JPS63197378A - Nonvolatile semiconductor storage device and its manufacture - Google Patents

Nonvolatile semiconductor storage device and its manufacture

Info

Publication number
JPS63197378A
JPS63197378A JP62028023A JP2802387A JPS63197378A JP S63197378 A JPS63197378 A JP S63197378A JP 62028023 A JP62028023 A JP 62028023A JP 2802387 A JP2802387 A JP 2802387A JP S63197378 A JPS63197378 A JP S63197378A
Authority
JP
Japan
Prior art keywords
memory device
semiconductor memory
conductivity type
nonvolatile semiconductor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62028023A
Other languages
Japanese (ja)
Other versions
JP2760983B2 (en
Inventor
Ryohei Kirisawa
桐澤 亮平
Riichiro Shirata
理一郎 白田
Satoshi Inoue
聡 井上
Masashi Wada
和田 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62028023A priority Critical patent/JP2760983B2/en
Publication of JPS63197378A publication Critical patent/JPS63197378A/en
Application granted granted Critical
Publication of JP2760983B2 publication Critical patent/JP2760983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To increase the difference of threshold value between writing time and erasing time without increasing the cell area, by distinguishing at least one side of a thin oxide film region with a field oxide film. CONSTITUTION:On a P-type silicon substrate 21, a silicon oxide film 22 is formed, on which the pattern of a silicon nitride film 23 is formed, and in a region between elements, a field oxide film 24 of about 0.8mum thick is formed under which a P-type layer 25 for inversion protection is formed. As for n<+> layers 27 and 28, their sides in the Y-direction and in the X-direction are determined by an ion implantation mask and an oxide mask 24, respectively. Then a gate oxide film 26 and a tunnel oxide film 30 are formed, and the n<+> layer 38 of a drain and the n<+> layer 39 of a source are formed. As the result of this, two sides of a thin oxide film 30 are distinguished by the oxide film 24, and the margin of '1' and '0' is increased.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は浮遊ゲートを有する不揮発性半導体記憶装置に
係り、特に電気的に書換え可能なメモリ装置及びその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a nonvolatile semiconductor memory device having a floating gate, and more particularly to an electrically rewritable memory device and a method for manufacturing the same.

(従来の技術) 電気的に書換え可能な不揮発性半導体記憶装置(Eap
uOM)は、従来,第10図に示すようにP型半導体基
板ω上にゲート酸化膜■、浮遊ゲート■を設け、その上
に絶縁膜(ニ)を介して制御ゲート■を積層した2層ゲ
ート構造のメモリトランジスタと、そのドレイン■に接
続された選択トランジスタからなるセルが知られている
,第10図において、(a)は1セルの平面図. (b
)(c)は夫々A−A’。
(Prior art) Electrically rewritable non-volatile semiconductor memory device (EAP)
Conventionally, uOM) is a two-layer structure in which a gate oxide film (■) and a floating gate (■) are provided on a P-type semiconductor substrate (ω), and a control gate (■) is laminated thereon via an insulating film (d), as shown in Figure 10. A cell consisting of a memory transistor with a gate structure and a selection transistor connected to its drain is known. In FIG. 10, (a) is a plan view of one cell. (b
) and (c) are respectively AA'.

B−B’断面図を示す。A sectional view taken along line B-B' is shown.

このセルに書込みを行なう場合は,例えば制御ゲート■
、選択ゲート■にパルス電圧2QVを、また選択トラン
ジスタのドレイン(4)及びメモリトランジスタのソー
ス0を接地し、浮遊ゲート■とn◆層(10)間の一部
に設けられた例えば膜厚90人の薄い酸化III(11
)を介して電子をn中層(10)から浮遊ゲート■に注
入して行なう。
When writing to this cell, for example, the control gate ■
, a pulse voltage of 2QV is applied to the selection gate ■, and the drain (4) of the selection transistor and the source 0 of the memory transistor are grounded, and a film with a thickness of, for example, 90 mm is provided between the floating gate ■ and the n◆ layer (10). Human thin oxide III (11
), electrons are injected from the n-middle layer (10) into the floating gate (2).

消去を行なう場合は選択ゲート■、選択トランジスタの
ドレイン■を夫々20v,制御ゲート■を接地、メモリ
トランジスタのソース■を5vにして浮遊ゲート■から
n”M (10)へ電子を放出する。
When erasing, the selection gate (2) and the drain (2) of the selection transistor are each set at 20V, the control gate (2) is grounded, and the source (2) of the memory transistor is set at 5V, and electrons are emitted from the floating gate (2) to n''M (10).

読出し時は例えば選択トランジスタのドレイン■を2v
、選択ゲート■を5v、制御ゲート■、メモリトランジ
スタのソース■を接地することにより行なう.以上の書
込み,消去読出し動作において基板は接地電位とされて
いる.尚,選択トランジスタの2層構造のゲートは同一
パターンとされ,スルーホールを介して所定箇所で相互
にコンタクトしている。
When reading, for example, the drain of the selection transistor is set to 2V.
, the selection gate (2) is grounded to 5V, the control gate (2), and the source (2) of the memory transistor are grounded. In the write, erase and read operations described above, the substrate is at ground potential. Note that the gates of the two-layer structure of the selection transistors have the same pattern and are in contact with each other at predetermined locations via through holes.

書込まれたセルは浮遊ゲート■に電子が注入されている
ため、上記の読出し条件ではnチャネル電界効果トラン
ジスタはカットオフの状態で,ドレイン電流は流れない
.逆に消去されたセルではメモリトランジタのチャネル
領域に反転層が形成されドレイン電流が流れる.ドレイ
ン電流が流れたセルを“0”、流れないセルを“′1′
″と判定し,データの読み出しが可能となる。
Since electrons are injected into the floating gate of the written cell, under the above read conditions, the n-channel field effect transistor is in a cutoff state and no drain current flows. Conversely, in erased cells, an inversion layer is formed in the channel region of the memory transistor, and a drain current flows. Cells in which drain current flows are marked as “0”, and cells in which drain current does not flow are marked as “’1”.
”, and the data can be read.

このようなEBFROMセルで書込み量を大きくするた
めには,薄い酸化膜(11)に印加される電界を大きく
しなければならない.薄い酸化膜(11)に加わる電界
は制御ゲート■と浮遊ゲート■との間の結合容量と、浮
遊ゲート■とn中層(10)との間の結合容量との比で
決定される.この比が大きい程,薄い酸化膜(1l)に
加わる電界は大きくなりトンネル電流は増加する。
In order to increase the write amount in such an EBFROM cell, it is necessary to increase the electric field applied to the thin oxide film (11). The electric field applied to the thin oxide film (11) is determined by the ratio of the coupling capacitance between the control gate (2) and the floating gate (2) and the coupling capacitance between the floating gate (2) and the n-layer (10). As this ratio becomes larger, the electric field applied to the thin oxide film (1l) becomes larger and the tunnel current increases.

(発明が解決しようとする問題点) 上記セルでは薄い酸化膜(11)の左右にゲート酸化膜
■領域を見込む構造であり、メモリトランジスタのドレ
イン領域に接続するn中層型(10)の幅が大きい。こ
れによりn中層(10)と浮遊ゲート0間の結合容量が
大き(、Jj#、IJQ”のしきい値差が余り取れない
ため誤読出しが生じ易いという問題があった。一方、薄
い酸化膜(11)の面積を小さくする事も考えられるが
、マスク材のパターニング精度が悪化してしまう、また
、制御ゲート0と浮遊ゲート0間の結合容量を大きくす
るにも集積度上限界がある。
(Problems to be Solved by the Invention) The above cell has a structure in which gate oxide film regions are expected on the left and right sides of the thin oxide film (11), and the width of the n middle layer type (10) connected to the drain region of the memory transistor is big. As a result, the coupling capacitance between the n-middle layer (10) and the floating gate 0 is large (Jj Although it is possible to reduce the area of (11), the patterning accuracy of the mask material deteriorates, and there is also a limit to the degree of integration in increasing the coupling capacitance between the control gate 0 and the floating gate 0.

本発明は上記事情に鑑みてなされたものであり、セル面
積を大きくすることなく、書込み、消去時のセルのしき
い値差を増大できる不揮発性半導体記憶装置及びその製
造方法を提供する事を目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a nonvolatile semiconductor memory device and a method for manufacturing the same that can increase the threshold difference between cells during writing and erasing without increasing the cell area. purpose.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、薄い酸化膜領域の少なくとも一辺をフィール
ド酸化膜で画定するようにしたものである。
(Means for Solving the Problems) According to the present invention, at least one side of a thin oxide film region is defined by a field oxide film.

(作 用) 薄い酸化膜とフィールド酸化膜を接して設けることによ
り薄い酸化膜化膜下のn十領域が形成されている素子領
域の幅を従来より狭めることが出来、制御ゲートと浮遊
ゲート間の容量よりも浮遊ゲートとn中層間の容量を十
分小さくすることができるので結合容量比が大きく取れ
、書込み時と消去時のしきい値差を大幅に拡げる事が出
来る(実施例) 次に11本発明の一実施例を第1図、第2図及び第3図
を参照して説明する。第18(a)は1つのセルの平面
図、 (b)(c)はA−A’ 、B−B’断面図であ
る。第2図、第3図はその製造工程を示し、第2図(a
)〜(e)はA−A’断面、第3図(a)〜(e)はそ
れに対応するB−B’断面を示している。
(Function) By providing the thin oxide film and the field oxide film in contact with each other, the width of the device region where the n0 region under the thin oxide film is formed can be narrower than before, and the width between the control gate and the floating gate can be reduced. Since the capacitance between the floating gate and the n-layer can be made sufficiently smaller than the capacitance of , a large coupling capacitance ratio can be obtained, and the threshold difference between writing and erasing can be greatly expanded (Example) Next 11 An embodiment of the present invention will be described with reference to FIGS. 1, 2, and 3. The 18th (a) is a plan view of one cell, and (b) and (c) are AA' and BB' cross-sectional views. Figures 2 and 3 show the manufacturing process, and Figure 2 (a
) to (e) show the AA' cross sections, and FIGS. 3(a) to (e) show the corresponding BB' cross sections.

製造工程を説明すると、先ず最初に第2図(a)(第3
 図a )に示す如く6Ω・1のP−型シリコン基板(
21)表面の素子領域にシリコン酸化膜(22)を形成
し、この上にシリコン窒化膜(23)パターンを形成し
、これをマスクに素子間領域にボロン(B)イオン注入
し、熱酸化により0,8p厚のフィールド酸化膜(24
)を形成する。フィールド酸化膜下には反転防止のP型
層(25)が形成される。
To explain the manufacturing process, first of all, the manufacturing process shown in FIG.
As shown in Figure a), a 6Ω・1 P-type silicon substrate (
21) Form a silicon oxide film (22) in the element region on the surface, form a silicon nitride film (23) pattern on this, use this as a mask to implant boron (B) ions into the inter-element region, and perform thermal oxidation. 0.8p thick field oxide film (24
) to form. A P-type layer (25) for preventing inversion is formed under the field oxide film.

次いで、シリコン窒化膜(23)、シリコン酸化膜(2
2)を除去し、基板表面を熱酸化して100人厚0酸化
膜を形成し、フォトレジスト(破線)をマスクにして基
板にヒ素(As)を40KeVで例えば2 X 10”
ロー2イオン注入して前記100人厚0酸化膜下にn+
層(27)とメモリトランジスタのチャネル長を決める
ためのn+層(28)を形成する。このn中層(27)
 (28)はイオン注入マスクでY方向(第1図a参照
)の辺が、またフィールド酸化膜(24)によりX方向
の辺が決まる。この後、前記100人厚0酸化膜をフッ
化アンモニウム又はRIE (反応性イオンエツチング
)で除去し、再度900℃で熱酸化して400人厚0ゲ
ート酸化膜(26)を形成する(第2図す、第3図b)
Next, a silicon nitride film (23) and a silicon oxide film (23) are formed.
2) is removed, the surface of the substrate is thermally oxidized to form an oxide film with a thickness of 100 mm, and using the photoresist (broken line) as a mask, arsenic (As) is applied to the substrate at 40 KeV, for example, 2 x 10".
Low 2 ions are implanted under the 100-layer 0 oxide film.
A layer (27) and an n+ layer (28) for determining the channel length of the memory transistor are formed. This n middle layer (27)
The side in the Y direction (see FIG. 1a) is determined by the ion implantation mask (28), and the side in the X direction is determined by the field oxide film (24). Thereafter, the 100-layer-thickness 0-oxide film is removed by ammonium fluoride or RIE (reactive ion etching), and thermally oxidized again at 900°C to form a 400-layer-thickness 0-gate oxide film (26). Figure 3b)
.

この後、トンネル酸化膜を形成する領域にフォトレジス
トマスク(29)を形成し、基板表面のシリコン酸化膜
(26)をフッ化アンモニウム又はRIEで除去する。
Thereafter, a photoresist mask (29) is formed in the region where the tunnel oxide film is to be formed, and the silicon oxide film (26) on the surface of the substrate is removed by ammonium fluoride or RIE.

この時、開口部のフィールド酸化膜(24)も若干エツ
チングされる。フォトレジストマスク(29)は矩形の
開口を有し、X方向はフィールド酸化膜(24)上に延
在する(第2図C2第3図C)。
At this time, the field oxide film (24) in the opening is also slightly etched. The photoresist mask (29) has a rectangular opening and extends over the field oxide film (24) in the X direction (FIG. 2C2, FIG. 3C).

次いで、フォトレジストマスク(29)を除去し。The photoresist mask (29) is then removed.

800℃で熱酸化して厚さ100人のトンネル酸化膜(
30)を形成し、更にリンをドープしたポリシコン層を
形成し、これをバターニングしてフローティングゲート
となる部分についてX方向のセル間の部分を除去する(
第2図C2第3図d)。
A tunnel oxide film with a thickness of 100 mm was formed by thermal oxidation at 800°C (
30), further form a phosphorus-doped polysilicon layer, and pattern this to remove the portion between the cells in the X direction for the portion that will become the floating gate (
Figure 2 C2 Figure 3 d).

そしてポリシリコン層表面を1000℃で熱酸化して5
00人厚0シリコン酸化膜(31)を形成し、更に第2
層目のリンをドープしたポリシリコン層を形成する。そ
してフォトレジストマスクを用い、この2層ポリシリコ
ン膜を順次パターンニングして各ゲート電極を形成する
1図中、(32) (33)は選択トランジスタの選択
ゲート、(34)はメモリトランジスタの浮遊ゲート、
 (35)はメモリトランジスタの制御ゲートである。
Then, the surface of the polysilicon layer was thermally oxidized at 1000°C.
A silicon oxide film (31) with a thickness of 0 is formed, and then a second
A second phosphorus-doped polysilicon layer is formed. Then, using a photoresist mask, this two-layer polysilicon film is sequentially patterned to form each gate electrode. Gate,
(35) is a control gate of the memory transistor.

この後、基板に、セルを高耐圧構造にするため低濃度の
n一層(36) (37)をリンCP)イオン注入によ
り全面に形成し、更に選択トランジスタのドレイン部に
形成された上記n一層の一部表面から制御ゲート(35
)上にかけてフォトレジストマスク(破線)を形成し、
高濃度にヒ素(As)をイオン注入して選択トランジス
タのドレインであるn中層(38)とメモリトランジス
タのソースであるn+層(39)を形成する。尚、説明
は省略したが、選択ゲート(32)(33)は所定箇所
でスルーホールを介して相互にコンタクトしている(第
2図e。
Thereafter, a low concentration n layer (36) (37) was formed on the entire surface of the substrate by phosphorus CP) ion implantation in order to make the cell a high breakdown voltage structure. Control gate (35
) to form a photoresist mask (dashed line),
Arsenic (As) is ion-implanted at a high concentration to form an n middle layer (38) which is the drain of the selection transistor and an n+ layer (39) which is the source of the memory transistor. Although the explanation is omitted, the selection gates (32) and (33) are in contact with each other through through holes at predetermined locations (FIG. 2e).

第3図e)。Figure 3 e).

かかる本実施例によれば、薄い酸化膜(30)の2辺が
フィールド酸化膜(24)によって画定される事となり
、結合容量比が改善され“1” atQ”のマージンが
大幅に増大する。尚、書込み、消去、読出し時の各部の
電位条件は第10図の説明で述べたのと同じである。第
4図は、かかるセルの制御ゲート電圧に対するドレイン
電流の特性をHOn 、 611 #の夫々の場合につ
いて示したものである。
According to this embodiment, two sides of the thin oxide film (30) are defined by the field oxide film (24), improving the coupling capacitance ratio and greatly increasing the margin of "1" atQ. Note that the potential conditions of each part during writing, erasing, and reading are the same as those described in the explanation of Fig. 10. Fig. 4 shows the characteristics of the drain current with respect to the control gate voltage of such a cell as shown in HOn, 611#. This is shown for each case.

第5図は、書込み消去の繰り返し回数と書込み時、消去
時のメモリトランジスタのしきい値の関係を示したもの
である0図より判るように1回数の増加に伴ない、書込
みセルと消去セルのメモリトランジスタのしきい値差は
樽状の変化を示す。
Figure 5 shows the relationship between the number of write/erase repetitions and the threshold values of memory transistors during writing and erasing. The threshold difference of the memory transistors shows a barrel-like change.

第6図は2万回におけるしきい値差と最大部のしきい値
差の差分Δvth t&n+層(27)のドーズ量に対
して示したものである。この図から、ドーズ量が5 X
 10” am−” より小さくなると急激にΔvth
も大きくなる事が判る。勿論5 X 10” cxa−
” より低いドーズ量を用いても構わないが、Δvth
が大きいと多数回書込み消去を繰り返した時のマージン
の低下も大きくなるのでn中層(27)の不純物のドー
ズ量は5 X 10” rx−2以上、好ましくは2X
IO14am−2以上が良い、これはn中層(27)の
トンネル酸化膜下の逆導電型不純物の表面濃度に換算し
て夫々4.5X 10” am−’ 、 1.8X 1
0” am−”である、上限はメモリトランジスタのパ
ンチスルーによるドレイン耐圧の劣化を防止するため5
X10”C3I−”(4,5X10”cs+−”)とす
るのが好ましい。
FIG. 6 shows the difference Δvth between the threshold difference at 20,000 times and the maximum threshold difference with respect to the dose of the t&n+ layer (27). From this figure, it can be seen that the dose is 5
When it becomes smaller than 10” am-”, Δvth suddenly decreases.
It turns out that it also gets bigger. Of course 5 x 10” cxa-
” A lower dose may be used, but Δvth
If the value is large, the margin will decrease greatly when writing and erasing is repeated many times, so the dose of impurities in the n-middle layer (27) should be 5 x 10" rx-2 or more, preferably 2x.
IO of 14 am-2 or more is better, which is converted to the surface concentration of the opposite conductivity type impurity under the tunnel oxide film of the n-middle layer (27), which is 4.5X 10"am-' and 1.8X 1, respectively.
0"am-", and the upper limit is 5 to prevent deterioration of the drain breakdown voltage due to punch-through of the memory transistor.
Preferably, it is X10"C3I-"(4,5X10"cs+-").

n中層(27)の濃度が高いとしきい値の変動が少なく
なる理由は消去時のトンネル酸化膜中への正孔トラップ
が押えられることが一因であると考えられる。第7図は
トンネル部の拡大図で、破線で示した領域は空乏層を示
している。空乏層内では電子正孔対が生成するが、n中
層(27)の表面の空乏層厚はn+層(27)が高濃度
である程薄い、従って空乏層中の電界が低く空乏層中の
正孔がこの電界により加速されてトンネル酸化膜(27
)中にトラップされるのを押える事が可能となる。また
、高濃度にするとn中層(27)の横方向への回わり込
みも大きくなり、フィールド酸化膜下への侵入が大きい
、こる、この部分での空乏層厚は薄く、従って空乏層内
の正孔が基板に逃げるのを抑制する。正孔が基板に逃げ
ると全体の空乏層厚が増大するので好ましくない。従っ
て高濃度にすることによりn+層(27)がフィールド
酸化膜下に延びるようにする事が望ましい。
One reason why the fluctuation of the threshold value is reduced when the concentration of the n-middle layer (27) is high is thought to be that trapping of holes into the tunnel oxide film during erasing is suppressed. FIG. 7 is an enlarged view of the tunnel section, and the region indicated by the broken line indicates the depletion layer. Electron-hole pairs are generated in the depletion layer, but the thickness of the depletion layer on the surface of the n-middle layer (27) is thinner as the concentration of the n+ layer (27) is higher, so the electric field in the depletion layer is lower. Holes are accelerated by this electric field and form a tunnel oxide film (27
) It becomes possible to prevent being trapped inside. In addition, when the concentration is high, the lateral wrapping of the n-middle layer (27) becomes large, and the penetration into the field oxide film becomes large.The depletion layer thickness in this part is thin, and therefore Prevents holes from escaping to the substrate. If holes escape to the substrate, the overall thickness of the depletion layer increases, which is undesirable. Therefore, it is desirable to have a high concentration so that the n+ layer (27) extends below the field oxide film.

第8図、第9図は本発明の他の実施例の製造工程を示し
、夫々第2図、第3図に対応している。
FIGS. 8 and 9 show manufacturing steps of other embodiments of the present invention, and correspond to FIGS. 2 and 3, respectively.

本実施例では第8図(b)(第9図b)の工程でのn÷
層(27)形成のためのヒ素(As)イオン注入のドー
ズ量を3X10”C3I−” とした。また、フォトレ
ジストマスク(29)を用いて基板表面のシリコン酸化
膜(26)を除去した後、リン(P)を40KaV、2
X1014am’″8にてイオン注入するようにした(
第8図C9第9図C)、、他は先の実施例と同じである
In this example, n÷ in the process of FIG. 8(b) (FIG. 9b)
The dose of arsenic (As) ion implantation for forming the layer (27) was set to 3×10"C3I-". In addition, after removing the silicon oxide film (26) on the substrate surface using a photoresist mask (29), phosphorus (P) was applied at 40KaV and 2
Ion implantation was performed at X1014am'''8 (
FIG. 8C9 FIG. 9C), the rest is the same as the previous embodiment.

この実施例においてもトンネル部のn中層(27)のこ
の例では第8図(c)で、フィールド酸化膜退行部へリ
ンを重ねてイオン注入しているため、製造後のn中層(
27)端での絶縁膜厚dは500Å以上となる。また、
トンネル部以外のn中層(27) (28)の濃度を押
えることが出来るのでその部分の横方向拡散が少なくチ
ャネル長しの制御性、ドレイン耐圧が良い。尚、2回目
のイオン注入工程(第8図C)でリンをイオン注入した
が、これはヒ素(As)でも良い。
In this example, as shown in FIG. 8(c) in the N-middle layer (27) of the tunnel section, ion implantation is carried out in a layered manner into the field oxide film regression part, so that the N-middle layer (27) after manufacture is
27) The insulating film thickness d at the end is 500 Å or more. Also,
Since the concentration of the n-middle layer (27) (28) other than the tunnel part can be suppressed, lateral diffusion in that part is small, and the controllability of the channel length and drain breakdown voltage are good. Although phosphorus ions were implanted in the second ion implantation step (FIG. 8C), arsenic (As) may also be used.

以上の実施例においては薄い酸化膜領域はその2辺がフ
ィールド絶縁膜により画定される構造としたが、薄い酸
化膜領域をX方向にずらし、−辺のみがフィールド絶縁
膜により画定されるようにしても良い。
In the above embodiment, the thin oxide film region has a structure in which two sides are defined by the field insulating film, but the thin oxide film region is shifted in the X direction so that only the − side is defined by the field insulating film. It's okay.

〔発明の効果〕〔Effect of the invention〕

本発明によれば薄い酸化膜領域の少なくとも一辺がフィ
ールド酸化膜端部に接する構造としたので浮遊ゲートと
薄い酸化膜下のn中層の結合容量を小さくすることがで
き、書込み量が大きく誤読出しの少ないセルが得られる
According to the present invention, since at least one side of the thin oxide film region is in contact with the edge of the field oxide film, the coupling capacitance between the floating gate and the n-middle layer under the thin oxide film can be reduced, resulting in a large amount of writing and erroneous reading. This results in cells with fewer cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための図、第2図及び
第3図はその製造工程断面図、第4図はセルの特性図、
第5図は書込み消去の繰返し回数に対するしきい値の特
性図、第6図はそのn中層ドーズ量依存性を示す図、第
7図はトンネル部の拡大図、第8図及び第9図は他の実
施例を説明する図、第10図は従来例の図である。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 第 1 図 第2図    第3図 第4図 第7図 書込み消去品数(ω) n十 ド−ス゛量(cm−2) 第 6 図 (e)                 (e)第8
図    第9図
FIG. 1 is a diagram for explaining the present invention in detail, FIGS. 2 and 3 are cross-sectional views of the manufacturing process, and FIG. 4 is a characteristic diagram of the cell.
Fig. 5 is a characteristic diagram of the threshold value with respect to the number of repetitions of write/erase, Fig. 6 is a diagram showing its dependence on the n-middle layer dose, Fig. 7 is an enlarged view of the tunnel section, and Figs. 8 and 9 are FIG. 10, which is a diagram for explaining another embodiment, is a diagram of a conventional example. Agent Patent Attorney Yudo Nori Chika Kikuo Takehana No. 1 Figure 2 Figure 3 Figure 4 Figure 7 Number of written and erased items (ω) n0 Dose amount (cm-2) Figure 6 (e) (e) Eighth
Figure 9

Claims (13)

【特許請求の範囲】[Claims] (1)電気的に書換え可能な不揮発性半導体記憶装置に
おいて、浮遊ゲートとの間でトンネル電流を流す絶縁薄
膜が、チャネル部に設けられた基板とは逆導電型の領域
上に形成され、この逆導電型領域は、メモリトランジス
タのドレイン領域に接続されると共に、前記絶縁薄膜の
少なくとも一辺が素子分離用の絶縁膜によって画定され
ている事を特徴とする不揮発性半導体記憶装置。
(1) In an electrically rewritable nonvolatile semiconductor memory device, an insulating thin film that allows a tunnel current to flow between it and the floating gate is formed on a region of the opposite conductivity type to that of the substrate provided in the channel part. A nonvolatile semiconductor memory device, wherein the opposite conductivity type region is connected to a drain region of a memory transistor, and at least one side of the insulating thin film is defined by an insulating film for element isolation.
(2)セル選択用の選択トランジスタのソース領域が前
記メモリトランジスタのドレイン領域に接続されている
事を特徴とする前記特許請求の範囲第1項記載の不揮発
性半導体記憶装置。
(2) The nonvolatile semiconductor memory device according to claim 1, wherein a source region of a selection transistor for cell selection is connected to a drain region of the memory transistor.
(3)前記逆導電型領域のドーズ量が5×10^1^3
cm^−^2以上である事を特徴とする前記特許請求の
範囲第1項記載の不揮発性半導体記憶装置。
(3) The dose amount of the opposite conductivity type region is 5×10^1^3
2. The nonvolatile semiconductor memory device according to claim 1, wherein the non-volatile semiconductor memory device has a width of cm^-^2 or more.
(4)前記逆導電型領域のドーズ量が2×10^1^4
cm^−^2以上である事を特徴とする前記特許請求の
範囲第1項記載の不揮発性半導体記憶装置。
(4) The dose amount of the opposite conductivity type region is 2×10^1^4
2. The nonvolatile semiconductor memory device according to claim 1, wherein the non-volatile semiconductor memory device has a width of cm^-^2 or more.
(5)絶縁薄膜下の前記逆導電型領域の表面濃度が4.
5×10^1^■cm^−^3以上である事を特徴とす
る前記特許請求の範囲第1項記載の不揮発性半導体記憶
装置。
(5) The surface concentration of the opposite conductivity type region under the insulating thin film is 4.
The nonvolatile semiconductor memory device according to claim 1, wherein the nonvolatile semiconductor memory device is 5×10^1^■cm^-^3 or more.
(6)絶縁薄膜下の前記逆導電型領域の表面濃度が1.
8×10^1^■cm^−^3以上である事を特徴とす
る前記特許請求の範囲第1項記載の不揮発性半導体記憶
装置。
(6) The surface concentration of the opposite conductivity type region under the insulating thin film is 1.
The nonvolatile semiconductor memory device according to claim 1, wherein the nonvolatile semiconductor memory device is 8×10^1^■ cm^-^3 or more.
(7)前記逆導電型領域の表面濃度が4.5×10^1
^9cm^−^3以下である事を特徴とする前記特許請
求の範囲第5項記載の不揮発性半導記憶装置。
(7) The surface concentration of the opposite conductivity type region is 4.5×10^1
The non-volatile semiconductor memory device according to claim 5, characterized in that it is ^9 cm^-^3 or less.
(8)前記絶縁薄膜と素子分離用の絶縁膜との隣接部に
おいて、前記逆導電型領域の端部は前記浮遊ゲートが伸
びている前記素子分離用の絶縁膜下に延在している事を
特徴とする前記特許請求の範囲第1項記載の不揮発性半
導体記憶装置。
(8) In a portion adjacent to the insulating thin film and the element isolation insulating film, an end of the opposite conductivity type region extends below the element isolating insulating film to which the floating gate extends. A nonvolatile semiconductor memory device according to claim 1, characterized in that:
(9)前記隣接部において、逆導電型領域端部の絶縁膜
厚が300Å以上である事を特徴とする前記特許請求の
範囲第8項記載の不揮発性半導体記憶装置。
(9) The nonvolatile semiconductor memory device according to claim 8, wherein in the adjacent portion, the insulating film thickness at the end of the opposite conductivity type region is 300 Å or more.
(10)前記逆導電型領域は全体に基板と逆導電型の不
純物が添加され、前記絶縁薄膜部下には更に基板と逆導
電型の不純物が重畳する如く添加されてなる事を特徴と
する前記特許請求の範囲第1項記載の不揮発性半導体記
憶装置。
(10) The entire region of the opposite conductivity type is doped with an impurity of a conductivity type opposite to that of the substrate, and an impurity of a conductivity type opposite to that of the substrate is further doped under the insulating thin film so as to overlap. A nonvolatile semiconductor memory device according to claim 1.
(11)全体に添加された不純物はヒ素であり、重畳す
る如く添加された不純物がリンである事を特徴とする前
記特許請求の範囲第10項記載の不揮発性半導体記憶装
置。
(11) The nonvolatile semiconductor memory device according to claim 10, wherein the impurity added throughout is arsenic, and the impurity added so as to overlap is phosphorus.
(12)浮遊ゲートとの間でトンネル電流を流す絶縁薄
膜が、チャネル部に設けられた基板とは逆導電型の領域
上に形成され、この逆導電型領域がメモリトランジスタ
のドレイン領域に接続された電気的に書換え可能な不揮
発性半導体記憶装置の製造方法において、ゲート絶縁膜
を形成後、少なくとも一辺が素子分離用の絶縁膜上に及
ぶ開口を有するマスク材を形成してゲート絶縁膜を除去
し、この除去部に前記トンネル電流を流す絶縁薄膜を形
成する事を特徴とする不揮発性半導体記憶装置の製造方
法。
(12) An insulating thin film that allows a tunnel current to flow between the floating gate and the floating gate is formed on a region of a conductivity type opposite to that of the substrate provided in the channel portion, and this region of the opposite conductivity type is connected to the drain region of the memory transistor. In a method for manufacturing an electrically rewritable nonvolatile semiconductor memory device, after forming a gate insulating film, a mask material having an opening extending over at least one side of the insulating film for element isolation is formed, and the gate insulating film is removed. and forming an insulating thin film through which the tunneling current flows in the removed portion.
(13)マスク材を用いてゲート絶縁膜を除去した後、
前記マスク材を用いて前記逆導電型領域が形成された基
板に対して更に基板と逆導電型不純物を導入する事を特
徴とする前記特許請求の範囲第1項記載の不揮発性半導
体記憶装置の製造方法。
(13) After removing the gate insulating film using a mask material,
2. The nonvolatile semiconductor memory device according to claim 1, wherein an impurity of a conductivity type opposite to that of the substrate is further introduced into the substrate on which the region of opposite conductivity type is formed using the mask material. Production method.
JP62028023A 1987-02-12 1987-02-12 Nonvolatile semiconductor memory device and method of manufacturing the same Expired - Lifetime JP2760983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028023A JP2760983B2 (en) 1987-02-12 1987-02-12 Nonvolatile semiconductor memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028023A JP2760983B2 (en) 1987-02-12 1987-02-12 Nonvolatile semiconductor memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63197378A true JPS63197378A (en) 1988-08-16
JP2760983B2 JP2760983B2 (en) 1998-06-04

Family

ID=12237150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028023A Expired - Lifetime JP2760983B2 (en) 1987-02-12 1987-02-12 Nonvolatile semiconductor memory device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2760983B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120285A (en) * 1977-03-29 1978-10-20 Fujitsu Ltd Manufacture of semiconductor
JPS60124965A (en) * 1983-12-10 1985-07-04 Matsushita Electronics Corp Manufacture of semiconductor device
JPS60244073A (en) * 1984-05-17 1985-12-03 Toshiba Corp Manufacture of nonvolatile semiconductor memory device
JPS60502128A (en) * 1983-08-29 1985-12-05 シ−ク・テクノロジイ・インコ−ポレイテツド Method for manufacturing non-volatile MOS memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120285A (en) * 1977-03-29 1978-10-20 Fujitsu Ltd Manufacture of semiconductor
JPS60502128A (en) * 1983-08-29 1985-12-05 シ−ク・テクノロジイ・インコ−ポレイテツド Method for manufacturing non-volatile MOS memory device
JPS60124965A (en) * 1983-12-10 1985-07-04 Matsushita Electronics Corp Manufacture of semiconductor device
JPS60244073A (en) * 1984-05-17 1985-12-03 Toshiba Corp Manufacture of nonvolatile semiconductor memory device

Also Published As

Publication number Publication date
JP2760983B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
KR100221062B1 (en) A flash memory and manufacturing method of the same
EP0699344B1 (en) EEPROM memory cell
JP3966707B2 (en) Semiconductor device and manufacturing method thereof
US5284785A (en) Diffusionless source/drain conductor electrically-erasable, electrically-programmable read-only memory and methods for making and using the same
US7553725B2 (en) Nonvolatile memory devices and methods of fabricating the same
JP2817393B2 (en) Method for manufacturing semiconductor memory device
JPS61105862A (en) Semiconductor device
WO1998034275A1 (en) Semiconductor device incorporating mos element and method for manufacturing the same
JPH07161853A (en) Nonvolatile semiconductor memory, its erasing method and manufacturing method
US11031082B2 (en) Non-volatile memory with double capa implant
US20060199334A1 (en) EEPROM device and method of fabricating the same
JP4217409B2 (en) Nonvolatile memory device and manufacturing method thereof
KR100348311B1 (en) Nonvolatile Memory Device and method for Fabricating the same
JPH07130894A (en) Eeprom flash memory cell, memory device and their manufacture
JP4252637B2 (en) Manufacturing method of non-luminescent memory device
US6025229A (en) Method of fabricating split-gate source side injection flash memory array
US5576232A (en) Fabrication process for flash memory in which channel lengths are controlled
JPH02177561A (en) Semiconductor non-volatile memory and manufacture thereof
TWI556412B (en) Memory device and method for fabricating the same
US6693830B1 (en) Single-poly two-transistor EEPROM cell with differentially doped floating gate
JPS63197378A (en) Nonvolatile semiconductor storage device and its manufacture
JPH0855923A (en) Manufacture of semiconductor memory device
KR930008081B1 (en) Single poly eeprom cell and method for fabricating thereof
JP3198682B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH02295169A (en) Nonvolatile semiconductor memory

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term