JPS6319833A - Method for testing semiconductor integrated circuit - Google Patents

Method for testing semiconductor integrated circuit

Info

Publication number
JPS6319833A
JPS6319833A JP61163882A JP16388286A JPS6319833A JP S6319833 A JPS6319833 A JP S6319833A JP 61163882 A JP61163882 A JP 61163882A JP 16388286 A JP16388286 A JP 16388286A JP S6319833 A JPS6319833 A JP S6319833A
Authority
JP
Japan
Prior art keywords
ray
test
irradiation
integrated circuit
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61163882A
Other languages
Japanese (ja)
Other versions
JPH0344415B2 (en
Inventor
Masataka Kato
正高 加藤
Takahiro Okabe
岡部 隆博
Kikuo Watanabe
渡辺 喜久雄
Minoru Nagata
永田 穰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61163882A priority Critical patent/JPS6319833A/en
Publication of JPS6319833A publication Critical patent/JPS6319833A/en
Publication of JPH0344415B2 publication Critical patent/JPH0344415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To quickly select good quality chips by irradiating only the test circuit included in semiconductor integrated circuit with the X-ray and then executing electrical characteristic test for test circuit. CONSTITUTION:The radioactive ray test is carried out for the radiation resistance measuring element of chip by irradiating a wafer 1 fixed on a wafer chuck 12 from the upper part of wafer 1 with the X-ray which is restricted in the irradiation region by the apertures 15 and 14. In this case, damage by X-ray of measuring element is accelerated by applying volage to a measuring element through a bonding pad using a probe 13. Therefore, first, a wafer is fixed, the initial characteristic before irradiation of X-ray is evaluated for the element to be measured, the measuring element is irradiated with the X-ray with low irradiation amount by applying a voltage to carry out experiment of X-ray irradiation corresponding to the specified amount of irradiation of X-ray. In this case, exposure to X-ray of integrated circuit by scattering is minimized, thereafter electrical characteristic after irradiation is tested to give the result of good or no-good. The test is then repeated to the subsequent chips.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体集積回路の耐放射線試験に係り、特にウ
ェハ状態で放射線試験が可能な半導体集積回路の試験方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to radiation resistance testing of semiconductor integrated circuits, and more particularly to a testing method for semiconductor integrated circuits that allows radiation testing in a wafer state.

〔発明の背景〕[Background of the invention]

従来、半導体集積回路の耐放射線性試験を行う場合、半
導体集積回路を含むチップをパッケージに組み、C06
0等のγ線照射施設を用いて放射線照射を行い、その後
に電気的特性試験を行っていた。このような従来の方法
では、大規模な照射施設を必要とするばかりでなく、長
期間にわたる試験時間を有することから、試験結果の製
造工程へのフィードバックが遅れると共に、γ線試験は
一種の破壊試験であるので、チップをパッケージに組み
立てた抜き取り検査のみが可能であり、ロットの合格・
不合格を統計的にしか判定できないという不都合であっ
た。なお、電気的な半導体装置の試験方法については、
特開昭57−34344号に記載されている例がある。
Conventionally, when testing the radiation resistance of semiconductor integrated circuits, a chip containing the semiconductor integrated circuit is assembled into a package and C06
Radiation was performed using a 0 grade gamma ray irradiation facility, and then electrical characteristics tests were conducted. Such conventional methods not only require large-scale irradiation facilities but also require long testing times, which delays the feedback of test results to the manufacturing process and makes gamma-ray testing a kind of destructive process. Since this is a test, only sampling inspection of chips assembled into packages is possible, and it is not possible to pass or pass the lot.
The disadvantage was that failure could only be determined statistically. Regarding testing methods for electrical semiconductor devices,
An example is described in JP-A-57-34344.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の欠点を取り除き、ウェハ状態で
耐放射線半導体集積回路の選別が、迅速かつ簡単に行え
る半導体集積回路の試験方法・を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit testing method that eliminates the above-mentioned drawbacks and allows rapid and simple selection of radiation-resistant semiconductor integrated circuits in wafer state.

〔発明の概要〕[Summary of the invention]

静止衛星等に使用される半導体装置については、電離性
放射線耐量に対する試験を行うことが必要である。この
耐量試験については、透過性の高いγ線を用いて行われ
ている。しかしながら、γ線施設は大規模な施設であり
、かつ、半導体製造ラインに近接して設置することは困
難である。そこで1回折装置として使用されているX線
源を用いて、耐量試験を行う可能性について検討した。
Semiconductor devices used in geostationary satellites and the like need to be tested for ionizing radiation resistance. This tolerance test is conducted using highly transparent gamma rays. However, gamma ray facilities are large-scale facilities, and it is difficult to install them close to semiconductor manufacturing lines. Therefore, we investigated the possibility of carrying out a tolerance test using the X-ray source used as a single diffraction device.

その結果、第1図に示すように、X線照射量としγ線吸
収線景は比例関係にあることがわかり、X線装置で代用
することが可能であることがわかった。
As a result, as shown in FIG. 1, it was found that there is a proportional relationship between the X-ray irradiation amount and the gamma-ray absorption line pattern, and it was found that an X-ray device can be used instead.

この場合、従来のγ線による放射線耐量試験では抜き取
り検査による合否判定であり、チップ検査が直接できな
かったので、ウェハ状態で全チップの試験を行う可能性
についても検討した。
In this case, in the conventional radiation resistance test using gamma rays, pass/fail was determined by sampling inspection, and direct chip inspection was not possible, so we also considered the possibility of testing all chips in the wafer state.

ウェハ状態で放射線耐量試験を行う場合、放射線照射範
囲を限定し、試験素子にのみ照射することが必要とされ
る。そこで、ウェハの同一チップ内に製品と被照射回路
を設け、被照射回路にのみX線を照射してそのチップの
放射耐量試験とすれば、ウェハ上で、チップ単位に合否
判定が可能となる。この場合、被照射回路と製品の間に
は、照射されるXaの空間分布に対して一定の距離を設
けることが必要である。
When conducting a radiation resistance test in a wafer state, it is necessary to limit the radiation irradiation range and irradiate only the test element. Therefore, if the product and the irradiated circuit are placed in the same chip on a wafer and the radiation tolerance test is performed by irradiating only the irradiated circuit with X-rays, it becomes possible to pass/fail each chip on the wafer. . In this case, it is necessary to provide a certain distance between the irradiated circuit and the product with respect to the spatial distribution of the irradiated Xa.

また、試験方法については、第2図に示すように、MO
SFETの場合、正の電圧を印加しながら放射線照射実
験を行うと、しきい値電圧変化Δv t hや界面準位
密度ΔDjtなどの素子特性の劣化が進むことがわかっ
た。したがって、MOSFETでは、正電圧印加を行っ
た素子は、電圧印加を行わなかった素子に比べ劣化が加
速されるので、放射線耐量測定素子についてのみ電圧印
加を行い特性劣化を加速させれば、製品となる集積回路
への放射線被暴を最小限にとどめて試験を行うことが可
能となる。
Regarding the test method, as shown in Figure 2, MO
In the case of SFET, it has been found that when a radiation irradiation experiment is performed while applying a positive voltage, device characteristics such as threshold voltage change Δv th and interface state density ΔDjt progress. Therefore, in MOSFET, elements to which a positive voltage is applied deteriorate more rapidly than elements to which no voltage is applied, so if voltage is applied only to the radiation tolerance measurement element to accelerate characteristic deterioration, the product will be This makes it possible to conduct tests while minimizing radiation exposure to integrated circuits.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図を用いて説明する。ウ
ェハ1に形成されたチップ2内に、製品となる集積回路
3と放射線耐量測定素子4を形成する。測定素子4は、
集積回路3の放射線耐量を検出する素子であり、トラン
ジスタにより構成され、X線照射試験を受ける。そのた
め、集積回路3にX線が照射されないように、測定素子
4は、同一チップ中及周辺チップ中に含まれる、集積回
路3に対して一定の距離d以上離して設計・レイアウト
されている。この距離dは、第4図に示すように、集積
回路3に含まれるトランジスタと測定素子4の最短距離
で定義され、X線照射試験のために1mm以上必要であ
る。なお、測定素子4には、電気的特性試験を行うため
の配線及びボンディングバット6が設けられている。
An embodiment of the present invention will be described below with reference to FIG. In a chip 2 formed on a wafer 1, an integrated circuit 3 and a radiation resistance measurement element 4, which will become a product, are formed. The measuring element 4 is
This element detects the radiation resistance of the integrated circuit 3, is composed of transistors, and undergoes an X-ray irradiation test. Therefore, in order to prevent the integrated circuit 3 from being irradiated with X-rays, the measurement element 4 is designed and laid out at a distance d or more from the integrated circuit 3 included in the same chip or peripheral chips. As shown in FIG. 4, this distance d is defined as the shortest distance between the transistor included in the integrated circuit 3 and the measuring element 4, and is required to be 1 mm or more for the X-ray irradiation test. Note that the measurement element 4 is provided with wiring and a bonding butt 6 for conducting an electrical property test.

次に、試験方法について第5図を用いて説明する。第4
図は、X線試験用自動プローバの断面略図を示す。ウェ
ハチャック12上に固定されたウェハ1に、ウェハ1上
部より、絞り15.14により照射領域の制限されたX
線を照射することにより、あるチップ中の放射線耐量測
定素子について放射線試験を行うことができる。このと
き、プローブ針13を用いて、ポンディングパッドを通
して測定素子に電圧印加を行い、測定素子のX線損傷を
加速させる。第6図に、測定の流れ図を示す。まず、ウ
ェハの固定を行い、被測定素子についてX線照射前の初
期特性評価を行う。次に、測定素子に電圧印加を行い、
低照射量のX線照射を行い、規定X線照射量相当のxL
A照射実験を行う。
Next, the test method will be explained using FIG. 5. Fourth
The figure shows a schematic cross-sectional view of an automatic prober for X-ray tests. An X beam is applied to the wafer 1 fixed on the wafer chuck 12 from above the wafer 1, the irradiation area of which is limited by the aperture 15.14.
By irradiating the radiation with radiation, it is possible to perform a radiation test on the radiation tolerance measurement element in a certain chip. At this time, a voltage is applied to the measuring element through the bonding pad using the probe needle 13 to accelerate X-ray damage to the measuring element. FIG. 6 shows a flowchart of the measurement. First, the wafer is fixed, and an initial characteristic evaluation of the device to be measured is performed before X-ray irradiation. Next, apply a voltage to the measurement element,
Performs low dose X-ray irradiation, xL equivalent to the specified X-ray dose
Conduct the A irradiation experiment.

このとき、低X線照射量であるので、製品となる集積回
路への散乱等による被曝は、最低限に抑えることができ
る。その後、照射後の電気特性を試験し、合格・不合格
の判定を行い、次のチップに対し試験を繰り返す。
At this time, since the amount of X-ray irradiation is low, exposure to radiation due to scattering, etc. to the integrated circuit that will become the product can be suppressed to a minimum. After that, the electrical characteristics after irradiation are tested, a pass/fail judgment is made, and the test is repeated for the next chip.

・)本発明の第2の実施例について第7図を用いて説明
する。第1の実施例と同様に、ウェハ内に形成されたチ
ップ内に、製品となる集積回路と放射!、。
・) A second embodiment of the present invention will be described using FIG. 7. As in the first embodiment, a chip formed in a wafer contains an integrated circuit that will become a product and radiation! ,.

線耐量測定素子4を形成する。このとき、集積回路中の
抵抗・容量等の受動回路部品形成領域32を、測定素子
4に隣接して形成する。能動素子を含む領域31と複数
の測定素子4との距離dを1mn+以上として形成する
A line resistance measurement element 4 is formed. At this time, a region 32 for forming passive circuit components such as resistors and capacitors in the integrated circuit is formed adjacent to the measuring element 4. The distance d between the region 31 including the active element and the plurality of measurement elements 4 is set to be 1 mn+ or more.

本実施例によれば、放射線耐量の高い受動回路部品形成
領域32を、能動素子を含む領域31と測定素子4との
間に形成することにより、チップ内素子面積の有効活用
ができる。特に、マスタースライス化されたチップの場
合、抵抗素子等を放射線耐量測定素子4に隣接して形成
できる。
According to this embodiment, by forming the passive circuit component formation region 32 with high radiation resistance between the region 31 containing the active element and the measuring element 4, the area of the elements within the chip can be effectively utilized. In particular, in the case of a master sliced chip, a resistive element or the like can be formed adjacent to the radiation tolerance measuring element 4.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ウェハー上において放射線耐量試験が
できるので、従来のγ線照射実験に比べ試験時間が短縮
されると共に、抜き取りではなく全チップにわたって検
査が可能となった。
According to the present invention, since radiation tolerance tests can be performed on the wafer, the test time is shortened compared to conventional gamma ray irradiation experiments, and it is possible to test all chips instead of sampling them.

具体的に効果を述べると、従来の試験では、抜き取りサ
ンプルをパッケージに組み立て、C060の106ra
d照射試験を行うのに、照射のみで24時間かかってい
たが、X線試験では約10分で照射を行うことができ、
生産ラインへのなった。
To describe the effect specifically, in the conventional test, a sample was assembled into a package and 106ra of C060 was used.
It used to take 24 hours just for irradiation to perform a d-irradiation test, but in an X-ray test, irradiation can be performed in about 10 minutes.
It went to the production line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、γ線吸収線斌とX線照射量の関係を示す図、
第2図は、電圧印加照射時の印加電圧VCとしきい値電
圧の変化ΔVth及び界面準位密度の変化ΔD jtの
間を示した図、第3図は。 放射線耐量測定素子をチップに搭載した本発明節1の実
施例を表わした図、第4図は、測定素子と集積回路の距
離関係を示した図、第5図は、X線照射装置の断面構造
を表わした図、第6図は、放射線耐XよatIl定の流
れ図、第7図は本発明の第2の実施例を表わした図であ
る。 1・・ウェハ、2・・・チップ、3・・・製品となる集
積回路素子、4・・・放射線耐量測定用素子、5・・ス
クライブライン、6・・・ポンディングパッド、12・
・・ウェハチャック、13・・・プローブ針、14.1
5・・・絞り、16・・・X線じゃへい層、31・・・
能動素子を含む集積回路領域、32・・・受動回路素子
のみにより形成された集積回路領域 第70 γ肪]A屑漫fJh CradJ −□ 〇 □ + q 13図 第4凶 X−ぺf /S 4  )Z
Figure 1 is a diagram showing the relationship between γ-ray absorption and X-ray irradiation amount;
FIG. 2 is a diagram showing the relationship between the applied voltage VC, the change in threshold voltage ΔVth, and the change in interface state density ΔD jt during voltage application irradiation, and FIG. A diagram showing an embodiment of Section 1 of the present invention in which a radiation tolerance measuring element is mounted on a chip, FIG. 4 is a diagram showing the distance relationship between the measuring element and the integrated circuit, and FIG. 5 is a cross-sectional view of the X-ray irradiation device. FIG. 6 is a diagram showing the structure, and FIG. 6 is a flowchart for determining radiation resistance X and atIl, and FIG. 7 is a diagram showing a second embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Wafer, 2... Chip, 3... Integrated circuit element to become a product, 4... Element for measuring radiation tolerance, 5... Scribe line, 6... Bonding pad, 12...
...Wafer chuck, 13...Probe needle, 14.1
5... Aperture, 16... X-ray blocking layer, 31...
Integrated circuit area including active elements, 32... Integrated circuit area formed only by passive circuit elements No. 70 4) Z

Claims (1)

【特許請求の範囲】[Claims] 1、入出力端子を備え所定の機能を有する機能回路と、
前記機能回路と独立な入出力端子とを備え、前記機能回
路中に含まれるすべての能動素子から1mm以上離れた
位置に形成された試験素子または試験回路とを同一チッ
プ中に含む半導体集積回路に対し、前記半導体集積回路
に含まれる試験回路に対してのみX線照射を行い、つい
で上記試験回路に対して電気的特性試験を行い良品チッ
プを選別するようにしたことを特徴とする半導体集積回
路の試験方法。
1. A functional circuit equipped with input/output terminals and having a predetermined function;
A semiconductor integrated circuit that includes, in the same chip, a test element or a test circuit that is provided with input/output terminals independent of the functional circuit and that is formed at a distance of 1 mm or more from all active elements included in the functional circuit. In contrast, the semiconductor integrated circuit is characterized in that only the test circuit included in the semiconductor integrated circuit is irradiated with X-rays, and then the test circuit is subjected to an electrical characteristic test to select non-defective chips. test method.
JP61163882A 1986-07-14 1986-07-14 Method for testing semiconductor integrated circuit Granted JPS6319833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61163882A JPS6319833A (en) 1986-07-14 1986-07-14 Method for testing semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61163882A JPS6319833A (en) 1986-07-14 1986-07-14 Method for testing semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS6319833A true JPS6319833A (en) 1988-01-27
JPH0344415B2 JPH0344415B2 (en) 1991-07-05

Family

ID=15782586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61163882A Granted JPS6319833A (en) 1986-07-14 1986-07-14 Method for testing semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6319833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025807B2 (en) 2001-10-31 2006-04-11 Advanced Production And Loading As Method for absorbing vapors and gases from pressure vessels
US7295773B2 (en) 2000-03-22 2007-11-13 Ricoh Company, Ltd. Camera, an image inputting apparatus, a portable terminal device, and a method for transforming the camera configuration
JP2010091334A (en) * 2008-10-06 2010-04-22 Toyota Motor Corp Irradiation test method for semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081165U (en) * 1973-11-30 1975-07-12
JPS5683955A (en) * 1979-12-13 1981-07-08 Nec Corp Manufacturing of semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5081165U (en) * 1973-11-30 1975-07-12
JPS5683955A (en) * 1979-12-13 1981-07-08 Nec Corp Manufacturing of semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295773B2 (en) 2000-03-22 2007-11-13 Ricoh Company, Ltd. Camera, an image inputting apparatus, a portable terminal device, and a method for transforming the camera configuration
US7800689B2 (en) 2000-03-22 2010-09-21 Ricoh Company, Ltd. Camera, an image inputting apparatus, a portable terminal device, and a method for transforming the camera configuration
US7025807B2 (en) 2001-10-31 2006-04-11 Advanced Production And Loading As Method for absorbing vapors and gases from pressure vessels
JP2010091334A (en) * 2008-10-06 2010-04-22 Toyota Motor Corp Irradiation test method for semiconductor device

Also Published As

Publication number Publication date
JPH0344415B2 (en) 1991-07-05

Similar Documents

Publication Publication Date Title
Schwank et al. Radiation hardness assurance testing of microelectronic devices and integrated circuits: Radiation environments, physical mechanisms, and foundations for hardness assurance
Pease Total ionizing dose effects in bipolar devices and circuits
Pease et al. Radiation testing of semiconductor devices for space electronics
US4816753A (en) Method for reliability testing of integrated circuits
Fleetwood et al. Accounting for dose-enhancement effects with CMOS transistors
CA1236929A (en) Photon assisted tunneling testing of passivated integrated circuits
US5111137A (en) Method and apparatus for the detection of leakage current
CN103941173B (en) Method and apparatus for measuring alpha particle induced soft errors in semiconductor devices
Winokur et al. Advanced qualification techniques [microelectronics]
Chumakov et al. Single-event-effect sensetivity characterization of LSI circuits with a laser-based and a pulsed gamma-ray testing facilities used in combination
Chumakov Interrelation of equivalent values for linear energy transfer of heavy charged particles and the energy of focused laser radiation
US4172228A (en) Method for analyzing radiation sensitivity of integrated circuits
JPS6319833A (en) Method for testing semiconductor integrated circuit
US3723873A (en) Radiation method for determining semiconductor stability and reliability
RU2082178C1 (en) Method for selecting plates with radiation-resistant mos integrated circuits
Kudo et al. Development of experimental methodology for highly efficient wafer-level evaluation of X-ray radiation effects on semiconductor devices
Titus et al. Wafer mapping of total dose failure thresholds in a bipolar recessed field oxide technology
Adams et al. A dosimetric evaluation of the RADPAK using mono-energetic electrons and protons
Nikiforov et al. " RADON-5E" portable pulsed laser simulator: description, qualification technique and results, dosimetry procedure
McMorrow et al. Pulsed-Laser Single-Event Effects (PL SEE) Testing-A Practical Desk Reference
Costantine et al. A new method for using/sup 252/Cf in SEU testing (SRAM)
Flament et al. Ionizing dose hardness assurance methodology for qualification of a BiCMOS technology dedicated to high dose level applications
Cohen SEM irradiation for hardness assurance screening and process definition
Barnaby et al. Summary of Recent Total Ionizing Dose Testing on GF 12LP CMOS Technology.
Sayama et al. Soft-error evaluation using proton microprobe for DRAMs

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term