JPS63197324A - Gas source cell - Google Patents

Gas source cell

Info

Publication number
JPS63197324A
JPS63197324A JP3012287A JP3012287A JPS63197324A JP S63197324 A JPS63197324 A JP S63197324A JP 3012287 A JP3012287 A JP 3012287A JP 3012287 A JP3012287 A JP 3012287A JP S63197324 A JPS63197324 A JP S63197324A
Authority
JP
Japan
Prior art keywords
gas
heating part
heat
duct
source cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3012287A
Other languages
Japanese (ja)
Inventor
Yasukazu Sumi
泰和 墨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP3012287A priority Critical patent/JPS63197324A/en
Publication of JPS63197324A publication Critical patent/JPS63197324A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a gas source cell in less power comsumption and gas discharge deteriorating the characteristics of thin films by a method wherein a part of gas channel leading material gas to a gas heating part made of high melting point metal is made of non-metallic material. CONSTITUTION:Heating elements 5, a heat shield 6 and an inner heat shield 8 are made of Ta. A duct 2 and a heat insulator 9 are respectively made of stainless steel and quarz glass. A gas heating part 1 is heated by the heating elements 5 to control the power of heating elements 5 by output from a thermocouple 10 while arsine is led in the heating part 1 through the duct 2 and a heat insulator 9. Arsine is thermo-cracked into hydrogen and arsenic to be jetted out. The thermal cracking is accelerated by catalytic action of Ta comprising the heating part 1. Furthermore, the heat radiation from the heating part 1 to the heat insulator 9 and the duct 2 is shielded by the inner heat shield 8 while reducing the heat conduction from the heating part 1 to the duct 2 by the heat insulator 9 so that the rising temperature in a flange may be minimized to increase the thermal efficiency. By means of such a device, excellent thin film can be deposited.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空中で薄膜を堆積させる装置に月いられ
るガスソースセルに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to a gas source cell that can be used in an apparatus for depositing thin films in vacuum.

〔発明の概要〕[Summary of the invention]

この発明は、原料気体を加熱する機構を有するガスソー
スセルにおいて、高融点金属よりなる気体加熱部を有し
、該気体加熱部に原料気体を導く気体の流路の少くとも
一部が非金属材料よりなる構造にすることにより、目的
とするfi膜の特性を劣化させるようなガスの放出が少
く、消費電力の少いガスソースセルを得るものである。
This invention provides a gas source cell having a mechanism for heating a raw material gas, which has a gas heating section made of a high melting point metal, and at least a part of a gas flow path that guides the raw material gas to the gas heating section is made of a non-metallic metal. By making the structure made of the material, it is possible to obtain a gas source cell that releases less gas that would deteriorate the characteristics of the target FI film and consumes less power.

〔従来の技術〕[Conventional technology]

従来、図2に示す様に、気体加熱部1を含む原料気体の
流路がすべて金属製であるか、または、図3に示す様に
気体加熱部にセラミックを用いたガスソースセルが知ら
れていた。
Conventionally, gas source cells have been known in which the flow path for the raw material gas including the gas heating section 1 is entirely made of metal, as shown in FIG. 2, or in which the gas heating section is made of ceramic, as shown in FIG. was.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

原料気体として、アルシン(AsH3)やホスフィン(
Plh)を用いる場合、原料気体を効率的に熱分解する
ためには、通常600℃以上の温度を必要とする。この
ため図2に示すような、気体加熱部を含むすべての気体
の流路が金属で構成されている従来のガスソースセルに
おいては、金属の良好な熱伝導性のため、高温に保たれ
た気体加熱部1より、導管部2.気体導入部3及び取付
はフランジ4に熱が逃げやすい。このため熱効率が悪く
なる欠点があった。また、上記気体加熱部1より逃げた
熱のため、ステンレス鋼よりなる導管部2.気体導入部
3.取付はフランジ4等の温度が上昇する。
Arsine (AsH3) and phosphine (
When using Plh), a temperature of 600° C. or higher is usually required to efficiently thermally decompose the raw material gas. For this reason, in a conventional gas source cell as shown in Figure 2, in which all gas flow paths including the gas heating section are made of metal, the high temperature is maintained due to the good thermal conductivity of metal. From the gas heating section 1, the conduit section 2. Heat easily escapes to the flange 4 in the gas introduction part 3 and the mounting. For this reason, there was a drawback that thermal efficiency deteriorated. Also, due to the heat escaping from the gas heating section 1, the conduit section 2 made of stainless steel. Gas introduction part 3. During installation, the temperature of the flange 4, etc. increases.

温度が上昇した壁面からは、CO,H,0等のガス放出
が大きくなる。特にステンレス鋼は、高温になると、C
Oのガス放出が著しく大きくなる。放出されたCO等の
ガスが、目的とする薄膜の特性に悪影響を及ぼすため、
良好な特性をもつ薄膜が得られない欠点もあった。また
、図3に示すように、気体加熱部1にアルミナ、石英ガ
ラス等のセラミックスを用いた従来のガスソースセルで
は、以下に示すような欠点があった。即ち、セラミック
ス特にアルミナのような焼結材料は、高温では材料の表
面及び内部からのガス放出が大きく、そのため、良好な
薄質を持つ薄膜を得られない欠点があった。
Gases such as CO, H, and 0 are released from the wall surface where the temperature has increased. In particular, when stainless steel reaches high temperatures, C
Outgassing of O becomes significantly large. Because the released gases such as CO have a negative effect on the properties of the target thin film,
Another drawback was that a thin film with good properties could not be obtained. Furthermore, as shown in FIG. 3, the conventional gas source cell in which the gas heating section 1 is made of ceramics such as alumina or quartz glass has the following drawbacks. That is, ceramics, particularly sintered materials such as alumina, have the disadvantage that gas is released from the surface and inside of the material to a large extent at high temperatures, making it difficult to obtain thin films with good quality.

また、気体加熱部を構成するセラミックス自体自体の分
解、蒸発のために、良好な特性をもつ薄膜を得られない
欠点もあった0例えば、目的とする薄膜がlll−V族
化合物半導体であり、気体加熱部に石英ガラスを用いた
場合、石英ガラスを起源とするシリコンが目的とする化
合物半導体にドーピングされてしまい、良好な特性を持
つ薄膜が得られないことが、従来より指摘されている。
In addition, there is also the disadvantage that thin films with good properties cannot be obtained due to decomposition and evaporation of the ceramics that constitute the gas heating section.For example, if the desired thin film is a III-V group compound semiconductor, It has been pointed out that when quartz glass is used in the gas heating section, silicon originating from the quartz glass is doped into the target compound semiconductor, making it impossible to obtain a thin film with good properties.

また、気体加熱部1にタンタルを用いた場合、アルシン
やホスフィンの熱分解を促進する触媒作用がタンタルに
あることが従来より指摘されている。ところが、気体加
熱部をセラミックスで構成した場合、セラミックスには
触媒作用がないため、熱分解を効率的に行うためには気
体加熱部1をより高温にしなければならない。このため
前記の気体加熱部を構成するセラミックスの表面及び内
部からの放出ガス及び/または、セラミックス自体の分
解、蒸発がより加速され、良好な特性を持つ薄膜が得ら
れない欠点があった。
Furthermore, it has been pointed out that when tantalum is used in the gas heating section 1, tantalum has a catalytic action that promotes thermal decomposition of arsine and phosphine. However, when the gas heating section is made of ceramics, the gas heating section 1 must be heated to a higher temperature in order to efficiently perform thermal decomposition, since ceramics do not have a catalytic effect. For this reason, the gas released from the surface and inside of the ceramic constituting the gas heating section and/or the decomposition and evaporation of the ceramic itself are accelerated, resulting in the disadvantage that a thin film with good properties cannot be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

以上の欠点を解決するために本発明においては、原料気
体を加熱する機構を有するガスソースセルにおいて、高
融点金属よりなる気体加熱部を有し、該気体加熱部に原
料気体を導く気体の流路の少くとも一部が非金属材料よ
りなる構成とした。
In order to solve the above-mentioned drawbacks, the present invention provides a gas source cell having a mechanism for heating source gas, which includes a gas heating section made of a high melting point metal, and a gas flow that guides the source gas to the gas heating section. At least a portion of the path is made of non-metallic material.

〔作用〕[Effect]

上記の構成とすることにより、本発明を用いれば、気体
加熱部からのガス放出を少くし、かつ気体加熱部からの
熱の逃げを小さくすることができる。
With the above configuration, if the present invention is used, gas emission from the gas heating section can be reduced, and heat escape from the gas heating section can be reduced.

〔実施例〕〔Example〕

第1図に本発明の実施例であるガスソースセルを示す。 FIG. 1 shows a gas source cell that is an embodiment of the present invention.

本実施例のガスソースセルでは、ステンレス鋼よりなる
気体導入部3と、タンタルよりなる気体加熱部1と、気
体加熱部1の少なくとも、一部の周囲に設けられ気体加
熱部1を加熱するヒーター5と、ヒーター5の周囲に設
けられ、気体加熱部1の熱が外部に散逸することを防ぐ
熱シールド6と、前記気体加熱部lの一端に分子線噴出
ロアと、気体加熱部1の分子線噴出ロアとは反対の端に
接続した熱絶縁部9と、熱絶縁部9と気体導入部3とを
結ぶ導管2と、気体加熱部1の内部に設けられた内部熱
シールド8とを有する構造を持つ。ここで、ヒーター5
.熱シールド6、内部熱シールド8は、タンタルよりな
る。また、導管2はステンレス鋼、熱絶縁部9は石英ガ
ラスよりなる。ヒーター5に通電加熱することにより、
気体加熱部2が熱せられる。ヒーター5に供給される電
力は熱電対10の出力をもとに制御される。
The gas source cell of this embodiment includes a gas introduction part 3 made of stainless steel, a gas heating part 1 made of tantalum, and a heater provided around at least a part of the gas heating part 1 to heat the gas heating part 1. 5, a heat shield 6 provided around the heater 5 to prevent the heat of the gas heating section 1 from dissipating to the outside, a molecular beam ejection lower at one end of the gas heating section 1, and a molecular beam jetting lower at one end of the gas heating section 1; It has a thermal insulation part 9 connected to the end opposite to the line ejection lower, a conduit 2 connecting the thermal insulation part 9 and the gas introduction part 3, and an internal heat shield 8 provided inside the gas heating part 1. Has structure. Here, heater 5
.. The heat shield 6 and the internal heat shield 8 are made of tantalum. Further, the conduit 2 is made of stainless steel, and the thermal insulation part 9 is made of quartz glass. By heating the heater 5 with electricity,
The gas heating section 2 is heated. The electric power supplied to the heater 5 is controlled based on the output of the thermocouple 10.

気体導入部3より導入された原料気体は、導管2及び熱
絶縁部9により気体加熱部1に導かれ、気体加熱部1で
加熱される。原料気体がアルシン(AsHi)である場
合、アルシンは気体加熱部1で熱分解され、水素(Hz
)、ヒ素(As、^Sl、 Asa ”−”)となって
、分子線噴出ロアより噴出する。前記熱分解は、気体加
熱部を構成するタンクルの触媒作用により促進される。
The raw material gas introduced from the gas introduction section 3 is guided to the gas heating section 1 through the conduit 2 and the thermal insulation section 9, and is heated in the gas heating section 1. When the raw material gas is arsine (AsHi), arsine is thermally decomposed in the gas heating section 1 and hydrogen (Hz
), arsenic (As, ^Sl, Asa ``-'') is ejected from the molecular beam ejection lower. The thermal decomposition is promoted by the catalytic action of the tanker that constitutes the gas heating section.

この時、内部熱シールド8により、気体加熱部1から熱
絶縁部9及び導管2への熱放射が防がれる。さらに、熱
絶縁部9により、気体加熱部1から導管2への熱伝導が
低減される。
At this time, the internal heat shield 8 prevents heat radiation from the gas heating section 1 to the thermal insulation section 9 and the conduit 2. Furthermore, the thermal insulation section 9 reduces heat conduction from the gas heating section 1 to the conduit 2.

このため、気体加熱部1より導管2への熱の伝達は、著
しく低減される。したがって、導管2.取付フランジ4
の温度上昇を最小限におさえられ、かつ、熱効率を高め
られる。
Therefore, the transfer of heat from the gas heating section 1 to the conduit 2 is significantly reduced. Therefore, conduit 2. Mounting flange 4
temperature rise can be minimized and thermal efficiency can be increased.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明を用いれば、目的とする薄
膜の特性を劣化させるガスの放出を少く、従って良好な
特性の薄膜を堆積させ得る、かつ消費電力の少いガスソ
ースセルを得ることができる。
As explained above, by using the present invention, it is possible to obtain a gas source cell that releases less gas that degrades the properties of the target thin film, can deposit a thin film with good properties, and consumes less power. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例であるガスソースセル、第2
図及び第3図は、従来のガスソースセルの構造を表す断
面図である。 l・・・気体加熱部  2・・・導管 3・・・気体導入部  4・・・取付はフランジ5・・
・ヒーター   6・・・熱シールド7・・・分子線噴
出口 8・・・内部熱シールド9・・・熱絶縁部   
10・・・熱電対以上 出願人 セイコー電子工業株式会社 絹BF4の〃スンースゼル(ll Wren父    
        革を米η゛スゾースセルめば〒屓n図
第1図    第2図 一十 f米のj゛スンースセル晧〇 第3図 旧刃
FIG. 1 shows a gas source cell, a second embodiment, which is an embodiment of the present invention.
3 and 3 are cross-sectional views showing the structure of a conventional gas source cell. l...Gas heating part 2...Conduit 3...Gas introduction part 4...Flange 5...
・Heater 6...Heat shield 7...Molecular beam outlet 8...Internal heat shield 9...Heat insulation part
10... Thermocouples and above Applicant: Seiko Electronic Industries Co., Ltd. Silk BF4 Sun Suzell (father of ll Wren)
If you sell leather to rice η ゛ suzose cell 〒屓n fig. 1 fig. 2

Claims (3)

【特許請求の範囲】[Claims] (1)原料気体を加熱する機構を有するガスソースセル
において、高融点金属よりなる気体加熱部を有し、該気
体加熱部に原料気体を導く気体の流路の少なくとも一部
が非金属材料よりなるガスソースセル。
(1) A gas source cell having a mechanism for heating raw material gas, which has a gas heating section made of a high-melting point metal, and at least a part of the gas flow path that guides the raw material gas to the gas heating section is made of a non-metallic material. gas source cell.
(2)前記非金属材料が、石英ガラスである特許請求の
範囲第1項記載のガスソースセル。
(2) The gas source cell according to claim 1, wherein the non-metallic material is quartz glass.
(3)前記高融点金属がタンタルである特許請求の範囲
第1項及び第2項記載のガスソースセル。
(3) The gas source cell according to claims 1 and 2, wherein the high melting point metal is tantalum.
JP3012287A 1987-02-12 1987-02-12 Gas source cell Pending JPS63197324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3012287A JPS63197324A (en) 1987-02-12 1987-02-12 Gas source cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3012287A JPS63197324A (en) 1987-02-12 1987-02-12 Gas source cell

Publications (1)

Publication Number Publication Date
JPS63197324A true JPS63197324A (en) 1988-08-16

Family

ID=12294975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3012287A Pending JPS63197324A (en) 1987-02-12 1987-02-12 Gas source cell

Country Status (1)

Country Link
JP (1) JPS63197324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214724A (en) * 1990-01-19 1991-09-19 Fuji Electric Corp Res & Dev Ltd Thin-film manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214724A (en) * 1990-01-19 1991-09-19 Fuji Electric Corp Res & Dev Ltd Thin-film manufacturing method
JP2555209B2 (en) * 1990-01-19 1996-11-20 株式会社富士電機総合研究所 Thin film manufacturing method

Similar Documents

Publication Publication Date Title
US6232580B1 (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
KR100252601B1 (en) Heating control apparatus
US4747368A (en) Chemical vapor deposition apparatus with manifold enveloped by cooling means
US5031229A (en) Deposition heaters
KR20110138259A (en) Deposition of high vapor pressure materials
US20080092812A1 (en) Methods and Apparatuses for Depositing Uniform Layers
KR19980018624A (en) Chemical vapor deposition, plasma enhanced chemical vapor deposition or method and apparatus for treating exhaust gas from plasma etch reactor
JP2005277442A (en) Plasma etching apparatus
US5157240A (en) Deposition heaters
JPS6367332B2 (en)
KR20130098663A (en) Apparatus for manumacturing film and the method thereof
JPS62132313A (en) Molecular jet generator
JPS63197324A (en) Gas source cell
US20120153298A1 (en) Epitaxial growth system for fast heating and cooling
JPS5943816B2 (en) Method for manufacturing silicon semiconductor devices
WO1997016246A1 (en) Unibody gas plasma source technology
JP2778598B2 (en) Heating method and heating device
US5283414A (en) Plasma treatment apparatus
US5222074A (en) Thermal decomposition cell
JPS6239534B2 (en)
US3340848A (en) Apparatus for producing purs semiconductor material
JPS6239533B2 (en)
JP3778992B2 (en) Heater for vapor phase growth equipment for manufacturing gallium nitride based semiconductor thin films
JP2821571B2 (en) Semiconductor processing equipment
JPH072617Y2 (en) Uniform heating mechanism for PBN crucible