is small and the effect is not high.

以上のような欠点があるため、ヘドロや高有機質土の固
化には、以醇は高炉水砕を用いず、アルミナセメントや
ジェットセメント、アーウィンなど水和の際にAI!s
osを補うような高価な材料を使用していた。
Because of the drawbacks mentioned above, blast furnace granulation is not used for solidifying sludge or high organic soil, and AI! s
They used expensive materials that supplemented the OS.

問題点を解決するための手段 本発明者は、特殊クリンカーなど高価な材料を用いるこ
となく、ヘドロの固化効果を高めるために、高炉水砕、
セメントクリンカ−およ″び石こうからなる混合物の粉
末度を著しく増大させることを考案した。
Means for Solving the Problems The present inventor developed blast furnace granulation,
It has been devised to significantly increase the fineness of a mixture consisting of cement clinker and gypsum.

高炉水砕粉末の粉末度を上昇することによって硬化反応
を促進できることは従来から知られていたが、実用化さ
れていた粉末度は、高炉セメントなどで用いられている
ようにたかだか3,600〜4200cL/りのブレー
ン値である。本発明では、いままでセメント系では考え
られなかったブレーン6.000〜14,000 c4
/Pの超微粉にすることで高炉水砕の豊富なAI!、0
.をメカノケミカル的に活用しようとするものである。
It has long been known that the hardening reaction can be promoted by increasing the fineness of granulated blast furnace powder, but the fineness that has been put into practical use is at most 3,600~3,600, as is used in blast furnace cement. The Blaine value is 4200 cL/liter. In the present invention, a brane of 6,000 to 14,000 c4, which was previously unthinkable in cement-based
/P ultra-fine powder provides abundant AI for blast furnace granulation! ,0
.. This is an attempt to utilize mechanochemically.

超微粉化することによる固化材としての効果は以下のと
おりである。
The effects of ultra-fine pulverization as a solidifying agent are as follows.

il+  高炉水砕のガラスを形成している5iO−の
鎖状結合の切断面を多くし表面活性度を増大させること
で、klsO−の溶出速度を高めエトリンガイトの生成
を高進させる。
il+ By increasing the number of cut surfaces of the 5iO- chain bonds forming the blast furnace granulated glass and increasing the surface activity, the elution rate of klsO- is increased and the production of ettringite is accelerated.

(2:  高炉水砕とクリンカー粒子の有効反応面積を
増大させて、C−8−H系のゲル化を促進すると共に、
未反応部分の残存を減少させる。
(2: Increase the effective reaction area of blast furnace granulation and clinker particles to promote gelation of C-8-H system,
Reduces residual unreacted parts.

(3)  高炉水砕粉末の欠点である低温下での遅硬性
が、反応性が高まることで改善される。
(3) The slow hardening at low temperatures, which is a drawback of granulated blast furnace powder, is improved by increasing reactivity.

などの効果により、初期硬化性を高める。また、微粒化
された固化材は固化対象物との混合の際に細い土粒子間
にまで進入して作用するために対象物の粘性を増加させ
、ハンドリング性を改善するのに効果的である。
These effects improve initial curing properties. In addition, the atomized solidification agent works by penetrating between thin soil particles when mixed with the object to be solidified, increasing the viscosity of the object and effectively improving handling properties. .

以上のように超微粉は、高含水、高有機質ヘドロや泥炭
など固化な行うのに好適である。
As described above, the ultrafine powder is suitable for solidifying sludge and peat with high water content and high organic content.

特許請求の範囲で、本発明の粉末度をブレーン値6,0
00al’F以上としたのは、それ以下では効果的に作
用する微細粒子分が相対的に少くなるためである。(実
施例1) また、上限は14,000d/9のブレーン値であるが
これ以上では粒子同士の凝集が生じ易く、同化対象物と
の混合の際に分散性が悪化することと、製造過程で微粒
子の表面変質が生じ活性度が低下することを考慮したた
めである。
In the claims, the fineness of the present invention is defined as Blaine value 6.0.
The reason why it is set to 00al'F or more is because if it is less than that, the amount of fine particles that act effectively becomes relatively small. (Example 1) Furthermore, although the upper limit is the Blaine value of 14,000 d/9, if it exceeds this value, the particles tend to aggregate with each other, resulting in poor dispersibility when mixed with the assimilation target, and the manufacturing process This was done in consideration of the fact that surface deterioration of the fine particles occurs and the activity decreases.

固化材の配合については、高炉水砕の100〜900皿
量部(以下、単に部と表記)に対して、石こうを50〜
200部としたのは、石こう量が不足すればエトリンガ
イトが十分に生成せず、また石こう量が過剰である場合
、未反応部分が残存するか、長期の遅れ膨張による強度
低下を生じるおそれがあるため゛である。
Regarding the composition of the solidifying agent, 50 to 900 parts of gypsum (hereinafter simply referred to as parts) of granulated blast furnace are mixed.
The reason for setting the amount to 200 parts is that if the amount of gypsum is insufficient, ettringite will not be sufficiently generated, and if the amount of gypsum is excessive, unreacted parts may remain or strength may decrease due to long-term delayed expansion. It's tame.

一方、クリンカー量は100〜700部であシ、高炉水
砕のアルカリ刺戟材としての働きおよび水硬性を考えた
もので、好ましくは200〜500部である。
On the other hand, the amount of clinker is 100 to 700 parts, and is preferably 200 to 500 parts considering the function of the blast furnace granulated alkali stimulant and hydraulic properties.

また、本発明者はとの固化材で火山灰土や砂質土など砂
分が卓越する土を処理した場合、高い強度を発現するこ
とを発見した。(実施例2)これは、砂などの比較的粗
い粒子を含む土では、土粒子間の空隙をエトリンガイト
が伸長し、ネットワークを形成して土粒子を拘束する。
The present inventor also discovered that when soil with a predominant sand content, such as volcanic ash soil or sandy soil, is treated with the above solidification material, high strength is exhibited. (Example 2) This is because, in soil containing relatively coarse particles such as sand, ettringite extends the voids between the soil particles, forms a network, and restrains the soil particles.

それKより、土粒子を骨材とした堅牢な構造体を形成す
るものと推察される。従来の高炉水砕系固化材でもエト
リンガイトは発達するが、粉末度がブレーン値3.60
0 ”’ 4200 dv’Pと低いために、水砕粉末
粒子の水和が長期間にわたることによシ、初期における
強度不足や遅れ膨張による固結体のゆるみが生じる。
From this, it is inferred that a sturdy structure is formed using soil particles as aggregate. Ettringite develops even with conventional blast furnace granulated solidification materials, but the fineness is at a Blaine value of 3.60.
Since the pulverized powder particles have a low dv'P of 4200 dv'P, the hydration of the pulverized powder particles takes a long period of time, resulting in insufficient initial strength and loosening of the solidified body due to delayed expansion.

これに対して本発明では、高粉末度化し、反応性を高め
ることによって以上の欠点を克服したものと考える。
On the other hand, in the present invention, the above-mentioned drawbacks are considered to be overcome by increasing the powder degree and increasing the reactivity.

この超微粉は、低粉末度の固化材に混合して、その固化
性能を高めるために用いることも可能である。すなわち
、ポルトランドセメント系クリンカーと石こう、あるい
はそれに高炉水砕を含むブレーン値2,000〜5,0
00 cd/9の固化材に、特許請求の範囲第1項記載
の超微粉を添加し、ヘドロや泥炭の固化に好適な材料に
改良することができる。
This ultrafine powder can also be used to improve the solidification performance of a low-powdery solidification material by mixing it with the solidification material. That is, a Blaine value of 2,000 to 5,0 containing Portland cement clinker and gypsum, or blast furnace granulation.
By adding the ultrafine powder described in claim 1 to the solidifying material of 0.00 cd/9, it is possible to improve the solidifying material into a material suitable for solidifying sludge and peat.

(実゛施例3) 実施例 以下、実施例を挙げて説明する。実施中0印を付した記
号は本発明を表わす。
(Example 3) Example The following is an explanation using an example. Symbols marked with 0 during implementation represent the present invention.

実施例1 普通ポルトランドセメントクリンカ−1高炉水砕および
■型石ζうを第2表のように配合し、ボールミルで各粉
末度(ブレーン値)まで粉砕して4試料を得た。これら
を札幌市近郊で採取した第1表に示す性状の泥炭に対し
て、各々外側で301i量鴨添加し、ソイルミキナ−で
混合した。この混合土で5j’XIQcmhのテストピ
ースを作成し、−軸圧縮強さを測定した。
Example 1 Ordinary Portland cement clinker-1 blast furnace granules and ■-type stone were mixed as shown in Table 2, and ground to various powder degrees (Blaine values) using a ball mill to obtain four samples. To peat having the properties shown in Table 1 collected near Sapporo, 301 i of duck was added to the outside of each peat and mixed in a soil mixer. A test piece of 5j'XIQcmh was prepared from this mixed soil, and the -axial compressive strength was measured.

第1表 泥炭の性状 第2表 泥炭に対する固化材の配合と強さA−1は8m
高炉セメントの配合であシ、ブレーン値の近いA−2と
比べると石こう量の多い方が効果があることがわかる。
Table 1: Properties of peat Table 2: Composition of solidification agent for peat and strength A-1 is 8m
It can be seen that a larger amount of gypsum is more effective than A-2, which has a similar Blaine value and contains blast furnace cement.

また、A−2,3および本発明A−4は同じ配合である
が粉末度が高いほど効果が大きく、入−3とA−4との
ブレーン値の差は1.500aL/F程であるが、−軸
圧縮強さは2倍はど大きい結果となうた。
In addition, A-2, 3 and A-4 of the present invention have the same formulation, but the higher the powderiness, the greater the effect, and the difference in Blaine value between I-3 and A-4 is about 1.500aL/F. However, the -axial compressive strength was twice as large.

実施例2 早強ポルトランドセメントクリンカ−とn型石こうを第
4表のB−2のように、また、上記の原料と高炉水砕な
り−3,4のように配合した。これらにジエチレングリ
コールな微m添加してボールミルで粉砕し、気流分級機
で分級して表に示すブレーン値の固化材を試製した。ま
た、B−1,5の固化材はボールミルで粉砕したが分級
は行わなかった。第3表に示す性状の火山灰土にこれら
511II類の固化材を各々300勢q、水を300 
/汐になるように加凡てソイルミキナ−で混合を行うた
Example 2 Early-strength Portland cement clinker and n-type gypsum were mixed as shown in B-2 in Table 4, and the above raw materials and blast furnace granules -3 and 4 were mixed. A small amount of diethylene glycol was added to these, ground in a ball mill, and classified in an air classifier to produce a trial solidified material having the Blaine value shown in the table. Furthermore, the solidified materials B-1 and 5 were ground in a ball mill, but were not classified. Add 300 q of each of these type 511II solidification materials and 300 q of water to volcanic ash soil with the properties shown in Table 3.
Mixing was done in a soil mixer until the mixture was mixed.

水の添加は、固化材混合後のコンシスチンシーを調整す
るためと、固化材の水和に必要な水を補給するために行
ったものである。この混合土で5り×1oclRhのテ
ストピースを作成し、−軸圧縮強さを測定した。
Water was added to adjust the consistency after mixing the solidifying material and to supply water necessary for hydration of the solidifying material. A test piece of 5 x 1 oclRh was prepared using this mixed soil, and the -axial compressive strength was measured.

結果を第4表に記す。The results are shown in Table 4.

第3表 火山灰の性状 第4表 火山灰に対する固化材の配合と強さB−1と2
には同じ配合であるがブレーン値が5.000c4/り
ほど異なるため、B−2の圧縮強さは高い。一方、B−
2と本発明B−3,4は同程度のブレーン値であるが、
高炉水砕の配合量が多くなるに従って、強さは高くなる
。特に、B−4のように水砕が700部であるとき、初
期強さく3日強さ)はB−2と比べて6割増し、B−1
と比べて2信販とも大きくなっている。なお、比較のた
めのB−5はB−4と同じ配合であるが、粉末度が低い
ため強さは著しく小さい。
Table 3 Properties of volcanic ash Table 4 Composition and strength of solidifying agent for volcanic ash B-1 and 2
B-2 has the same composition, but the Blaine value differs by about 5.000c4/liter, so the compressive strength of B-2 is high. On the other hand, B-
2 and the present invention B-3 and 4 have similar Blaine values, but
As the amount of blast furnace granulation increases, the strength increases. In particular, when the granulated water is 700 parts like B-4, the initial strength (3-day strength) is 60% higher than that of B-2, and B-1
Compared to the previous year, both Shinpan sales were larger. Incidentally, B-5 for comparison has the same formulation as B-4, but its strength is extremely low due to its low powderiness.

実施例3 高炉水砕510部、普通ポルトランドセメントクリンカ
−450部、石こう40部をボールミルで混合・粉砕し
、気流分級機で分級してブレーン値10,080c4/
Fの粉末(以下、超微粉と称する)を製造した。
Example 3 510 parts of blast furnace granules, 450 parts of ordinary Portland cement clinker, and 40 parts of gypsum were mixed and ground in a ball mill, and classified in an air classifier to obtain a Blaine value of 10,080c4/
A powder of F (hereinafter referred to as ultrafine powder) was produced.

小樽運河から採取した第5表の性状のヘドロに第6表に
示すような配合からなる固化材を外側で20i量鴨添加
し混合して、次の試験を行った。
The following test was carried out by adding 20 grams of a solidification material having the composition shown in Table 6 to the sludge collected from the Otaru Canal and having the properties shown in Table 5 on the outside.

1)フロー試験 固化材混合直後のヘドロを上面内径38m、底面内径8
9m、高さ74mの70−コーンに充填し、フローコー
ンを静かに引き上げて、広がったヘドロの直径を測定し
た。
1) Flow test The sludge immediately after mixing the solidifying material was placed into a tube with an inner diameter of 38 m on the top surface and an inner diameter of 8 m on the bottom surface.
A 70-cone measuring 9 m long and 74 m high was filled, the flow cone was gently pulled up, and the diameter of the expanded sludge was measured.

2)−軸圧縮試験 5pX10cmhのテストピースを作成して5°Cおよ
び20 ’Cに養生したときの一軸圧縮強さを測定した
2) - Axial compression test A test piece of 5p x 10cmh was prepared and the uniaxial compression strength was measured when it was cured at 5°C and 20'C.

結果を第6表に記す。The results are shown in Table 6.

第5表 ヘドロの性状 汎用セメントと■型石こうからなる固化材C−1,2と
比べて、本発明の微粉末を加え九〇−3,4は圧縮強さ
が高くなり、超微粉i too部よりも200部のほう
が効果が大きいことがわかる。また、微粉末900部に
U型石こう100部を混合したC−5では、著しい強さ
の発現を示す結果となった。
Table 5 Properties of sludge Compared to solidifying materials C-1 and C-2, which are made of general-purpose cement and type gypsum, 90-3 and 4, which contain the fine powder of the present invention, have higher compressive strength, and ultra-fine powder i too It can be seen that the effect is greater for 200 copies than for 200 copies. In addition, C-5, in which 900 parts of fine powder was mixed with 100 parts of U-type gypsum, showed remarkable strength.

5°Cで養生した場合、8種高炉セメントに■型石こう
を加えたC−2は、普通ポルトランドセメントと■型石
こうからなるC−tよシも圧縮強さは小さいが、超微粉
を加えることで低温でも強度発現性の大きい固化材に改
善することができる。
When cured at 5°C, C-2, which is made by adding ■-type gypsum to Type 8 blast furnace cement, has a lower compressive strength than C-t, which consists of ordinary Portland cement and ■-type gypsum, but it also has a smaller compressive strength, but when ultrafine powder is added. By doing so, it is possible to improve the solidified material to have high strength development even at low temperatures.

混合直後のフロー値は、加える超微粉量が増すに従って
減少しており、粘性が増加していることがわかる。
It can be seen that the flow value immediately after mixing decreases as the amount of ultrafine powder added increases, indicating that the viscosity increases.

このことから、超微粉の添加はヘドロ処理の際のハンド
リング性の改善に有用であるといえる。
From this, it can be said that the addition of ultrafine powder is useful for improving handling properties during sludge treatment.

発明の効果 本発明は、高炉水砕、ポルトランドセメント系クリンカ
ーおよび石こうからなる混合物の粉末度をと昇すること
によって、反応活性を高めた固化材に関するものである
。その効果は、ヘドロなどの高含水対象物を処理した場
合、 (1)  反応初期に#量のエトリンガイトを生成させ
て含水比を低下させ、土粒子を拘束して堅牢な構造を形
成する。それ故、固化処理土の初期硬化性が高い。
Effects of the Invention The present invention relates to a solidifying material in which the reaction activity is increased by increasing the fineness of a mixture consisting of granulated blast furnace, Portland cement clinker, and gypsum. The effect is that when treating a highly water-containing object such as sludge: (1) In the early stage of the reaction, # amount of ettringite is generated to lower the water content ratio and bind soil particles to form a robust structure. Therefore, the initial hardening property of the solidified soil is high.

(2)固化材が細い土粒子間まで進入して作用するため
、固化対象物の粘性を増加させるので、ハンドリング性
の改善に効果的である。
(2) Since the solidifying agent penetrates into and acts between thin soil particles, it increases the viscosity of the solidified object, which is effective in improving handling properties.

(3)  高炉゛水砕系固化材の低温下での遅硬性を改
善する。
(3) Improving the slow hardening properties of blast furnace granulated solidification materials at low temperatures.

などが挙げられる。また、泥炭などの高有機質土を処理
した場合、 (4)  高炉水砕粉末がCa  イオンを吸収するた
めに有機酸々ルシウムの生成を抑制し、水和反応を持続
させるので固化性能が高い。
Examples include. In addition, when treating highly organic soil such as peat, (4) granulated blast furnace powder absorbs Ca ions, suppressing the production of organic acid lucium and sustaining the hydration reaction, resulting in high solidification performance.

砂質土なと砂分が卓越した土を処理した場合、15+ 
 エトリンガイトによるネブトワーク構造で反応初期に
おいて著しい強度発現性を示す。また高炉水砕系固化材
に特徴的な遅れ膨張がなく、強度低下がない。
When treating sandy soil with a high sand content, 15+
The nebutwerk structure of ettringite shows remarkable strength development in the early stage of the reaction. In addition, there is no delayed expansion characteristic of blast furnace granulated solidified materials, and there is no decrease in strength.

(61粉末度の低いポルトランドセメント系固化材に本
発明の超微粉を混合した場合、固化性能を改善すること
ができる。
(61) When the ultrafine powder of the present invention is mixed with a Portland cement-based solidifying material having a low fineness, the solidifying performance can be improved.

以上挙げたように1本発明は多目的で硬化性に優れた固
化材である。
As mentioned above, the present invention is a solidifying material that is versatile and has excellent curability.

Claims (3)

【特許請求の範囲】[Claims] (1)高炉水砕を100〜900重量部、ポルトランド
セメント系クリンカーを100〜700重量部、石こう
を50〜200重量部、合計1000重量部になるよう
に配合した混合物を粉砕するか分級して、従来セメント
系では常識で考えられなかった粉末度(ブレーン値)6
,000〜14,000cm^2/gの超微粉にした高
含水、高有機質ヘドロおよび泥炭用固化材。
(1) A mixture of 100 to 900 parts by weight of blast furnace granulated water, 100 to 700 parts by weight of Portland cement clinker, and 50 to 200 parts by weight of gypsum, for a total of 1000 parts by weight, is pulverized or classified. , fineness (Brain value) of 6, which was unthinkable in conventional cement-based products.
,000 to 14,000cm^2/g ultra-fine powder with high water content and high organic content, solidification material for sludge and peat.
(2)火山灰土、砂質土など砂分が卓越する土に添加、
攪拌して高強度を発現させる特許請求の範囲第1項記載
の固化材。
(2) Added to soil with predominant sand content, such as volcanic ash soil and sandy soil.
The solidifying material according to claim 1, which develops high strength by stirring.
(3)ポルトランドセメント系クリンカーと石こう、あ
るいは、それに高炉水砕を含むブレーン値2,000〜
5,000cm^2/gの固化材に混合して、固化性能
を高めるために用いる特許請求の範囲第1項記載の固化
材用添加材。
(3) Blaine value of 2,000~ containing Portland cement clinker and gypsum, or blast furnace granulation
The additive for solidifying material according to claim 1, which is used to improve solidifying performance by being mixed with 5,000 cm^2/g of solidifying material.
JP62030282A 1987-02-12 1987-02-12 Solidifying material consisting of hydraulic fine powder Pending JPS63199283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62030282A JPS63199283A (en) 1987-02-12 1987-02-12 Solidifying material consisting of hydraulic fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62030282A JPS63199283A (en) 1987-02-12 1987-02-12 Solidifying material consisting of hydraulic fine powder

Publications (1)

Publication Number Publication Date
JPS63199283A true JPS63199283A (en) 1988-08-17

Family

ID=12299363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62030282A Pending JPS63199283A (en) 1987-02-12 1987-02-12 Solidifying material consisting of hydraulic fine powder

Country Status (1)

Country Link
JP (1) JPS63199283A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320646A (en) * 1992-05-26 1993-12-03 Denki Kagaku Kogyo Kk Flame-resisting grout for binding rock bed
JPH0633057A (en) * 1992-07-14 1994-02-08 Ube Ind Ltd Grout for improving soil
JPH06287555A (en) * 1993-03-31 1994-10-11 Onoda Cement Co Ltd Solidifier for organic soft ground
JP2007138102A (en) * 2005-11-22 2007-06-07 Mitsubishi Materials Corp Solidification agent for soil remediation
EP2594336A1 (en) * 2011-11-21 2013-05-22 Helmut Schirmbrand Method and device for milling mineral substances and mineral substance
WO2017085689A1 (en) * 2015-11-19 2017-05-26 Cementos Argos S.A. Method for obtaining microcements for injection grouts and microcement obtained
JP2018193515A (en) * 2017-05-22 2018-12-06 株式会社デイ・シイ High organic soil and solidification material for humus soil
JP2021130581A (en) * 2020-02-19 2021-09-09 株式会社トクヤマ Method of producing blast furnace cement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320646A (en) * 1992-05-26 1993-12-03 Denki Kagaku Kogyo Kk Flame-resisting grout for binding rock bed
JPH0633057A (en) * 1992-07-14 1994-02-08 Ube Ind Ltd Grout for improving soil
JPH06287555A (en) * 1993-03-31 1994-10-11 Onoda Cement Co Ltd Solidifier for organic soft ground
JP2007138102A (en) * 2005-11-22 2007-06-07 Mitsubishi Materials Corp Solidification agent for soil remediation
EP2594336A1 (en) * 2011-11-21 2013-05-22 Helmut Schirmbrand Method and device for milling mineral substances and mineral substance
WO2017085689A1 (en) * 2015-11-19 2017-05-26 Cementos Argos S.A. Method for obtaining microcements for injection grouts and microcement obtained
JP2018193515A (en) * 2017-05-22 2018-12-06 株式会社デイ・シイ High organic soil and solidification material for humus soil
JP2021130581A (en) * 2020-02-19 2021-09-09 株式会社トクヤマ Method of producing blast furnace cement

Similar Documents

Publication Publication Date Title
CA2085219C (en) Highly durable cement products containing siliceous ashes
US5693137A (en) Use of alumina clay with cement fly ash mixtures
CN112010603A (en) High-water-permeability concrete and preparation method thereof
US3230103A (en) Non-plastic composition containing pozzolan, lime and blast furnace slag
JP5500828B2 (en) Soil hardening material
JPH0122209B2 (en)
JPS63199283A (en) Solidifying material consisting of hydraulic fine powder
JP3099166B2 (en) Hydraulic composition
JP7084111B2 (en) Solidifying material for highly organic soil or humus soil
EP0498815B1 (en) Process for producing an active fine aggregate for the preparation of concrete
JP3516547B2 (en) Spraying material and spraying method using it
RU2656270C1 (en) Low water demand cement and method of its manufacturing
JP2000096051A (en) Solidifying material for soil improvement
JPH1161125A (en) Grouting material
JP2005162564A (en) Expansion material for mortar concrete and concrete using it
JPH03185091A (en) Solidifying material of highly organic soil
JPS5835944B2 (en) Anti-caking agent for blast furnace slag granulated sand
JPH10245555A (en) Cemental solidifier for organic soil
JP3114478B2 (en) Grout wood
JP4559090B2 (en) Expandable admixture and method for producing the same
KR0118631B1 (en) High Strength Hardener Composition
JP2001019529A (en) Cement hardened product
JPH0393657A (en) Hydraulic paving material
WO2019093099A1 (en) Expansive cement admixture, expansive cement admixture slurry, and expansive cement concrete prepared using same and method for production thereof
KR100457419B1 (en) Cement additives by means of slag