JPS63198998A - Optically active carboxylic acid and production of antipode ester thereof - Google Patents

Optically active carboxylic acid and production of antipode ester thereof

Info

Publication number
JPS63198998A
JPS63198998A JP2953587A JP2953587A JPS63198998A JP S63198998 A JPS63198998 A JP S63198998A JP 2953587 A JP2953587 A JP 2953587A JP 2953587 A JP2953587 A JP 2953587A JP S63198998 A JPS63198998 A JP S63198998A
Authority
JP
Japan
Prior art keywords
ester
optically active
carboxylic acid
bacterium
active carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2953587A
Other languages
Japanese (ja)
Other versions
JP2639651B2 (en
Inventor
Akihiro Sakimae
崎前 明宏
Ryozo Numazawa
沼沢 亮三
Hisao Onishi
久雄 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2953587A priority Critical patent/JP2639651B2/en
Publication of JPS63198998A publication Critical patent/JPS63198998A/en
Application granted granted Critical
Publication of JP2639651B2 publication Critical patent/JP2639651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled compound useful as an intermediate raw material for synthesizing a preformed chemical mediator industrially and advantageously, by treating a specific ester with an enzyme capable of asymmetrically hydrolyzing ester bond, a culture solution or a treated material of a bacterium. CONSTITUTION:An ester [e.g. (+ or -)-beta-chloroisobutyric acid methyl ester, etc.] shown by formula I (R1 and R2 are alkyl; X is halogen) is treated with an enzyme capable of asymmetrically hydrolyzing ester bond, a culture solution of a bacterium, a cell or a treated material of the cell to give the aimed optically active carboxylic acid (e.g. beta-chloroisobutyric acid, etc.) shown by formula II or an antipode ester thereof. A bacterium belonging the genus Acinetobacter, Pseudomonas, Escherichia coli, Staphylococcus, Alcaligenes, Micrococcus, Agrobacterium etc., is preferably used as the bacterium.

Description

【発明の詳細な説明】 本発明は、一般式 %式%() (式中R1はアルキル基、又はハロゲン原子を示す)で
表わされる光学活性カルボン酸及びその対掌体エステル
の新規な製造法に関する。
Detailed Description of the Invention The present invention provides a novel method for producing an optically active carboxylic acid represented by the general formula % (in which R1 represents an alkyl group or a halogen atom) and its enantiomer ester. Regarding.

弐Iのカルボン酸及びその対掌体エステルは光学活性を
有する種々の生理活性物質を合成するための中間原料と
して有用である。従来、これらの光学活性体の製造法と
しては、あらかじめ有機合成的にラセミ体を合成したの
ち、各種の光学分割剤を用いて分割する方法、すなわち
物理化学的に一方の光学活性体とその対掌体とに分別す
る方法(特開昭58−74625号公報参照)、あるい
は光学活性β−ヒドロキシカルボン酸をハロゲン化する
方法(特開昭60−78929号公報参照)が知られて
いる。しかしこれらの方法では、高価な分割剤が多量に
必要とされること、この分割剤が不純物として製品中に
混入しやすいこと、分割工程が非常に複雑であること、
あるいは過剰量のハロゲン化剤が必要となり、反応副生
物としてハロゲン化水素や亜硫酸ガスなどの発生を伴う
という問題点があり、工業的な製法としては満足できる
ものでない。
The carboxylic acid and its enantiomer ester are useful as intermediate raw materials for synthesizing various physiologically active substances having optical activity. Conventionally, the method for producing these optically active forms has been to first synthesize a racemic form by organic synthesis and then resolve it using various optical resolving agents, that is, to physicochemically separate one optically active form and its counterpart. A method of fractionating into a palm form (see JP-A-58-74625) or a method of halogenating an optically active β-hydroxycarboxylic acid (see JP-A-60-78929) is known. However, these methods require a large amount of expensive resolving agent, the resolving agent is easily mixed into the product as an impurity, and the resolving process is extremely complicated.
Alternatively, there are problems in that an excessive amount of halogenating agent is required, and hydrogen halide and sulfur dioxide gas are generated as reaction by-products, so that this method is not satisfactory as an industrial production method.

本発明者らは、前記の製造法の欠点を解決し、より効率
的な光学活性のカルボン酸(I)及びそのエステルの製
造法について研究を進めた結果、エステル加水分解能を
有する酵素又は微生物を用いることにより式■の光学活
性カルボン酸及びその対掌体エステルが効率よく製造で
きることを見出した。
The present inventors resolved the drawbacks of the above-mentioned production method and proceeded with research on a more efficient production method of optically active carboxylic acid (I) and its ester. As a result, the present inventors developed an enzyme or microorganism capable of hydrolyzing an ester. It has been found that the optically active carboxylic acid of formula (1) and its enantiomer ester can be efficiently produced by using the following method.

本発明は、一般式 %式%() (式中R1及びR2はアルキル基、Xはハロゲン原子を
示す)で表わされるエステルに、エステル結合を不斉加
水分解する能力を有する酵素、微生物の培養液、菌体又
は菌体処理物を作用させることを特徴とする、一般式 %式%() (式中R1及びXは前記の意味を有する)で表わされる
光学活性カルボン酸及びその対掌体エステルの製造法で
ある。
The present invention produces an ester represented by the general formula % (in which R1 and R2 are an alkyl group and An optically active carboxylic acid represented by the general formula % (in which R1 and This is a method for producing esters.

式I及び式■の化合物の置換基R1及びR2のためのア
ルキル基としては例えばメチル基、エチル基などが挙げ
られる。また置換基Xのためのハロゲン原子としては例
えば、塩素原子、臭素原子、ヨウ素原子などが挙げられ
る。
Examples of the alkyl groups for the substituents R1 and R2 in the compounds of formulas I and II include methyl, ethyl, and the like. Examples of the halogen atom for the substituent X include a chlorine atom, a bromine atom, and an iodine atom.

本発明に用いられる酵素は、式■の化合物のエステル結
合を不斉加水分解する能力を有する酵素であり、通常エ
ステラーゼあるいはリパーゼと呼ばれている一群の酵素
の他に、例えばα−キモトリプシンのようにプロテアー
ゼとして分類されている酵素であっても、エステル加水
分解能を有している場合には本発明に使用できる。この
エステル加水分解酵素は、起源、純度等は特に限定され
ず、動植物のホモジネート、微生物菌体、その破砕物、
抽出物等の形のものでもよい。
The enzyme used in the present invention is an enzyme that has the ability to asymmetrically hydrolyze the ester bond of the compound of formula Even enzymes classified as proteases can be used in the present invention if they have ester hydrolyzing ability. This ester hydrolase is not particularly limited in origin, purity, etc., and can be used in animal and plant homogenates, microbial cells, crushed products thereof,
It may also be in the form of an extract or the like.

この酵素を生産する微生物としては例えばム:7−ルR
、リソ−7’ス属、アスペルギルス属、ノカルディア属
、ストレプトマイセス属、トリコデルマ属、キャンディ
ダ属、ロドトルラ属、トルロプシス属、バシリス属、ア
ルカリ土類金属、シュードモナス属、ブレビバクテリウ
ム属、エンテロバクタ−属、クロモバクテリウム属、ア
ルスロバクタ−属、ミクロバクテリウム属、マイコバク
テリウム属、サツカロマイセス属、ペニシリウム属など
に属する微生物が挙げられる。これらの微生物起源の酵
素の市販品の例としては、ムコール属のリパーゼ(リパ
ーゼM −AP、天野製薬社製)、アスペルギルス属の
リパーゼ(リパーゼAP、天野製薬社製)、キャンデイ
ダ属のリパーゼ(シグマ社製)、リゾープス属のリパー
ゼ(リパーゼサイケン、大阪細菌研究所)などが挙げら
れる。また動物組織由来の酵素としては、豚肝臓由来の
エステラーゼ、膵臓由来のα−キモトリプシン、パンク
レアチンなどが挙げられる。
Examples of microorganisms that produce this enzyme include:
, Litho7's, Aspergillus, Nocardia, Streptomyces, Trichoderma, Candida, Rhodotorula, Torulopsis, Bacillis, alkaline earth metals, Pseudomonas, Brevibacterium, Entero Examples include microorganisms belonging to the genus Bacter, Chromobacterium, Arthrobacter, Microbacterium, Mycobacterium, Satucharomyces, and Penicillium. Examples of commercially available enzymes derived from these microorganisms include lipase from the genus Mucor (Lipase M-AP, manufactured by Amano Pharmaceutical Co., Ltd.), lipase from the genus Aspergillus (Lipase AP, manufactured by Amano Pharmaceutical Co., Ltd.), and lipase from the genus Candida (Sigma). (manufactured by Osaka Bacteria Research Institute), lipase from the genus Rhizopus (Lipase Saiken, Osaka Bacteria Research Institute), etc. Examples of enzymes derived from animal tissues include esterase derived from pig liver, α-chymotrypsin derived from pancreas, and pancreatin.

本発明に用いられる微生物は、式■の化合物のエステル
結合を不斉加水分解する能力を有する微生物であって、
例えばアシネトバクタ−属(Ac1netobacte
r )、シュードモナス属(Pseudo−monas
 )、エシェリキア属(Eocherichia )、
スタフィロコックス属(5taphylococcus
 )、アルカリゲネスf4 (Alcaligenes
 )、ミクμコツタス属(Micrococcus )
 、アグロバクテリウム属(Agrobacteriu
m )など罠属する微生物が挙げられる。これらの微生
物はこれを含む培養液、分離した菌体又は菌体処理物と
して用いられる。
The microorganism used in the present invention is a microorganism that has the ability to asymmetrically hydrolyze the ester bond of the compound of formula (1),
For example, Acinetobacter spp.
r), Pseudomonas sp.
), Escherichia spp.
Staphylococcus (5taphylococcus)
), Alcaligenes f4 (Alcaligenes
), Micrococcus
, Agrobacterium spp.
Examples include microorganisms that belong to traps, such as m). These microorganisms are used as a culture solution containing them, isolated bacterial cells, or treated bacterial cells.

これらの微生物の培養は、通常は液体培養で行われるが
、固体培養によっても行うことができる。培地としては
、微生物が通常資化しうる炭素源、窒素源、ビタミン、
ミネラルなどの成分を適宜配合したものが用いられる。
Cultivation of these microorganisms is usually carried out by liquid culture, but it can also be carried out by solid culture. The medium contains carbon sources, nitrogen sources, vitamins, etc. that can be normally assimilated by microorganisms.
A mixture containing minerals and other ingredients as appropriate is used.

微生物の加水分解能を向上させるため、培地にエステル
を少量添加することが好ましい。培養は10〜50℃の
温度で、pH2〜11の範囲で行われる。
In order to improve the hydrolytic ability of microorganisms, it is preferable to add a small amount of ester to the medium. Cultivation is carried out at a temperature of 10-50°C and a pH range of 2-11.

微生物の生育を促進させるために通気攪拌を行ってもよ
い。
Aeration and stirring may be performed to promote the growth of microorganisms.

本発明を実施するに際しては、反応媒体中でエステル(
II)に不斉加水分解酵素を作用させる。
In carrying out the invention, the ester (
II) is treated with an asymmetric hydrolase.

原料エステル(n)は、微生物の培養の開始時又は途中
で培地にエステル(n)を添加してもよく、あらかじめ
微生物を培養したのち培養液に添加してもよい。また増
殖した微生物の菌体を遠心分離等により採取し、これを
エステルを含む反応媒体に加えてもよい。この場合菌体
は取り扱い上の便宜から、乾燥菌体例えば凍結乾燥菌体
、噴霧乾燥菌体又は有機溶媒例えばアセトン、トルエン
等で処理した菌体、あるいは菌体破壊物、菌体抽出物等
の菌体処理物として用いることもできる。エステル加水
分解酵素は、固定化した酵素として用いることもできる
The raw material ester (n) may be added to the medium at the beginning or during the cultivation of the microorganism, or may be added to the culture solution after culturing the microorganism in advance. Alternatively, the cells of the grown microorganism may be collected by centrifugation or the like and added to the reaction medium containing the ester. In this case, for convenience of handling, the bacterial cells are dried, such as freeze-dried bacterial cells, spray-dried bacterial cells, bacterial cells treated with organic solvents such as acetone, toluene, etc., or bacterial cell destruction materials, bacterial cell extracts, etc. It can also be used as a treated bacterial cell product. Ester hydrolase can also be used as an immobilized enzyme.

反応媒体としては例えばイオン交換水、燐酸ナトリウム
等の無機酸塩及び/又は酢酸ナトリウム等の有機酸塩を
含有する緩衝液が用いられる。エステルの溶解性を向上
させるため、有機溶媒例えばメタノール、アセトンなど
を反応液に加えることもできる。
As the reaction medium, for example, a buffer solution containing ion-exchanged water, an inorganic acid salt such as sodium phosphate, and/or an organic acid salt such as sodium acetate is used. An organic solvent such as methanol, acetone, etc. can also be added to the reaction solution to improve the solubility of the ester.

反応媒体又は培養液中のエステルの濃度は0゜01〜5
0%が好ましい。エステルは反応の途中で回分的に又は
連続的に加えてもよい。その際、水に懸濁した状態で加
えることもできる。
The concentration of ester in the reaction medium or culture solution is 0°01-5
0% is preferred. The ester may be added batchwise or continuously during the reaction. At that time, it can also be added in a suspended state in water.

反応液のpHは2〜11の範囲、好ましくは5〜8の範
囲である。反応の進行に伴い、生成したカルボン酸によ
り、反応液のpHが低下した場合は、中和剤を添加して
最適pHに維持することが好ましい。反応温度は5〜5
0℃であり、反応時間は酵素、微生物菌体等の量によっ
て適宜変更できる。
The pH of the reaction solution is in the range of 2-11, preferably in the range of 5-8. When the pH of the reaction solution decreases due to the generated carboxylic acid as the reaction progresses, it is preferable to add a neutralizing agent to maintain the optimum pH. The reaction temperature is 5-5
The temperature is 0°C, and the reaction time can be changed as appropriate depending on the amount of enzyme, microbial cells, etc.

反応液からの生成物の分離精製は、通常の方法、例えば
抽出、再結晶、カラムクロマトグラフィー、蒸留等の手
段により行うことができる。
Separation and purification of the product from the reaction solution can be carried out by conventional methods such as extraction, recrystallization, column chromatography, and distillation.

実施例1〜4 (至)−β−クロルイソ酪酸メチル1.0g及び酵素5
001n9をM/10燐酸緩衝液(pH7,0)100
11Llに加え、50℃で振盪して反応させた。
Examples 1 to 4 (to) 1.0 g of methyl β-chloroisobutyrate and enzyme 5
001n9 in M/10 phosphate buffer (pH 7.0) 100
The mixture was added to 11 Ll and reacted by shaking at 50°C.

24時間反応させたのち、反応液のpHを10に調整し
、等容量のクロロホルムでβ−クロルイソ酪酸メチルを
抽出した。次いで水層のpHを濃塩酸で2.0に調整し
たのち、等容量のクロロホルムでβ−クロルイソ酪酸を
抽出した。クロロホルム抽出液の旋光度をユニオン技研
社のデジタル自動腕光度計(PM−101型)を用いて
測定した。その結果を第1表に示す。なお酵素としては
、リパーゼ・サイケン100(大阪細菌研究所χニュー
ラーゼF(大野製薬社製)、パンクレアチン(大野製薬
社製)及びリパーゼ・タイプ■(シグマ社製)を用いた
After reacting for 24 hours, the pH of the reaction solution was adjusted to 10, and methyl β-chloroisobutyrate was extracted with an equal volume of chloroform. Next, the pH of the aqueous layer was adjusted to 2.0 with concentrated hydrochloric acid, and then β-chloroisobutyric acid was extracted with an equal volume of chloroform. The optical rotation of the chloroform extract was measured using a digital automatic arm photometer (Model PM-101) manufactured by Union Giken. The results are shown in Table 1. The enzymes used were Lipase Cyken 100 (Osaka Bacteria Research Institute χ Neurose F (manufactured by Ohno Pharmaceutical Co., Ltd.), Pancreatin (manufactured by Ohno Pharmaceutical Co., Ltd.), and Lipase Type ■ (manufactured by Sigma Co., Ltd.).

第  1  表 ネ)100mlセルを使用したときのCHCl、中での
α。を示す。
Table 1) α in CHCl when using a 100 ml cell. shows.

実施例5及び6 フラスコに出御β−クロルイソ酪酸メチル25tnl、
M/20燐酸緩衝液(pH7,0’) 250 m及び
リパーゼ・サイケン100又はパンクレアチンs、 o
 lIを加え、60℃、pH7,0で攪拌下64時間反
応させた。pHは10%NaOHで調整した。反応終了
後、β−クロルイン酪酸メチルを3QQdのクロロホル
ムで2回抽出した。次いで水層のpHを濃塩酸で2.0
にしたのち、β−クロルイソ酪酸を300m/のクロロ
ホルムで2回抽出した。
Examples 5 and 6 25 tnl of methyl β-chloroisobutyrate was added to the flask.
M/20 phosphate buffer (pH 7,0') 250 m and Lipase Cyken 100 or pancreatin s, o
1I was added, and the mixture was reacted at 60° C. and pH 7.0 for 64 hours with stirring. pH was adjusted with 10% NaOH. After the reaction was completed, methyl β-chloroinbutyrate was extracted twice with 3QQd of chloroform. Then, the pH of the aqueous layer was adjusted to 2.0 with concentrated hydrochloric acid.
After that, β-chloroisobutyric acid was extracted twice with 300 m/ml of chloroform.

このクロロホルム抽出液を減圧下で単蒸留し、光学活性
β−クロルイソ酪酸及び七〇対掌体のメチルエステルを
得た。これら蒸留物の収量、沸点及び比旋光度を第2表
に示す。なお蒸留により得られた反応生成物がβ−クロ
ルイソ酪酸又はβ−クロルイソ酪酸メチルであることは
NMR及びIR分析により確認した。
This chloroform extract was subjected to simple distillation under reduced pressure to obtain optically active β-chloroisobutyric acid and methyl ester of the 70-enantiomer. The yield, boiling point and specific rotation of these distillates are shown in Table 2. It was confirmed by NMR and IR analysis that the reaction product obtained by the distillation was β-chloroisobutyric acid or methyl β-chloroisobutyrate.

実施例7及び8 シュードモナスψフルオレツセンスエFO12055、
アルカリゲネス・フエカーリスIFO13111−の2
菌株をそれぞれ肉エキス1.0%、ペプトン1.0%及
びNaC10,5%から成る液体培地(pH6,8)1
oomlに植菌し、28℃で24時間振盪培養を行った
。こうして得られた各菌株の培養液503 mlを遠心
分離して集菌した。この菌体の全量を250 mlのM
/20燐酸緩衝液(pH7,0)に懸濁したのち、(ト
)−β−クロルイソ酪酸メチル25 mlを加え、60
°C,pH7,0で攪拌下48時間反応させた。坦は1
0%NaOHで調整した。反応終了後、β−クロルイソ
酪酸メチルを300m1ノクロロホルムで2回抽出した
Examples 7 and 8 Pseudomonas ψfluorescensae FO12055,
Alcaligenes fuecalis IFO13111-2
The strains were placed in a liquid medium (pH 6,8) consisting of 1.0% meat extract, 1.0% peptone, and 10.5% NaC, respectively.
The cells were inoculated into ooml and cultured with shaking at 28°C for 24 hours. 503 ml of the culture solution of each strain thus obtained was centrifuged to collect the bacteria. Transfer the total volume of this bacterial body to 250 ml of M
/20 phosphate buffer (pH 7.0), then 25 ml of methyl (t)-β-chloroisobutyrate was added to
The reaction was allowed to proceed for 48 hours with stirring at a pH of 7.0°C. Tan is 1
Adjusted with 0% NaOH. After the reaction was completed, methyl β-chloroisobutyrate was extracted twice with 300 ml of chloroform.

次いで水層のpHを濃塩酸で2.0にしたのち、β−ク
ロルイソ酪酸を300 mlのクロロホルムで2回抽出
した。
Next, the pH of the aqueous layer was adjusted to 2.0 with concentrated hydrochloric acid, and then β-chloroisobutyric acid was extracted twice with 300 ml of chloroform.

このクロロホルム抽出液を減圧下で単蒸留し、光学活性
β−クロルイソ酪酸及び七〇対掌体のエチルエステルを
得た。得られた生成物がβ−クロルイソ酪酸及びβ−ク
ロルイソ酪酸メチルであることはNMR及びIR分析で
確認した。その結果を第3表に示す。
This chloroform extract was subjected to simple distillation under reduced pressure to obtain optically active β-chloroisobutyric acid and ethyl ester of the 70-enantiomer. It was confirmed by NMR and IR analysis that the obtained products were β-chloroisobutyric acid and methyl β-chloroisobutyrate. The results are shown in Table 3.

第  3  表 実施例9〜19 第4表に示す菌株を肉エキス1.0%、ペプトン1.0
%及びNaC1O,5%から成る液体培地(pH68)
 100rILtに植菌し、28°G24時間振盪培養
を行った。培養終了後、培養液を遠心分離し、得られた
菌体なイオン交換水で洗浄したのち、その全量なM/1
0燐酸緩衝液(pH7,0)100mA’に懸濁した。
Table 3 Examples 9 to 19 The strains shown in Table 4 were mixed with 1.0% meat extract and 1.0% peptone.
% and NaC1O, 5% liquid medium (pH 68)
The cells were inoculated into 100rILt and cultured with shaking at 28°G for 24 hours. After the culture is completed, the culture solution is centrifuged, the resulting bacterial cells are washed with ion-exchanged water, and the total amount is reduced to M/1.
0 phosphate buffer (pH 7,0) at 100 mA'.

この菌体懸濁液に(ト)−β−クロルイソ酪酸メチル1
m7!を加え、60℃で24時間振盪して反応させた。
To this bacterial suspension, methyl (t)-β-chloroisobutyrate 1
m7! was added, and the mixture was shaken at 60°C for 24 hours to react.

反応液をpH7,0に調整しβ−クロルイソ酪酸メチル
をクロロホルムで抽出した。次いで水層のpHを濃塩酸
で2.0に下げたのち、水層中のβ−クロルイソ酪酸を
クロロホルムで抽出した。
The reaction solution was adjusted to pH 7.0, and methyl β-chloroisobutyrate was extracted with chloroform. Next, the pH of the aqueous layer was lowered to 2.0 with concentrated hydrochloric acid, and then β-chloroisobutyric acid in the aqueous layer was extracted with chloroform.

これらβ−クロルイン酪酸メチル及びβ−クロルイソ酪
酸のクロロホルム抽出液の波長589nmにおける旋光
性を調べた。その結果を第4表に示す。
The optical rotation of the chloroform extracts of methyl β-chloroinbutyrate and β-chloroisobutyric acid at a wavelength of 589 nm was investigated. The results are shown in Table 4.

第  4  表Table 4

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼ (式中R_1及びR_2はアルキル基、Xはハロゲン原
子を示す)で表わされるエステルに、エステル結合を不
斉加水分解する能力を有する酵素、微生物の培養液、菌
体又は菌体処理物を作用させることを特徴とする、一般
式 ▲数式、化学式、表等があります▼ (式中R_1及びXは前記の意味を有する)で表わされ
る光学活性カルボン酸及びその対掌体エステルの製造法
。 2、微生物として、アシネトバクター属、シュードモナ
ス属、エシエリキア属、スタフイロコツクス属、アルカ
リゲネス属、ミクロコツクス又はアグロバクテリウム属
のものを使用することを特徴とする、特許請求の範囲第
1項に記載の方法。
[Claims] 1. Asymmetric hydrolysis of the ester bond to form an ester represented by the general formula ▲ Numerical formulas, chemical formulas, tables, etc. There are general formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ that are characterized by the action of enzymes, microbial culture fluids, microbial cells, or processed products of microbial cells that have the ability to A method for producing an optically active carboxylic acid and its enantiomer ester represented by 2. The method according to claim 1, characterized in that the microorganism used is one of the genus Acinetobacter, Pseudomonas, Escherichia, Staphylococcus, Alcaligenes, Micrococcus, or Agrobacterium. .
JP2953587A 1987-02-13 1987-02-13 Process for producing optically active carboxylic acid and its enantiomer ester Expired - Fee Related JP2639651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2953587A JP2639651B2 (en) 1987-02-13 1987-02-13 Process for producing optically active carboxylic acid and its enantiomer ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2953587A JP2639651B2 (en) 1987-02-13 1987-02-13 Process for producing optically active carboxylic acid and its enantiomer ester

Publications (2)

Publication Number Publication Date
JPS63198998A true JPS63198998A (en) 1988-08-17
JP2639651B2 JP2639651B2 (en) 1997-08-13

Family

ID=12278806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2953587A Expired - Fee Related JP2639651B2 (en) 1987-02-13 1987-02-13 Process for producing optically active carboxylic acid and its enantiomer ester

Country Status (1)

Country Link
JP (1) JP2639651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097851A1 (en) * 2002-05-15 2003-11-27 Ono Pharmaceutical Co., Ltd. Process for producing optically active alkylcarboxylic acid derivative

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097851A1 (en) * 2002-05-15 2003-11-27 Ono Pharmaceutical Co., Ltd. Process for producing optically active alkylcarboxylic acid derivative

Also Published As

Publication number Publication date
JP2639651B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
EP0130752B1 (en) Process for preparing optically active carboxylic acids and antipode esters thereof
JPS61239899A (en) Biotechnological production of optically active alpha-arylalkanoic acid
JPS5847495A (en) Biochemical optical resolution of cyclopentenolone derivative
WO1994020635A1 (en) Enantioselective hydrolysis of ketoprofen esters by beauveria bassiana and enzymes derived therefrom
US5492830A (en) Enzymatic resolution of α-tertiary carboxylic acid esters
JP2639651B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JPS6094091A (en) Production of optically active carboxylic acid ester
JP3732535B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JPS6012992A (en) Production of optically active carboxylic acid
JPH01222798A (en) Production of optically active carboxylic acid and antipode ester thereof
JP3007461B2 (en) Method for producing optically active 2-cyclohexenylacetic acid and its ester
JP4565672B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
JP4746019B2 (en) Optically active β-cyanoisobutyric acid and process for producing the same
JPH0521558B2 (en)
JP2716477B2 (en) Method for producing S-carboxymethyl-L-cysteine
JPH01191697A (en) Production of optically active carboxylic acid and its antipode ester
JP3970898B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JPH0573396B2 (en)
JP3203865B2 (en) Method for producing acetylene alcohol compound
JPH0751533B2 (en) Process for producing optically active terphenyl derivative
JPS6363396A (en) Production of d-2-(6-methoxy-2-naphthyl)propionic acid
JPH0614878B2 (en) Process for producing optically active aryloxyacetaldehyde cyanohydrin and optically active aryloxyacetaldehyde cyanohydrin carboxylate
JPH0892269A (en) Production of optically active (3) (1,1') ferrocenophanes
JPS60141297A (en) Production of optically active carboxylic acid and its antipode ester
JPS63245695A (en) Production of optically active sulfur-containing carboxylic acid ester and antipodal sulfur-containing carboxylic acid thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees