JPS6319793B2 - - Google Patents

Info

Publication number
JPS6319793B2
JPS6319793B2 JP59019319A JP1931984A JPS6319793B2 JP S6319793 B2 JPS6319793 B2 JP S6319793B2 JP 59019319 A JP59019319 A JP 59019319A JP 1931984 A JP1931984 A JP 1931984A JP S6319793 B2 JPS6319793 B2 JP S6319793B2
Authority
JP
Japan
Prior art keywords
furnace
refrigerant
cooling
furnace body
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59019319A
Other languages
Japanese (ja)
Other versions
JPS60164189A (en
Inventor
Ken Kashiwara
Koji Hizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP1931984A priority Critical patent/JPS60164189A/en
Publication of JPS60164189A publication Critical patent/JPS60164189A/en
Publication of JPS6319793B2 publication Critical patent/JPS6319793B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、自溶炉の炉体、特にガスの流れる
領域の炉体壁を積極的に冷却するのに用いて最適
な炉体の冷却装置に関する。 従来、自溶炉などの炉体壁の冷却には、表1に
示す様な方式がとられており、冷却は、炉の稼動
率向上と維持費の低減を図るために必要である。
中でも、高温のガスの通る領域の炉体壁は、損傷
しやすくこの部分の効果的な冷却が必要である。
The present invention relates to a furnace body cooling device that is optimal for use in actively cooling the furnace body of a flash-smelting furnace, particularly the furnace wall in the region where gas flows. Conventionally, methods shown in Table 1 have been used to cool the wall of a furnace body such as a flash furnace, and cooling is necessary to improve the operating rate of the furnace and reduce maintenance costs.
In particular, the furnace wall in the area through which high-temperature gas passes is easily damaged and requires effective cooling of this area.

【表】 ところで、炉体冷却装置は、第1図A〜Dに示
すような形式のものが使用されている。第1図A
は、炉体の鉄皮B1に給水管から散水して鉄皮B1
と炉内レンガR1を冷却する形式のもので、第1
図Bは、ジヤケツトJに給排水して鉄皮B2と炉
内レンガR2を冷却する形式のものである。そし
て、第1図Cは、冷却箱CBに給排水して鉄皮B3
と炉内レンガR3を、第1図Dは、ステーブジヤ
ケツトSに給排水して鉄皮B4と炉内レンガR4
冷却するようになつている。このうち、ステーブ
ジヤケツトSと冷却箱CBは、炉内レンガの積極
的冷却策として広く用いられている。このステー
ブジヤケツトSと冷却箱CBは、第2図A,Bに
示すように、鋼管を鋳鉄で鋳込んだものであり、
表面に発生した亀裂がパイプ内の水に進展しない
ようにするため、鋳鉄と鋼管の間に若干の空隙を
設けてあるのが普通であり、製作が難しくコスト
の低減が図れず、また、第1図C,Dに示すよう
にいずれの炉体冷却装置も、主に炉内レンガの冷
却に用いるためのもので冷却面積が小さく、炉体
内のガスの流れる領域の炉体壁を冷却するには不
向きである。 この発明は以上の点に鑑みてなされたものであ
つて、主にガスの流れる領域(以下ガスゾーンと
記す)の炉体壁の冷却が能率的に行なえ、炉の稼
動率向上と維持費の低減が図れるとともに、製作
が容易で炉体壁への装着が簡単にできる炉体の冷
却装置を提供することを目的とする。 したがつて、この目的を達成するためにこの発
明の炉体の冷却装置は、自溶炉の反応シヤフト
1、セツトラー2及びアツプテイク3を形成する
炉体壁に、冷媒が供給される複数の冷媒ジヤケツ
ト5,25が前記炉体壁に沿つて設けられた炉体
の冷却装置において、 前記各冷媒ジヤケツト5,25の外壁面には、
前記反応シヤフト1からセツトラー2を通つてア
ツプテイク3に至るガスの流れの方向に沿つて、
波形にほぼ連続して形成された冷却用のフイン6
が、前記ガスの流れの方向と略平行に多段に突設
されたことを特徴とする。 以下、図示の実施例によりこの発明を説明す
る。 第3図と第4図は、この発明の炉体の冷却装置
が設けられた自溶炉の側断面図と平面図である。
自溶炉の炉体は、反応シヤフト1、セツトラー2
およびアツプテイク3からなり、反応シヤフト1
には精鉱バーナを備え、これにより乾燥した微粉
精鉱たとえば銅精鉱を酸化富化空気あるいは高温
熱風と同時に吹込み、瞬間的に酸化反応をおこす
ようになつている。 上記反応シヤフト1からセツトラー2およびア
ツプテイク3に至るまでのガス(SO2)の通る領
域には全面の炉体壁Bの内面に冷却装置4が多数
取り付けられている。 この冷却装置4は、第5図A,B,Cに示すよ
うにたとえば純銅製でありその熱伝導度は鋼の8
倍以上であり、冷媒である水が給排水される冷媒
ジヤケツトとしての水ジヤケツト5と、この水ジ
ヤケツト5にたとえばTIG溶接により固着された
多数枚のフイン6を有している。 上記水ジヤケツト5は、たとえば純銅鋳物
(Cu:99.9%以上)製の平板(望ましくは脱酸銅
製)で複数本の水循環路7,8,9,10が形成
されており、水循環路7,8は連絡路11により
水循環路9,10は連絡路12により各々連絡さ
れている。これらの水循環路7,8,9,10と
連絡路11,12は切削加工により作られたもの
で、必要箇所には栓13が取り付けられ、その上
を肉盛溶接している。また、上記水循環路7,9
は、排水管14,15に、水循環路8,10は排
水管16,17に接続されており、排水管14,
15と給水管16,17は炉体壁Bの外部に導出
されて図示しない給水源に接続されている。 一方、上記各フイン6は、断面く字形たとえば
純銅圧延板(Cu:99.9%以上)であり、第3図と
第5図Aにおいて矢印で示すガスの流れる方向に
沿つて、水ジヤケツト5上に順次直列に並べて固
着されており、複数列(実施例では5列)のフイ
ン群18を形成している。 しかして、微粉の銅精鉱を酸素富化空気あるい
は高温熱風と同時に吹込み、必要に応じて精鉱バ
ーナから重油を助燃して、瞬間的に酸化反応を起
すと、SO2のガスGが第3図矢印で示すように反
応シヤフト1、セツトラー2を経てアツプテイク
3側に流れると共に、セツトラー2にはスラグ層
Sとマツト層M(Cu2S)が形成される。 一方、各冷却装置の水ジヤケツト5には水が常
に給排水されており、かつ各フイン6は、ガスG
の流れに平行に設けられているので、ガスGと共
に炉内に浮遊する半溶融状態の鉱石(たとえば
Cu、PbSO4など)あるいはダストを直接捕捉し
て埋積させ、鋳付として生長させる。すなわち、
各フイン6は、セルフコーテイングされるのでそ
の耐食耐熱性が向上し、従来のように耐火レンガ
やキヤスタを打設しなくても高温のガスGを冷却
してガスGの通る反応シヤフト1、セツトラー2
およびアツプテイク3のガスゾーンの炉体壁を積
極的かつ能率的に冷却できる。 次に、第6図A,B,Cによりこの発明の第2
の実施例を説明する。第2の実施例の冷却装置
は、第1の実施例において断面く字形のフイン6
を用いたのとは異なり、隣接の部分フイン板26
を水ジヤケツト25に波形に配置して溶接したも
ので第1の実施例と同様の作用効果が得られる。 なお、冷媒は水に限ることなく他のものでもも
ちろんよい。 以上説明したようにこの発明によれば、自溶炉
のガスの流れる領域の炉体壁に設けた冷媒ジヤケ
ツトに、炉内に流れるガスの流れに沿つて波形に
ほぼ連続して形成された冷却用のフインが多段に
設けられているので、上記フインがガスの流れを
整流しガスの流れの邪魔になることがなく、しか
もその波形状により炉内に浮遊する半溶融状態の
鉱石やダストをフインが直接捕捉して鋳付として
生成させて耐食、耐熱性の向上を図り、かつ上記
多段のフインは上記ガス流に沿つて平行であるこ
とからフイン間が鋳付によつて埋まるということ
がなくガスゾーンの炉体壁の冷却を能率的に行な
え、炉の稼動率向上と維持費の低減が図れる効果
がある。 また、冷媒ジヤケツトの冷媒の循環路を切削に
より形成すれば、従来のものに比べてその製作が
容易かつ熱伝導率の向上が図れる効果がある。
[Table] Incidentally, the types of furnace body cooling devices shown in FIGS. 1A to 1D are used. Figure 1A
In this case , spray water from the water supply pipe onto shell B 1 of the furnace body.
This type cools the bricks in the furnace R1 .
Figure B shows a type in which the jacket J is supplied with water and water to cool the steel shell B 2 and bricks R 2 in the furnace. Figure 1C shows the supply and drainage of the cooling box CB and the steel shell B3.
In Fig. 1D , the steel shell B4 and the furnace bricks R4 are cooled by water supply and drainage to the stave jacket S. Of these, the stave jacket S and the cooling box CB are widely used as active cooling measures for the bricks inside the furnace. The stave jacket S and the cooling box CB are made of steel pipes cast with cast iron, as shown in Fig. 2 A and B.
In order to prevent cracks that occur on the surface from propagating into the water inside the pipe, it is normal to have a small gap between the cast iron and the steel pipe, which is difficult to manufacture and difficult to reduce costs. As shown in Figure 1C and D, both furnace body cooling devices are mainly used to cool the bricks inside the furnace, and the cooling area is small, so they are not suitable for cooling the furnace wall in the area where gas flows inside the furnace body. is not suitable. This invention was made in view of the above points, and it is possible to efficiently cool the furnace wall mainly in the gas flow area (hereinafter referred to as the gas zone), thereby improving the furnace operation rate and reducing maintenance costs. It is an object of the present invention to provide a cooling device for a furnace body that can be easily manufactured and installed on the wall of the furnace body. Therefore, in order to achieve this object, the furnace body cooling device of the present invention includes a plurality of refrigerants supplied to the furnace wall forming the reaction shaft 1, settler 2, and uptake 3 of the flash furnace. In a furnace cooling device in which jackets 5 and 25 are provided along the walls of the furnace body, the outer wall surface of each of the refrigerant jackets 5 and 25 is provided with:
Along the direction of gas flow from the reaction shaft 1 through the setter 2 to the uptake 3,
Cooling fins 6 formed almost continuously in a wave shape
are characterized in that they are protruded in multiple stages substantially parallel to the direction of the gas flow. The present invention will be explained below with reference to illustrated embodiments. 3 and 4 are a side sectional view and a plan view of a flash-smelting furnace equipped with the furnace body cooling device of the present invention.
The furnace body of a flash furnace consists of a reaction shaft 1 and a settler 2.
and uptake 3, reaction shaft 1
is equipped with a concentrate burner, which allows dry fine powder concentrate, such as copper concentrate, to be blown simultaneously with oxidation-enriched air or high-temperature hot air to cause an instantaneous oxidation reaction. A large number of cooling devices 4 are installed on the inner surface of the entire furnace wall B in the area where gas (SO 2 ) passes from the reaction shaft 1 to the setter 2 and uptake 3. This cooling device 4 is made of pure copper, for example, as shown in FIGS. 5A, B, and C, and its thermal conductivity is 8 that of steel.
It has a water jacket 5 as a refrigerant jacket through which water as a refrigerant is supplied and drained, and a large number of fins 6 fixed to the water jacket 5 by, for example, TIG welding. The water jacket 5 is, for example, a flat plate made of pure copper casting (Cu: 99.9% or more) (preferably made of deoxidized copper), and has a plurality of water circulation paths 7, 8, 9, and 10 formed therein. The water circulation paths 9 and 10 are connected to each other by a communication path 12 through a communication path 11 . These water circulation paths 7, 8, 9, 10 and communication paths 11, 12 are made by cutting, plugs 13 are attached at necessary locations, and overlay welding is performed on the plugs 13. In addition, the water circulation paths 7, 9
are connected to the drain pipes 14 and 15, and the water circulation paths 8 and 10 are connected to the drain pipes 16 and 17.
15 and water supply pipes 16 and 17 are led out to the outside of the furnace wall B and connected to a water supply source (not shown). On the other hand, each of the fins 6 is a dogleg-shaped cross section, for example, a rolled pure copper plate (Cu: 99.9% or more), and is placed on the water jacket 5 along the gas flow direction shown by the arrow in FIGS. 3 and 5A. The fins are sequentially arranged in series and fixed to form a plurality of rows (five rows in the embodiment) of fin groups 18. Therefore, when fine copper concentrate is blown in at the same time as oxygen-enriched air or high-temperature hot air, and if necessary, heavy oil is assisted from the concentrate burner to cause an instantaneous oxidation reaction, SO 2 gas G is As shown by the arrow in FIG. 3, the slag flows through the reaction shaft 1 and the settler 2 to the take-up 3 side, and a slag layer S and a matte layer M (Cu 2 S) are formed in the settler 2. On the other hand, water is always supplied and drained to the water jacket 5 of each cooling device, and each fin 6 is connected to the gas G
Because it is installed parallel to the flow of gas G, semi-molten ore (for example,
Cu, PbSO 4, etc.) or dust is directly captured and buried, allowing it to grow as a casting. That is,
Since each fin 6 is self-coated, its corrosion resistance and heat resistance are improved, and the reaction shaft 1 and settler can cool the high temperature gas G without having to place refractory bricks or casters as in the conventional case. 2
Also, the furnace wall of the gas zone of uptake 3 can be actively and efficiently cooled. Next, according to FIGS. 6A, B, and C, the second
An example will be explained. The cooling device of the second embodiment is different from the fin 6 having a dogleg-shaped cross section in the first embodiment.
, the adjacent partial fin plate 26
are arranged in a corrugated manner on the water jacket 25 and welded, and the same effects as in the first embodiment can be obtained. Note that the refrigerant is not limited to water, and other refrigerants may of course be used. As explained above, according to the present invention, the refrigerant jacket provided on the wall of the furnace body in the gas flow area of the flash melting furnace has cooling grooves formed almost continuously in a corrugated manner along the flow of gas flowing into the furnace. Since the fins are provided in multiple stages, the fins rectify the gas flow and do not interfere with the gas flow, and their wave shape also removes semi-molten ore and dust floating in the furnace. The fins are directly captured and generated as casting to improve corrosion resistance and heat resistance, and since the multi-stage fins are parallel to the gas flow, the spaces between the fins are not filled by casting. This has the effect of efficiently cooling the furnace wall in the gas zone, improving the operating rate of the furnace and reducing maintenance costs. Further, if the refrigerant circulation path of the refrigerant jacket is formed by cutting, it is easier to manufacture and the thermal conductivity can be improved compared to conventional ones.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,B,C,Dは、従来の炉体冷却装置
を示す図、第2図A,Bは、従来のステーブと冷
却箱を示す図、第3図と第4図は、この発明の炉
体の冷却装置が設けられた自溶炉の側断面図と平
面図、第5図A,B,Cは、第1の実施例の冷却
装置を示す平面図、正面図および側面図、第6図
A,B,Cは、この発明の第2の実施例の冷却装
置を示す平面図、正面図および側面図である。 1……反応シヤフト、2……セツトラー、3…
…アツプテイク、4……冷却装置、5,25……
冷媒ジヤケツトとしての水ジヤケツト、6……フ
イン、26……部分フイン板、B……炉体壁。
Figures 1A, B, C, and D show a conventional furnace cooling system, Figures 2A and B show a conventional stave and cooling box, and Figures 3 and 4 show a conventional furnace body cooling system. A side sectional view and a plan view of a flash-smelting furnace equipped with a cooling device for a furnace body according to the invention, and FIGS. 5A, B, and C are a plan view, a front view, and a side view showing the cooling device of the first embodiment. , FIGS. 6A, B, and C are a plan view, a front view, and a side view showing a cooling device according to a second embodiment of the present invention. 1...Reaction shaft, 2...Settler, 3...
...Uptake, 4...Cooling device, 5,25...
Water jacket as a refrigerant jacket, 6... fins, 26... partial fin plate, B... furnace body wall.

Claims (1)

【特許請求の範囲】 1 自溶炉の反応シヤフト1、セツトラー2及び
アツプテイク3を形成する炉体壁に、冷媒が供給
される複数の冷媒ジヤケツト5,25が前記炉体
壁に沿つて設けられた炉体の冷却装置において、 前記各冷媒ジヤケツト5,25の外壁面には、
前記反応シヤフト1からセツトラー2を通つてア
ツプテイク3に至るガスの流れの方向に沿つて、
波形にほぼ連続して形成された冷却用のフイン6
が、前記ガスの流れの方向と略平行に多段に突設
されたことを特徴とする炉体の冷却装置。 2 前記冷媒ジヤケツトの冷媒の循環路は、切削
加工により形成されている特許請求の範囲第1項
記載の炉体の冷却装置。
[Scope of Claims] 1. A plurality of refrigerant jackets 5, 25 to which refrigerant is supplied are provided along the furnace wall forming the reaction shaft 1, settler 2, and uptake 3 of the flash furnace. In the cooling device for the furnace body, the outer wall surface of each of the refrigerant jackets 5, 25 is provided with:
Along the direction of gas flow from the reaction shaft 1 through the setter 2 to the uptake 3,
Cooling fins 6 formed almost continuously in a wave shape
are provided in a protruding manner in multiple stages substantially parallel to the direction of the gas flow. 2. The furnace body cooling device according to claim 1, wherein the refrigerant circulation path of the refrigerant jacket is formed by cutting.
JP1931984A 1984-02-07 1984-02-07 Cooling device for furnace body Granted JPS60164189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1931984A JPS60164189A (en) 1984-02-07 1984-02-07 Cooling device for furnace body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1931984A JPS60164189A (en) 1984-02-07 1984-02-07 Cooling device for furnace body

Publications (2)

Publication Number Publication Date
JPS60164189A JPS60164189A (en) 1985-08-27
JPS6319793B2 true JPS6319793B2 (en) 1988-04-25

Family

ID=11996084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1931984A Granted JPS60164189A (en) 1984-02-07 1984-02-07 Cooling device for furnace body

Country Status (1)

Country Link
JP (1) JPS60164189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071212A (en) * 2004-09-03 2006-03-16 Nippon Mining & Metals Co Ltd Furnace body water-cooling jacket
JP2008202923A (en) * 2007-01-23 2008-09-04 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2009162401A (en) * 2007-12-28 2009-07-23 Pan Pacific Copper Co Ltd Water-cooling jacket structure for inspection hole of flash furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285251B2 (en) * 2014-03-31 2018-02-28 パンパシフィック・カッパー株式会社 Cooling device for inspection hole structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478309A (en) * 1977-12-06 1979-06-22 Sanyo Special Steel Co Ltd Water cool panel for use in electric arc furnace
JPS5682376A (en) * 1979-11-14 1981-07-06 Impianti Industriali Spa Cooling panel for arc furnace
JPS5731269U (en) * 1977-01-10 1982-02-18

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731269U (en) * 1977-01-10 1982-02-18
JPS5478309A (en) * 1977-12-06 1979-06-22 Sanyo Special Steel Co Ltd Water cool panel for use in electric arc furnace
JPS5682376A (en) * 1979-11-14 1981-07-06 Impianti Industriali Spa Cooling panel for arc furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071212A (en) * 2004-09-03 2006-03-16 Nippon Mining & Metals Co Ltd Furnace body water-cooling jacket
JP2008202923A (en) * 2007-01-23 2008-09-04 Nikko Kinzoku Kk Furnace body water cooling structure for flash smelting furnace
JP2009162401A (en) * 2007-12-28 2009-07-23 Pan Pacific Copper Co Ltd Water-cooling jacket structure for inspection hole of flash furnace
JP4498410B2 (en) * 2007-12-28 2010-07-07 パンパシフィック・カッパー株式会社 Water-cooled jacket structure for inspection hole of flash furnace

Also Published As

Publication number Publication date
JPS60164189A (en) 1985-08-27

Similar Documents

Publication Publication Date Title
US4221922A (en) Water cooled panel used in an electric furnace
US5426664A (en) Water cooled copper panel for a furnace and method of manufacturing same
JP3855133B2 (en) Cooling plate for upright furnace
ZA200500513B (en) Cooling element
JPS6319793B2 (en)
JP4064387B2 (en) Furnace water cooling jacket
RU2281974C2 (en) Cooling member for cooling metallurgical furnace
FI126540B (en) Blast furnace for metallurgical processes
CN210135781U (en) Novel copper cooling plate
RU2264590C2 (en) Cooling battery for well furnaces
US4572269A (en) Method of manufacturing cooling plates for use in metallurgical furnaces and a cooling plate
CN208108833U (en) Heat-exchanger rig for non-ferrous metallurgical furnace and the non-ferrous metallurgical furnace with it
JPS6037863B2 (en) metal strip cooling system
JPH08127825A (en) Self-fluxing furnace
CN214701692U (en) Cooling protection box for spray gun of electric arc furnace
JPH0357169B2 (en)
JPH11189830A (en) Matte trough for flash smelting furnace
CN107236838A (en) A kind of cooling equipment for blast furnace
JP2003279265A (en) Water-cooled panel for electric furnace
JP6385778B2 (en) H steel cooling structure and H steel cooling method
CN100357455C (en) Cooling element and method of manufacturing a cooling element
JPS6027360Y2 (en) Arc furnace water tube furnace wall
JPS6317990Y2 (en)
JPS6342108Y2 (en)
JPH035046A (en) Graphite mold device for continuously casting metal cast billet