JPS63196549A - Process for production of suberonitrile - Google Patents

Process for production of suberonitrile

Info

Publication number
JPS63196549A
JPS63196549A JP62028192A JP2819287A JPS63196549A JP S63196549 A JPS63196549 A JP S63196549A JP 62028192 A JP62028192 A JP 62028192A JP 2819287 A JP2819287 A JP 2819287A JP S63196549 A JPS63196549 A JP S63196549A
Authority
JP
Japan
Prior art keywords
dichlorohexane
reaction
sodium cyanide
suberonitrile
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62028192A
Other languages
Japanese (ja)
Other versions
JPH0832670B2 (en
Inventor
Hiroyuki Nanba
寛行 難波
Noriko Takahashi
則子 高橋
Koichi Abe
阿部 紘一
Masao Saito
雅夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP62028192A priority Critical patent/JPH0832670B2/en
Publication of JPS63196549A publication Critical patent/JPS63196549A/en
Publication of JPH0832670B2 publication Critical patent/JPH0832670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a synthetic intermediate for agricultural chemicals, pharmaceuticals, dicarboxylic acid, diamine, etc., suppressing the formation of mononitrile, in high yield, by reacting 1,6- dichlorohexane with an aqueous solution of sodium cyanide in the presence of a phase-transfer catalyst. CONSTITUTION:The objective compound can be produced by reacting 1,6- dichlorohexane with an aqueous solution of sodium cyanide in the presence of a phase-transfer catalyst of formula (R1-R4 are 3-10C alkyl) (e.g. tetraalkylammonium bromide). The reaction is carried out by continuously dripping an aqueous solution of sodium cyanide into hot solution of the catalyst and 1,6-dichlorohexane. The amounts of sodium cyanide and the catalyst are 2.1-2.6mol and 1.5-10g per 1mol of 1,6-dichlorohexane and the reaction is performed at 80-140 deg.C for 0.5-8hr, preferably at 90-110 deg.C for 2-4hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1.6−ジクロルヘキサンと資化ソーダを反
応させてスベロニトリルを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing suberonitrile by reacting 1,6-dichlorohexane and sodium assimilate.

スベロニトリルは農医薬品やジカルボン酸、ジアミンな
どの製造用中間体として、有機化学および生物化学の分
野で有用である。
Suberonitrile is useful in the fields of organic chemistry and biochemistry as an intermediate for the production of agricultural drugs, dicarboxylic acids, diamines, etc.

(従来の技術) スベロニトリルの製造方法は、ケミカルアブストラクト
(vol、94 P、46803h)に酸化亜鉛の存在
下、スペリン酸とアンモニアを反応させる方法が記載さ
れており、また特開昭61−122258号には、1゜
6−ヘキサンジオールとヨウ化水素またはアルカリ金属
のヨウ化物とを反応させて得られた1、6−ジクロルヘ
キサンを資化ソーダ、資化カリおよび青酸などのシアン
化剤と反応させる方法が記載されている。
(Prior art) A method for producing suberonitrile is described in Chemical Abstracts (vol. 94 P. 46803h), in which superic acid and ammonia are reacted in the presence of zinc oxide, and in JP-A-61-122258. In this method, 1,6-dichlorohexane obtained by reacting 1,6-hexanediol with hydrogen iodide or an alkali metal iodide is mixed with a cyanating agent such as sodium assimilate, potassium assimilate, and hydrocyanic acid. A method for the reaction is described.

スペリン酸を原料とする方法は、スペリン酸が高価であ
り、また反応温度が240〜300°Cと高く、収率が
低いため工業化が困難である。
The method using speric acid as a raw material is difficult to industrialize because speric acid is expensive, the reaction temperature is as high as 240 to 300°C, and the yield is low.

1.6−ヘキサンジオールとヨウ素化合物を反応させ、
シアノ化する方法も、高価なヨウ素化合物が必要である
。またこの方法は、反応終了後、工一チル、クロロホル
ムなどの疎水性有機溶剤で抽出し、更に水洗、乾燥およ
び減圧蒸溜の操作が必要であり、精製工程が複雑である
1. Reacting 6-hexanediol and an iodine compound,
The cyanation method also requires expensive iodine compounds. In addition, this method requires extraction with a hydrophobic organic solvent such as chlorine or chloroform after completion of the reaction, and further operations of washing with water, drying, and distillation under reduced pressure, making the purification process complicated.

(発明が解決しようとする問題点) (R,〜R4は3〜10のアルキル基を示し、これらは
互いに同一でも異なっていても良い)で表される相間移
動触媒の存在下、1.6−ジクロルヘキサンと資化ソー
ダ水溶液を反応させスベロニトリルを製造する方法を発
明した。
(Problems to be Solved by the Invention) In the presence of a phase transfer catalyst represented by (R and ~R4 represent 3 to 10 alkyl groups, which may be the same or different from each other), 1.6 -A method for producing suberonitrile by reacting dichlorohexane with an aqueous sodium assimilate solution was invented.

1.6−ジクロルヘキサンと資化ソーダの反応は、次の
二段階で反応が進行する。
The reaction between 1.6-dichlorohexane and sodium assimilate proceeds in the following two steps.

(/! (CIり& C4!  +  NaCN  −
→CM(CIり 6 Cj!  + NaCj!   
(1)CM(CHx) &Cj!  +  NaCN 
 −→CN(CIりICM  + NaCj!    
(2)発明者は相間移動触媒としてテトラブチルアンモ
ニウムプロミドを使用し、原料の1.6−ジクロルヘキ
サンと資化ソーダを一括投入法により反応を行ったが、
理論量以上の資化ソーダを使用したにもかかわらず、(
1)の反応での生成物1−シアノ−6−クロルヘキサン
(以下モノニトリルと称する)が残留し、反応が十分に
完結しなかった。
(/! (CIri & C4! + NaCN −
→CM (CIri 6 Cj! + NaCj!
(1) CM (CHx) &Cj! + NaCN
-→CN (CIri ICM + NaCj!
(2) The inventor used tetrabutylammonium bromide as a phase transfer catalyst and carried out the reaction by adding the raw materials 1,6-dichlorohexane and sodium assimilate all at once.
Despite using more than the theoretical amount of sodium hydroxide, (
The product 1-cyano-6-chlorohexane (hereinafter referred to as mononitrile) in the reaction of 1) remained, and the reaction was not fully completed.

このモノニトリルはスベロニトリルと沸点が近いので、
これを分離するには高性能の蒸溜塔が必要である。また
スベロニトリルの収率を高めるためには、このモノニト
リルを原料系に循環させる必要があり、複雑なプロセス
となる。
This mononitrile has a boiling point close to that of suberonitrile, so
A high-performance distillation column is required to separate this. Furthermore, in order to increase the yield of suberonitrile, it is necessary to circulate this mononitrile into the raw material system, resulting in a complicated process.

一括投入法により反応させた後、更に資化ソーダを追加
して反応させれば反応が完結するが、この場合は資化ソ
ーダの使用量が大となり、また反発後静置して分離した
水相中に多量の資化ソーダが残留することになり、排水
処理の費用が増大する。
After the reaction is carried out using the all-in-one method, the reaction can be completed by adding more sodium hydroxide to the reaction, but in this case, the amount of sodium hydroxide used is large, and the water that is separated after being left to stand after repulsion is A large amount of assimilated soda will remain in the phase, increasing the cost of wastewater treatment.

(問題点を解決するための手段) 発明者等は1.6−ジクロルヘキサンを原料とするスベ
ロニトリルの製造方法に関しての以上の如き問題点を解
決すべく鋭意検討した結果、相間移動触媒と1,6−ジ
クロルヘキサンを加熱した溶液に、資化ソーダ水溶液を
連続滴下して反応させれば、モノニトリルの生成量が減
少し、収率が向上することを見出し本発明に至った。
(Means for Solving the Problems) As a result of intensive studies by the inventors to solve the above-mentioned problems regarding the method for producing suberonitrile using 1,6-dichlorohexane as a raw material, a phase transfer catalyst and a , 6-dichlorohexane by continuously dropping an aqueous sodium nitrile solution dropwise into the heated solution, the amount of mononitrile produced is reduced and the yield is improved, leading to the present invention.

(R1−R4は炭素数が3〜10のアルキル基を示し、
これらは互いに同一でも異なっていても良い)で表され
る相間触媒の存在下、1.6−ジクロルヘキサンと資化
ソーダ水溶液を反応させてスベロニトリルを製造するに
際し、80℃以上の温度の相関移動触媒と1.6−ジク
ロルヘキサンの混合液に、資化ソーダ水溶液を連続滴下
することを特徴とするスベロニトリルを製造する方法で
ある。
(R1-R4 represents an alkyl group having 3 to 10 carbon atoms,
When producing suberonitrile by reacting 1,6-dichlorohexane with an aqueous sodium assimilate solution in the presence of an interphase catalyst represented by This method for producing suberonitrile is characterized by continuously dropping an aqueous sodium assimilate solution into a mixed solution of a mobile catalyst and 1,6-dichlorohexane.

本発明で使用される相関移動触媒の例としては、テトラ
プロピルアンモニウムプロミド、テトラブチルアンモニ
ウムプロミドなどがある。特にテトラブチルアンモニウ
ムプロミドが好適である。
Examples of phase transfer catalysts used in the present invention include tetrapropylammonium bromide and tetrabutylammonium bromide. Tetrabutylammonium bromide is particularly suitable.

資化ソーダ水溶液は、工業的に市販されている濃度30
〜35χの水溶液をそのまま使用することができ、また
更に必要に応じて濃度を下げて使用することもできる。
The sodium assimilate aqueous solution has a concentration of 30, which is commercially available industrially.
The aqueous solution having a concentration of ~35.chi. can be used as it is, or can be used with a lower concentration if necessary.

資化ソーダ水溶液の滴下速度は反応速度に対応した速度
とする必要があり、反応温度、溶液の撹拌状態および供
給方法等により異なる。
The dropping rate of the aqueous sodium assimilate solution must correspond to the reaction rate, and varies depending on the reaction temperature, the stirring state of the solution, the feeding method, etc.

本発明により、資化ソーダの使用量は1.6−ジクロル
ヘキサンに対する資化ソーダのモル比を理論量の2.0
に対し2.1〜2.6程度の若干の過剰で良いことにな
る。このモル比が低過ぎる場合は収率が低く、1.6−
ジクロルヘキサンの損失が大きくなる。またこのモル比
が高過ぎる場合は排水中にCNイオンが残留し、排水処
理の費用が増加する。
According to the present invention, the amount of sodium assimilate used is such that the molar ratio of sodium assimilate to 1.6-dichlorohexane is 2.0 of the theoretical amount.
A slight excess of about 2.1 to 2.6 is sufficient. If this molar ratio is too low, the yield will be low and 1.6-
The loss of dichlorohexane increases. Furthermore, if this molar ratio is too high, CN ions will remain in the wastewater, increasing the cost of wastewater treatment.

相間移動触媒の使用量は1.6−ジクロルヘキサン1モ
ル当たり 1.5〜10g1好ましくは1.5〜6.5
gとする。テトラブチルアンモニウムプロミドの使用量
が少なすぎると収率が低く、多い場合は次の精製工程で
の負荷が大きくなる。
The amount of phase transfer catalyst used is 1.5 to 10 g, preferably 1.5 to 6.5 g, per mole of 1.6-dichlorohexane.
Let it be g. If the amount of tetrabutylammonium bromide used is too small, the yield will be low, and if it is too large, the load in the next purification step will be increased.

反応温度は80〜140℃、好ましくは90〜110°
Cとする0反応温度が低いと反応が進行せず、高ずぎる
場合は収率が低下する。
Reaction temperature is 80-140°C, preferably 90-110°
If the reaction temperature is too low, the reaction will not proceed, and if it is too high, the yield will decrease.

反応圧力は特に制限が無いが、通常は常圧で行う。反応
時間は通常0.5〜8 hr、好ましくは2〜4hrで
ある。
There is no particular restriction on the reaction pressure, but the reaction is usually carried out at normal pressure. The reaction time is usually 0.5 to 8 hr, preferably 2 to 4 hr.

(作用および効果) 原料の資化ソーダは反応温度に上げた状態で過剰に存在
する場合には、反応に使用されずに分解反応等により変
質するため、モノニトリルが残留し収率が低下するもの
と推定される。
(Functions and Effects) If the raw material sodium assimilate exists in excess when the reaction temperature is raised, it will not be used for the reaction and will deteriorate due to decomposition reactions, etc., resulting in mononitrile remaining and reducing the yield. It is estimated that

本発明によれば、1.6−ジクロルヘキサンに対する資
化ソーダのモル比を理論量の2.0近くまで下げること
ができ、生成液中のモノニトリルの濃度が著しく低下し
、スベロニトリルの収率が向上する。
According to the present invention, the molar ratio of sodium assimilate to 1.6-dichlorohexane can be lowered to nearly the theoretical amount of 2.0, the concentration of mononitrile in the product liquid is significantly reduced, and the yield of suberonitrile is reduced. rate will improve.

(実施例) 次に実施例を用い本発明を具体的に説明する。(Example) Next, the present invention will be specifically explained using Examples.

一括投入法を用いて反応させた比較例と対比して本発明
の方法による各実施例は、生成液中のモノニトリルの濃
度が著しく低く、スベロニトリルの収率が高くなってい
ることが分かる。
It can be seen that, in contrast to the comparative example in which the reaction was carried out using the batch injection method, the concentration of mononitrile in the product liquid was significantly lower in each of the examples according to the method of the present invention, and the yield of suberonitrile was higher.

スJ!JLL 1.6−ジクロルヘキサン155.0g (1,0モル
)、50χテトラブチルアンモニウムプロミド6.6g
(純分0゜01モル)を還流冷却器、撹拌機、温度計の
付いた反応器に仕込み、激しく撹拌しなから110”C
まで加熱した。その後34χ青化ソーダ水溶液345.
9g(NaCN純分2.4モル)を約90分かけて滴下
し、更に3時間撹拌下に反応させた。次に常温まで冷却
し、水150gを加えて食塩を溶解した。この液を分液
漏斗に移し静置することにより上層と下層に分離した。
Suj! JLL 1.6-dichlorohexane 155.0g (1.0mol), 50χ tetrabutylammonium bromide 6.6g
(purity 0.01 mol) was charged into a reactor equipped with a reflux condenser, a stirrer, and a thermometer, and heated to 110"C without vigorous stirring.
heated to. Then 34χ aqueous sodium cyanide solution 345.
9 g (NaCN pure content: 2.4 mol) was added dropwise over about 90 minutes, and the reaction was continued with stirring for an additional 3 hours. Next, the mixture was cooled to room temperature, and 150 g of water was added to dissolve the salt. This liquid was transferred to a separatory funnel and allowed to stand to separate into an upper layer and a lower layer.

上層液の収量は138gであり、1,6−ジクロルヘキ
サン濃度0.56X 、反応率99.5χ、モノニトリ
ル濃度0.53χ、収率0.5χ、スベロニトリル濃度
92.1χ、収率93.5χであった。下層液の収量は
516gであり、資化ソーダ濃度0.3χであった。
The yield of the upper layer liquid was 138 g, 1,6-dichlorohexane concentration 0.56X, reaction rate 99.5χ, mononitrile concentration 0.53χ, yield 0.5χ, suberonitrile concentration 92.1χ, yield 93. It was 5χ. The yield of the lower layer liquid was 516 g, and the sodium assimilate concentration was 0.3χ.

叉旌斑主 実施例1において資化ソーダ水溶液の滴下時間を約18
0分に変えた以外は全く同じ操作で反応を行った。上層
液の収量は133gであり、1,6−ジクロルヘキサン
濃度0.23χ、反応率99.8χ、モノニトリル濃度
0.33χ、収率0.3χ、スベロニトリル濃度94.
4χ、収率92.3χであった。下層液の収量は522
gであり、資化ソーダ濃度0.2χであった。
In Example 1, the dropping time of the sodium assimilate aqueous solution was approximately 18 hours.
The reaction was performed in exactly the same manner except that the time was changed to 0 minutes. The yield of the upper layer liquid was 133 g, 1,6-dichlorohexane concentration 0.23χ, reaction rate 99.8χ, mononitrile concentration 0.33χ, yield 0.3χ, suberonitrile concentration 94.
The yield was 92.3χ. The yield of the lower layer liquid is 522
g, and the sodium assimilate concentration was 0.2χ.

ル較班上 1.6−ジクロルヘキサン155g(1,0モル)、5
oχテトラブチルアンモニウムプロミド6.6g(K分
0.01モル)、34χ青化ソーダ水溶液345.9g
(純分2.4モル)を還流冷却器、撹拌機、温度計の付
いた反応器に仕込み、激しく撹拌しながら110″Cま
で加熱した。引続き110″Cで3時間撹拌しながら反
応させた後、常温まで冷却し、水150gを加えて食塩
を溶解させた。次に分液漏斗に移し静置すことにより上
層と下層に分離させた。上層液の収量は136.0gで
あり、1.6−ジクロルヘキサン濃度1.14χ、反応
率99.0χ、モノニトリル濃度2.12χ、収率2゜
0χ、スベロニトリル濃度90.0χ、収率90.0χ
であった。下層液の収量は519gであり、資化ソーダ
濃度0.2χであった。
155 g (1.0 mol) of 1.6-dichlorohexane, 5
6.6 g of oxtetrabutylammonium bromide (K content 0.01 mol), 345.9 g of 34x soda cyanide aqueous solution
(2.4 moles of pure content) was charged into a reactor equipped with a reflux condenser, a stirrer, and a thermometer, and heated to 110"C with vigorous stirring.Continuously reacted at 110"C for 3 hours with stirring. Thereafter, the mixture was cooled to room temperature, and 150 g of water was added to dissolve the salt. Next, the mixture was transferred to a separatory funnel and allowed to stand to separate into an upper layer and a lower layer. The yield of the upper layer liquid was 136.0 g, 1.6-dichlorohexane concentration 1.14χ, reaction rate 99.0χ, mononitrile concentration 2.12χ, yield 2°0χ, suberonitrile concentration 90.0χ, yield 90.0χ
Met. The yield of the lower layer liquid was 519 g, and the sodium assimilate concentration was 0.2χ.

Claims (1)

【特許請求の範囲】 一般式が〔▲数式、化学式、表等があります▼〕(R_
1〜R_4は炭素数が3〜10のアルキル基を示し、こ
れらは互いに同一でも異なっていても良い)で表される
相間移動触媒の存在下、1,6−ジクロルヘキサンと青
化ソーダ水溶液を反応させてスベロニトリルを製造する
に際し、80℃以上の温度の相間移動触媒と1,6−ジ
クロルヘキサンの混合液に、青化ソーダ水溶液を連続滴
下することを特徴とするスベロニトリルを製造する方法
[Claims] The general formula is [▲There are mathematical formulas, chemical formulas, tables, etc.▼] (R_
1 to R_4 represent an alkyl group having 3 to 10 carbon atoms, and these may be the same or different from each other), 1,6-dichlorohexane and an aqueous sodium cyanide solution. A method for producing suberonitrile, which comprises continuously dropping an aqueous solution of sodium cyanide into a mixture of a phase transfer catalyst and 1,6-dichlorohexane at a temperature of 80°C or higher.
JP62028192A 1987-02-12 1987-02-12 Method for producing suberonitrile Expired - Lifetime JPH0832670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028192A JPH0832670B2 (en) 1987-02-12 1987-02-12 Method for producing suberonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028192A JPH0832670B2 (en) 1987-02-12 1987-02-12 Method for producing suberonitrile

Publications (2)

Publication Number Publication Date
JPS63196549A true JPS63196549A (en) 1988-08-15
JPH0832670B2 JPH0832670B2 (en) 1996-03-29

Family

ID=12241819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028192A Expired - Lifetime JPH0832670B2 (en) 1987-02-12 1987-02-12 Method for producing suberonitrile

Country Status (1)

Country Link
JP (1) JPH0832670B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138074A (en) * 2000-10-27 2002-05-14 Japan Hydrazine Co Inc Method for producing 1,6-dicyanohexane
CN111138316A (en) * 2020-01-14 2020-05-12 营口德瑞化工有限公司 Synthesis method of phenylacetonitrile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138074A (en) * 2000-10-27 2002-05-14 Japan Hydrazine Co Inc Method for producing 1,6-dicyanohexane
JP4571740B2 (en) * 2000-10-27 2010-10-27 株式会社日本ファインケム Method for producing 1,6-dicyanohexane
CN111138316A (en) * 2020-01-14 2020-05-12 营口德瑞化工有限公司 Synthesis method of phenylacetonitrile

Also Published As

Publication number Publication date
JPH0832670B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
CN101102996A (en) Process for the preparation of 1-amino-3,5-dimethyladamantane hydrochloride
US3584028A (en) Preparation of organic isocyanates
CN110845401B (en) Synthesis method of 2-fluoro-3, 6-dihydroxypyridine
US3929858A (en) Method for preparing 2-bromo-2-bromomethyl-glutaronitrile
JPS63196549A (en) Process for production of suberonitrile
EP3896057B1 (en) Method for continuously preparing citalopram diol
JPS63196548A (en) Production of suberonitrile
JP3169168B2 (en) Method for producing trifluoromethanesulfonanilide derivative
JPS63196547A (en) Production of suberonitrile
CN111848695B (en) Catalyst and application thereof in synthesis of aromatic fluorine compound
JPS63145262A (en) Production of trifluoromethylbenzonitrile
JP3438084B2 (en) Method for producing 3,4-dichlorobenzonitrile
JPH09169673A (en) Production of 3,5-bis(trifluoromethyl)bromobenzene
CN101565382A (en) Method for synthesizing acetamide
CN117326961A (en) Green synthesis method of non-surafaxin intermediate
JP3850460B2 (en) Method for producing fluorine-containing aromatic amino compound
JPH10175931A (en) Production of glutamic acid-n,n-diacetic salt
US3304322A (en) Alkali metal salts of perchlorofluoroacetone cyanohydrins
JPS60197646A (en) Preparation of dl-asparagine
JPS63196550A (en) Production of high-purity suberonitrile
CN111138316A (en) Synthesis method of phenylacetonitrile
JPH09124569A (en) Production of benzamide derivative
JPS5838295A (en) Preparation of antimony isocyanate compound
CN115010593A (en) Synthetic method of 3-methyl bicyclo [1.1.1] pentane-1-carboxylic acid
JP3630714B2 (en) Inclusion complex of quaternary ammonium hydroxide or its salt and method for producing the inclusion complex

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term