JPS6319915Y2 - - Google Patents

Info

Publication number
JPS6319915Y2
JPS6319915Y2 JP12973681U JP12973681U JPS6319915Y2 JP S6319915 Y2 JPS6319915 Y2 JP S6319915Y2 JP 12973681 U JP12973681 U JP 12973681U JP 12973681 U JP12973681 U JP 12973681U JP S6319915 Y2 JPS6319915 Y2 JP S6319915Y2
Authority
JP
Japan
Prior art keywords
voltage
thermistor
resistor
comparison element
compared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12973681U
Other languages
Japanese (ja)
Other versions
JPS5836489U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12973681U priority Critical patent/JPS5836489U/en
Publication of JPS5836489U publication Critical patent/JPS5836489U/en
Application granted granted Critical
Publication of JPS6319915Y2 publication Critical patent/JPS6319915Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、補償式スポツト型感知器に関する
もので、従来のダイヤフラム、バイメタルに替え
て、感温素子である、サーミスタあるいはダイオ
ードを用いて、構成し、従来の接点キヤツプ、リ
ーク孔等の高度な機械的寸法精度を省き、悪環境
への対応、経年変化への対応が可能な、補償式ス
ポツト型感知器を提供することを目的とする。
[Detailed description of the invention] This invention relates to a compensated spot type sensor, which uses a temperature sensing element such as a thermistor or diode instead of the conventional diaphragm or bimetal, and uses a conventional contact cap. It is an object of the present invention to provide a compensation type spot-type sensor that does not require high mechanical dimensional accuracy such as leak holes, and can cope with adverse environments and aging.

この考案の補償式スポツト型感知器の一実施例
を図面にて説明する。
An embodiment of the compensated spot type sensor of this invention will be explained with reference to the drawings.

第1図において、感温素子のサーミスタTh1
固定抵抗R2により電圧を分割する点Aに、電圧
比較素子PUT1のアノード側を接続してあり、上
記サーミスタTh1と同特性で熱容量の小さい感温
素子Th2と固定抵抗R3により、電圧を分割する点
Bが上記電圧比較素子PUT1のゲートへ接続して
ある。なおかつB点は、他の電圧比較素子PUT2
のゲートへ接続してある。この電圧比較素子
PUT2のアノードには、固定抵抗R4とR5により電
圧を分割する基準電圧点Cが接続してある。
PUT1・2のカソードは2個共トランジスタQに
接続してあり、トランジスタはその出力側がサイ
リスタSCRのゲートへ接続してある。
In Fig. 1, the anode side of the voltage comparison element PUT 1 is connected to point A where the voltage is divided by thermistor Th 1 of the temperature sensing element and fixed resistor R 2 , and it has the same characteristics as the thermistor Th 1 mentioned above and a heat capacity. A voltage dividing point B is connected to the gate of the voltage comparison element PUT 1 by means of a small temperature sensing element Th 2 and a fixed resistor R 3 . Moreover, point B is another voltage comparison element PUT 2
It is connected to the gate. This voltage comparison element
The anode of PUT 2 is connected to a reference voltage point C that divides the voltage by fixed resistors R 4 and R 5 .
The cathodes of PUT1 and PUT2 are both connected to the transistor Q, and the output side of the transistor is connected to the gate of the thyristor SCR.

A点とB点との電圧を比較して、温度上昇率を
B点とC点を比較して定温を検知する。
A constant temperature is detected by comparing the voltages at point A and point B, and comparing the temperature increase rate at point B and point C.

今、温度が急激に上昇すると、サーミスタTh1
の抵抗値はゆつくりと減少するため、A点の電圧
はゆるやかに降下する。一方Th2の抵抗値は急激
に減少し、B点の電圧は急激に降下する。ゆえに
A点とB点の電圧を電圧比較素子PUT1で比較し
てトランジスタQをスイツチングして、その出力
でサイリスタSCRをトリガするのてある温度上
昇率以上になるとスイツチングする回路ができ
る。またB点と基準電圧点のC点を比較すること
により、一定温度になつたときスイツチングする
回路ができる。
Now, when the temperature rises rapidly, the thermistor Th 1
Since the resistance value of A gradually decreases, the voltage at point A gradually decreases. On the other hand, the resistance value of Th 2 rapidly decreases, and the voltage at point B rapidly drops. Therefore, a circuit is created in which the voltages at points A and B are compared by the voltage comparison element PUT 1 , the transistor Q is switched, and the output triggers the thyristor SCR, which switches when the temperature rise rate exceeds a certain level. Also, by comparing point B and point C, which is a reference voltage point, a circuit that switches when a certain temperature is reached can be created.

次にスイツチング回路のトリガ方法として、従
来は第2図のように、電圧比較素子PUTのアノ
ードにコンデンサCを入れておき、電圧比較素子
PUTがオンした際、その充電された電荷が放電
する時に流れる電流を利用して、トリガ電流を流
す方法であつたが、この回路は電源を切つた時、
コンデンサの放電のためにアノード電位はすぐに
下がらずアノード電位がゲード電位より高くな
り、電圧比較素子PUTはオン状態になる。この
状態はコンデンサの放電が終るまで続くため、電
源を切つた後すぐに再び電源を入れると、電圧比
較素子のオン状態が持続する。
Next, as a trigger method for the switching circuit, conventionally, as shown in Figure 2, a capacitor C is inserted into the anode of the voltage comparison element PUT.
When the PUT was turned on, the current that flowed when the charged charge was discharged was used to flow the trigger current, but when the power was turned off, this circuit
Due to the discharge of the capacitor, the anode potential does not drop immediately and becomes higher than the gate potential, and the voltage comparison element PUT turns on. This state continues until the capacitor finishes discharging, so if the power is turned on again immediately after being turned off, the voltage comparison element remains on.

本考案では第1図のように、コンデンサを用い
ずにトランジスタQを用いたため、電圧比較素子
PUT1又はPUT2がオン状態になるとトランジス
タQにバイアスが加わり、コレクターエミツタ間
に電流が流れて、スイツチング回路にトリガ電流
を供給するため、電源オン・オフによる電圧比較
素子の誤動作は起らない。
In this invention, as shown in Figure 1, we used a transistor Q instead of a capacitor, so the voltage comparison element
When PUT 1 or PUT 2 is turned on, bias is applied to transistor Q, and current flows between collector and emitter, supplying trigger current to the switching circuit, so malfunction of the voltage comparison element due to power on/off does not occur. do not have.

さらに第2図の従来回路では周囲温度が高いと
きサーミスタTh1・Th2の分圧電圧が小さくなり
コンデンサに加わる電圧が低いため充電される電
荷量が小さくなりトリガ電流も小さくなるが、本
案ではスイツチング回路に流れるトリガ電流はト
ランジスタQのエミツタから供給されるため常に
一定となる。
Furthermore, in the conventional circuit shown in Figure 2, when the ambient temperature is high, the divided voltage of the thermistors Th 1 and Th 2 becomes small, and the voltage applied to the capacitor is low, so the amount of charge charged is small and the trigger current is also small. The trigger current flowing through the switching circuit is always constant because it is supplied from the emitter of the transistor Q.

尚、第1図のC1及びR1は漏れ電流・ノイズの
吸収用でR6はトランジスタQへのノイズの吸収
用で、R7はサイリスタSCRへのトリガ電流の調
整用抵抗である。
Note that C 1 and R 1 in FIG. 1 are for absorbing leakage current and noise, R 6 is for absorbing noise to the transistor Q, and R 7 is a resistor for adjusting the trigger current to the thyristor SCR.

以上の説明の様に本考案は電源に、抵抗R2
サーミスタTh1・抵抗R3とサーミスタTh1と同一
特性で熱容量の小さいサーミスタTh2・抵抗R4
抵抗R5の基準電圧回路とを夫々接続し、サーミ
スタTh1の分圧電圧とサーミスタTh2の分圧電圧
を電圧比較素子PUT1で比較して所定電圧差で差
動温度検知信号をトリガ出力し、サーミスタTh2
の分圧電圧と基準電圧を電圧比較素子PUT2で比
較し所定電圧差で定温検知信号をトリガ出力し、
両トリガ出力をオア接続したスイツチング素子か
ら感知出力を出力してなる構成としたから、従来
の機械式感知器での接点ギヤツプ、リーク孔等の
高度な機械的寸法精度を省き、悪環境への対応、
経年変化への対応が可能となつたこと、更に半導
体式の補償式スポツト型感知器として感温素子を
2個直列に接続して構造的に熱応答に差を持たせ
て温度上昇率を検出し、一定温度にはもう1個の
サーミスタを使用するものとくらべ、本案では感
温素子2個と電圧比較素子1個で温度上昇率を検
出し、素子の1個を共用して別の電圧比較素子を
用いて一定温度を検出するようにしたので、回路
が簡単となつた。またスイツチング回路のトリガ
にトランジスタ1個を使用したため、トリガ電圧
が一定となり、スイツチングが円滑になり、電源
オン−オフ時の不作動現象が解消された。
As explained above, the present invention uses a reference voltage circuit for the power supply consisting of resistor R 2 , thermistor Th 1 , resistor R 3 , and thermistor Th 2 , which has the same characteristics as thermistor Th 1 but has a small heat capacity, resistor R 4 , and resistor R 5 . The divided voltage of thermistor Th 1 and the divided voltage of thermistor Th 2 are compared with the voltage comparison element PUT 1 , and a differential temperature detection signal is triggered at a predetermined voltage difference, and the thermistor Th 2
The divided voltage and the reference voltage are compared by voltage comparison element PUT 2 , and a constant temperature detection signal is triggered at a predetermined voltage difference, and
Since the sensing output is output from a switching element with both trigger outputs OR-connected, it eliminates the need for high mechanical dimensional precision such as contact gaps and leak holes in conventional mechanical sensors, making it less susceptible to harsh environments. correspondence,
In addition to being able to cope with changes over time, the temperature rise rate can be detected by connecting two temperature-sensing elements in series as a semiconductor-based compensated spot sensor to create a structural difference in thermal response. However, compared to the method that uses one more thermistor to maintain a constant temperature, this method uses two temperature sensing elements and one voltage comparison element to detect the temperature rise rate, and uses one of the elements in common to detect a different voltage. Since a constant temperature is detected using a comparison element, the circuit becomes simple. Furthermore, since one transistor is used for the trigger of the switching circuit, the trigger voltage becomes constant, switching becomes smooth, and the phenomenon of inoperation when the power is turned on and off is eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の実施例の回路図である。第2
図は従来例の回路図である。 図面で、Th1,Th2はサーミスタ、R2,R3
R4,R5は固定抵抗、PUT1,PUT2は電圧比較素
子、Qはトランジスタ、SCRはサイリスタであ
る。
FIG. 1 is a circuit diagram of an embodiment of the present invention. Second
The figure is a circuit diagram of a conventional example. In the drawing, Th 1 , Th 2 are thermistors, R 2 , R 3 ,
R 4 and R 5 are fixed resistors, PUT 1 and PUT 2 are voltage comparison elements, Q is a transistor, and SCR is a thyristor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電源に、抵抗R2とサーミスタTh1・抵抗R5
サーミスタTh1と同一特性で熱容量の小さいサー
ミスタTh2・抵抗R4と抵抗R5の基準電圧回路と
を夫々接続し、サーミスタTh1の分圧電圧とサー
ミスタTh2の分圧電圧を電圧比較素子PUT1で比
較して所定電圧差で差動温度検知信号をトリガ出
力し、サーミスタTh2の分圧電圧と基準電圧を電
圧比較素子PUT2で比較し所定電圧差で定温検知
信号をトリガ出力し、両トリガ出力をオア接続し
たスイツチング素子から感知出力を出力してなる
補償式スポツト型感知器。
Connect resistor R 2 and thermistor Th 1 , resistor R 5 and the reference voltage circuit of thermistor Th 2 , which has the same characteristics as thermistor Th 1 but has a small heat capacity, resistor R 4 and resistor R 5 to the power supply, and connect the thermistor Th 1 to the reference voltage circuit. The divided voltage and the divided voltage of thermistor Th 2 are compared with the voltage comparison element PUT 1 , and a differential temperature detection signal is triggered and output at a predetermined voltage difference, and the divided voltage of thermistor Th 2 and the reference voltage are compared with the voltage comparison element PUT. This is a compensated spot type sensor that outputs a fixed temperature detection signal as a trigger based on a predetermined voltage difference compared between
JP12973681U 1981-08-31 1981-08-31 Compensated spot type sensor Granted JPS5836489U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12973681U JPS5836489U (en) 1981-08-31 1981-08-31 Compensated spot type sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12973681U JPS5836489U (en) 1981-08-31 1981-08-31 Compensated spot type sensor

Publications (2)

Publication Number Publication Date
JPS5836489U JPS5836489U (en) 1983-03-09
JPS6319915Y2 true JPS6319915Y2 (en) 1988-06-02

Family

ID=29923397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12973681U Granted JPS5836489U (en) 1981-08-31 1981-08-31 Compensated spot type sensor

Country Status (1)

Country Link
JP (1) JPS5836489U (en)

Also Published As

Publication number Publication date
JPS5836489U (en) 1983-03-09

Similar Documents

Publication Publication Date Title
US4319233A (en) Device for electrically detecting a liquid level
US4931737A (en) Circuit for measuring the capacity of a battery
JPS6319915Y2 (en)
US3702921A (en) Precision temperature control circuit with improved reliability
JPS5839397A (en) Compensation type spot sensor
US3757229A (en) Thermal pollution monitoring device
JPS59104515A (en) Detector for liquid level
JPH0251129B2 (en)
JPH05312619A (en) Oil level detector
JPH0663800B2 (en) Heater temperature control circuit
JP2681478B2 (en) Semiconductor heat detector
US5144309A (en) Analog-to-digital converter to be used along with a resistive sensor
JPH0252970B2 (en)
JP3519464B2 (en) Heat detector
JPH0134101Y2 (en)
JP2509090Y2 (en) Heat sensor
JPS5928333Y2 (en) differential fire detector
JP3015488B2 (en) Compensated heat detector
TWM629074U (en) Flow rate detection device
KR0159236B1 (en) Method and device for sensing room temperature
JP2769911B2 (en) Pressure sensing circuit
JPS6018006B2 (en) temperature detection circuit
JPH08254469A (en) Drive circuit for temperature sensing part
JPS625664Y2 (en)
JPS6155717A (en) Power supply device