JPS63196548A - Production of suberonitrile - Google Patents

Production of suberonitrile

Info

Publication number
JPS63196548A
JPS63196548A JP62028191A JP2819187A JPS63196548A JP S63196548 A JPS63196548 A JP S63196548A JP 62028191 A JP62028191 A JP 62028191A JP 2819187 A JP2819187 A JP 2819187A JP S63196548 A JPS63196548 A JP S63196548A
Authority
JP
Japan
Prior art keywords
reaction
dichlorohexane
suberonitrile
concentration
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62028191A
Other languages
Japanese (ja)
Other versions
JPH0832669B2 (en
Inventor
Hiroyuki Nanba
寛行 難波
Noriko Takahashi
則子 高橋
Koichi Abe
阿部 紘一
Masao Saito
雅夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP62028191A priority Critical patent/JPH0832669B2/en
Priority to AU17837/88A priority patent/AU1783788A/en
Publication of JPS63196548A publication Critical patent/JPS63196548A/en
Publication of JPH0832669B2 publication Critical patent/JPH0832669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a synthetic intermediate for agricultural chemicals, pharmaceuticals, dicarboxylic acid, diamine, etc., in high yield, reducing the cost for waste water treatment, by reacting 1,6- dichlorohexane with an aqueous solution of sodium cyanide in the presence of a phase-transfer catalyst. CONSTITUTION:The objective compound can be produced by reacting 1,6- dichlorohexane with an aqueous solution of sodium cyanide in the presence of a phase-transfer catalyst of formula (R1-R4 are 3-10C alkyl) (e.g. tetraalkylammonium bromide). The reaction is carried out by introducing 1,6- dichlorohexane and the catalyst into the first stage of a plurality of serially disposed reactors, separating the reaction liquid in the latter stage reactor into an oil layer and a water layer after the completion of the reaction and returning the aqueous solution containing unreacted sodium cyanide to the first stage reactor to effect the reaction. The reaction is performed by keeping the reaction temperature of each reactor at 80-140 deg.C for 0.5-8hr, preferably at 90-110 deg.C for 2-4hr. Since the residual CN ion in the waste water is decreased, the cost for waste water treatment can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1,6−ジクロルヘキサンと資化ソーダより
スベロニトリルを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing suberonitrile from 1,6-dichlorohexane and sodium assimilate.

スベロニトリルは農医薬品やジカルボン酸、ジアミンな
どの製造用中間体として、有機化学および生物化学の分
野で有用である。
Suberonitrile is useful in the fields of organic chemistry and biochemistry as an intermediate for the production of agricultural drugs, dicarboxylic acids, diamines, etc.

(従来の技術) スベロニトリルの製造方法は、ケミカルアブストラクト
(vol、94 P、46803h)に酸化亜鉛の存在
下、スペリン酸とアンモニアを反応させる方法が記載さ
れており、また、特開昭61−122258号には、1
.6−ヘキサンジオールとヨウ化水素またはアルカリ金
属のヨウ化物とを反応させて得られた1、6−ジクロル
ヘキサンを資化ソーダ、背比カリおよび青酸などのシア
ノ化剤と反応させる方法が記載されている。
(Prior art) A method for producing suberonitrile is described in Chemical Abstracts (vol, 94 P, 46803h), in which superic acid and ammonia are reacted in the presence of zinc oxide, and also in JP-A No. 61-122258. The number is 1
.. A method is described in which 1,6-dichlorohexane obtained by reacting 6-hexanediol with hydrogen iodide or an alkali metal iodide is reacted with a cyanating agent such as sodium hydroxide, potassium hydroxide, and hydrocyanic acid. has been done.

スペリン酸を原料とする方法は、スペリン酸が高価であ
り、また反応温度が240〜300°Cと高く、収率が
低いため工業化が困難である。
The method using speric acid as a raw material is difficult to industrialize because speric acid is expensive, the reaction temperature is as high as 240 to 300°C, and the yield is low.

1.6−ヘキサンジオールとヨウ素化合物を反応させ、
シアノ化する方法も、高価なヨウ素化合物が必要である
。またこの方法は反応終了後、エーテル、クロロホルム
などの疎水性有機溶剤で抽出し、更に水洗、乾燥および
減圧蓋部の操作が必要で、精製工程が複雑である。
1. Reacting 6-hexanediol and an iodine compound,
The cyanation method also requires expensive iodine compounds. In addition, this method requires extraction with a hydrophobic organic solvent such as ether or chloroform after the reaction is completed, and further requires washing with water, drying, and operating a vacuum lid, making the purification process complicated.

(発明が解決しようとする問題点) 発明者等は先に 炭素数3〜10のアルキル基を示し、これらは同一でも
異なっていても良い)で表される相間移動触媒の存在下
、1.6−ジクロルヘキサンと背比ソーダ水溶液を反応
させスベロニトリルを製造する方法を提供した。
(Problems to be Solved by the Invention) In the presence of a phase transfer catalyst represented by the above-described alkyl group having 3 to 10 carbon atoms, which may be the same or different, 1. A method for producing suberonitrile by reacting 6-dichlorohexane with an aqueous soda solution was provided.

1.6−ジクロルヘキサンと資化ソーダの反応は、次の
二段階で反応が進行する。
The reaction between 1.6-dichlorohexane and sodium assimilate proceeds in the following two steps.

C1(CHz)hCj!  +  NaCN  −→C
N(CHg)a C4!  +NaCj!   (1)
CN (C8z) 6Cl  +  NaCN   −
→CN (CHz) &CN  + NaCl    
(2)(1)の反応での生成物l−シアノ−6−クロル
ヘキサン(以下モノニトリルと称する)とスベロニトリ
ルは沸点が近いので、これを分離するには高性能の蓋部
塔が必要である。またスベロニトリルの収率を高めるた
めには、このモノニトリルを原料系に循環させる必要、
があり、複雑なプロセスとなる。
C1(CHz)hCj! + NaCN −→C
N(CHg)a C4! +NaCj! (1)
CN (C8z) 6Cl + NaCN −
→CN (CHZ) &CN + NaCl
(2) Since the product 1-cyano-6-chlorohexane (hereinafter referred to as mononitrile) and suberonitrile have similar boiling points, a high-performance lid column is required to separate them. be. In addition, in order to increase the yield of suberonitrile, it is necessary to circulate this mononitrile into the raw material system.
It is a complex process.

1.6−ジクロルヘキサンに対する資化ソーダのモル比
を高くすればモノニトリルの生成量が少なくなるが、こ
の場合は排水中に多量のCNイオンが残留することにな
り、排水処理の費用が増大する。
If the molar ratio of sodium assimilate to 1.6-dichlorohexane is increased, the amount of mononitrile produced will be reduced, but in this case, a large amount of CN ions will remain in the wastewater, increasing the cost of wastewater treatment. increase

(問題点を解決するための手段) 発明者等は1,6−ジクロルヘキサンを原料とする。(Means for solving problems) The inventors use 1,6-dichlorohexane as a raw material.

スベロニトリルの製造方法に関しての以上の如き問題点
を解決すべく鋭意検討し、1.6−ジクロルヘキサンと
触媒を直列に配置された複数個の反応器に導き、未反応
の資化ソーダを含む反応液の水層部分を前段の反応器に
戻し反応させることにより、モノニトリル副生量が少な
く、スベロニトリルの収率が上がり、且つ排水中のCN
イオン残量が減少することを見出し本発明に至った。
In order to solve the above-mentioned problems regarding the production method of suberonitrile, we conducted intensive studies to introduce 1,6-dichlorohexane and a catalyst into multiple reactors arranged in series, including unreacted sodium assimilate. By returning the aqueous layer of the reaction solution to the previous reactor, the amount of mononitrile by-product is reduced, the yield of suberonitrile is increased, and CN in the waste water is reduced.
The present invention was achieved by discovering that the remaining amount of ions is reduced.

即ち本発明は、 炭素数3〜10のアルキル基を示し、これらは互いに同
一でもことなっていても良い)で表される相間移動触媒
の存在下、1.6−ジクロルヘキサンと背比ソーダ水溶
液よりスベロニトリルを製造するにし、1.6−ジクロ
ルヘキサンと触媒を直列に配置された複数個の反応器の
最前段に導き、後段の反応器の反応液を反応終了後油層
と水層に分離し、未反応の資化ソーダを含有する水溶液
を前段に導入し反応させることを特徴とするスベロニト
リルの製造法である。
That is, the present invention provides a method for combining 1,6-dichlorohexane and sodium chloride in the presence of a phase transfer catalyst represented by an alkyl group having 3 to 10 carbon atoms, which may be the same or different from each other. To produce suberonitrile from an aqueous solution, 1,6-dichlorohexane and a catalyst are introduced into the first stage of multiple reactors arranged in series, and the reaction liquid in the latter reactor is separated into an oil layer and a water layer after the reaction is completed. This is a method for producing suberonitrile, which is characterized in that an aqueous solution containing separated and unreacted sodium assimilate is introduced into the first stage and reacted.

本発明で使用される相間移動触媒の例としては、テトラ
プロピルアンモニウムプロミド、テトラブチルアンモニ
ウムプロミドなどがある。特にテトラブチルアンモニウ
ムプロミドが好適である。
Examples of phase transfer catalysts used in the present invention include tetrapropylammonium bromide and tetrabutylammonium bromide. Tetrabutylammonium bromide is particularly suitable.

背比ソーダ水溶液は、工業的に市販されている濃度30
〜35χの水溶液をそのまま使用することができ、また
更に必要に応じて濃度を下げて使用することもできる。
The aqueous soda solution has a concentration of 30, which is commercially available industrially.
The aqueous solution having a concentration of ~35.chi. can be used as it is, or can be used with a lower concentration if necessary.

本発明により、資化ソーダの全使用量は仕込み1.6−
ジクロルヘキサンに対する資化ソーダのモル比を理論量
の2.0に対し2.1〜2.6程度で良い。
According to the present invention, the total amount of sodium hydroxide used is 1.6-
The molar ratio of sodium assimilate to dichlorohexane may be about 2.1 to 2.6 relative to the theoretical amount of 2.0.

二〇モル比が低過ぎる場合は収率が低く、1.6−ジク
ロルヘキサンの損失が太き(なる、またこのモル比が高
過ぎる場合は排水中にCNイオンが残留し、排水処理の
費用が増加する。
If the molar ratio is too low, the yield will be low and the loss of 1,6-dichlorohexane will be large.If this molar ratio is too high, CN ions will remain in the wastewater, making it difficult to treat wastewater. Costs increase.

相間移動触媒の使用量は1.6−ジクロルヘキサン1モ
ル当たり 1.5〜10g1好ましくは1.5〜6.5
gとする。テトラブチルアンモニウムプロミドの使用量
が少なすぎると収率が低(、多い場合は次の精製工程の
負荷が大きくなる。
The amount of phase transfer catalyst used is 1.5 to 10 g, preferably 1.5 to 6.5 g, per mole of 1.6-dichlorohexane.
Let it be g. If the amount of tetrabutylammonium bromide used is too small, the yield will be low; if it is too large, the burden of the next purification step will be heavy.

各反応器の反応温度は80〜140 ’C1好ましくは
90〜110℃とする0反応器度が低いと反応が進行せ
ず、高すぎる場合は収率が低下する。
The reaction temperature of each reactor is 80 to 140° C., preferably 90 to 110° C. If the reactor temperature is too low, the reaction will not proceed, and if it is too high, the yield will decrease.

反応圧力は特に制限が無いが、通常は常圧で行う0反応
時間は通常0.5〜8 hr、好ましくは2〜4 hr
である。
The reaction pressure is not particularly limited, but the reaction time is usually 0.5 to 8 hr, preferably 2 to 4 hr, which is usually carried out at normal pressure.
It is.

次に図面を用いて本発明を説明する。第1図は本発明に
より二個の反応器を直列に配置した場合の例である。
Next, the present invention will be explained using the drawings. FIG. 1 is an example of two reactors arranged in series according to the present invention.

図中の1および■は本発明でのスベロニトリル反応器で
あり、各反応器は油相と水相の界面を確認する監視器、
撹拌機、各液の供給口および排出口を有する構造となっ
ている。
1 and ■ in the figure are suberonitrile reactors in the present invention, and each reactor has a monitor for checking the interface between the oil phase and the water phase,
It has a structure that includes a stirrer, supply ports and discharge ports for each liquid.

原料の1,6−ジクロルヘキサンと相間移動触媒は先ず
原料液供給管1より供給し、撹拌機により撹拌される。
The raw materials 1,6-dichlorohexane and the phase transfer catalyst are first supplied from the raw material liquid supply pipe 1 and stirred by a stirrer.

資化ソーダ水溶液は、本発明においては後段の反応器■
からの配管6より供給する。原料液を撹拌しながら資化
ソーダ水溶液を供給し、スベロニトリル生成反応が行わ
れる。反応が終了した後、撹拌機を停止し静置すること
により反応液は油相と水相に分離され、上部の油相には
スベロニトリル、モノニトリルおよび未反応の1,6−
ジクロルヘキサンが含まれ、下部の水相には反応生成物
のNaClと未反応の背比ソーダが含まれる。
In the present invention, the sodium hydroxide aqueous solution is
It is supplied from piping 6 from . While stirring the raw material liquid, an aqueous sodium assimilate solution is supplied to carry out the suberonitrile production reaction. After the reaction is completed, the stirrer is stopped and the reaction solution is left standing to separate into an oil phase and an aqueous phase, and the upper oil phase contains suberonitrile, mononitrile, and unreacted 1,6-
Dichlorohexane is contained, and the lower aqueous phase contains the reaction product NaCl and unreacted soda.

この水相液は配管4より排水として放出される。This aqueous phase liquid is discharged from the pipe 4 as waste water.

油相の部分は、配管3により後段の反応器■に移され、
撹拌されながら、配管2より供給される原料の資化ソー
ダ水溶液によりスベロニトリル生成反応が行われる。反
応生成液は静置により油相と水相に分離され、油相は配
管5より取り出されて、スベロニトリルが精製分離され
る。水相は配管6より前段の反応器Iに供給され、未反
応の背比ソーダが原料の1.6−ジクロ)L<ヘキサン
と反応し、その排水中の背比ソーダが減少する。 本発
明は反応器Iと■との間に、更に反応器を設置しても良
い。
The oil phase portion is transferred to the rear reactor ■ via piping 3,
While being stirred, the suberonitrile production reaction is carried out using the sodium assimilate aqueous solution as a raw material supplied from the pipe 2. The reaction product liquid is separated into an oil phase and an aqueous phase by standing still, and the oil phase is taken out from the pipe 5 to purify and separate suberonitrile. The aqueous phase is supplied to the reactor I at the upstream stage via piping 6, and unreacted sodium chloride reacts with the raw material 1,6-dichloro)L<hexane, reducing the sodium chloride in the waste water. In the present invention, an additional reactor may be installed between reactors I and (2).

(作用および効果) 本発明によれば、油相液が後段の反応器において背比ソ
ーダの過剰な状態で反応することになるから、未反応1
.6−ジクロルヘキサンおよびモノニトリルの反応が促
進され、1,6−ジクロルヘキサンの反応率およびスベ
ロニトリルの選択率が向上する。また水相液は前段の反
応器で1.6−ジクロルヘキサンが過剰の状態で未反応
青化ソーダと接することになるから、水相中の背比ソー
ダが減少し、排水中のCNイオン濃度が低下するから、
排水処理の費用が削減される。
(Functions and Effects) According to the present invention, since the oil phase liquid reacts in the latter stage reactor with an excess amount of soda, the unreacted 1
.. The reaction between 6-dichlorohexane and mononitrile is promoted, and the reaction rate of 1,6-dichlorohexane and the selectivity of suberonitrile are improved. In addition, since the aqueous phase liquid comes into contact with unreacted soda cyanide in the reactor at the front stage with an excess of 1,6-dichlorohexane, the amount of sodium cyanide in the aqueous phase decreases, resulting in CN ions in the waste water. Because the concentration decreases,
The cost of wastewater treatment is reduced.

即ち本発明の方法により、スベロニトリルの収率および
選択率が向上すると共に、排水処理の費用が減少するの
でその工業的意義が大きい。
That is, the method of the present invention improves the yield and selectivity of suberonitrile and reduces the cost of wastewater treatment, so it has great industrial significance.

(実施例) 次に実施例により本発明を説明する。次の実施例は反応
器を二段とした場合についてであり、実施例1と実施例
2の相互の関係から実施例が具体的に示される。
(Example) Next, the present invention will be explained with reference to Examples. The next example concerns a case where the reactor is arranged in two stages, and the example will be specifically shown based on the mutual relationship between Example 1 and Example 2.

災隻斑上 」1.6−ジクロルヘキサン155.0g (1,0モ
ル)、50χテトチブチルアンモニウムブロミド水溶液
6.6g(純分0.01モル)を還流冷却器、撹拌機、
温度計の付いた反応器Iに仕込み、激しく撹拌しなから
110°Cまで加熱した。その後34.3χ青化ソーダ
水溶液228.6g(NaCN純分1.60モル)を約
90分かけて滴下した。更に110″Cで2時間撹拌し
ながら反応させた。常温まで冷却した後、水190gを
加えて食塩を溶解した。分液漏斗に移して静置すること
により上層と下層に分離し、上層液144.2g、下層
液433.4gを得た。上層液をガスクロマトグラフィ
ーで分析したところ、1.6−ジクロルヘキサン濃度6
.79χ、反応率93.7χ、モノニトリル濃度31.
6χ、収率31.3χであった。また下層液中の資化ソ
ーダ濃度は0.20χであった。
A reflux condenser, a stirrer,
The mixture was charged to reactor I equipped with a thermometer and heated to 110° C. with vigorous stirring. Thereafter, 228.6 g of a 34.3χ aqueous sodium cyanide solution (NaCN purity: 1.60 mol) was added dropwise over about 90 minutes. The reaction was further stirred at 110"C for 2 hours. After cooling to room temperature, 190 g of water was added to dissolve the salt. Transfer to a separatory funnel and leave to stand to separate into upper and lower layers. 144.2g and 433.4g of lower layer liquid were obtained.When the upper layer liquid was analyzed by gas chromatography, it was found that the concentration of 1.6-dichlorohexane was 6.
.. 79χ, reaction rate 93.7χ, mononitrile concentration 31.
The yield was 31.3χ. Further, the concentration of sodium assimilate in the lower layer liquid was 0.20χ.

1段 反応器Iで得た上層液144.2gを、還流冷却
器、撹拌機、温度計の付いた反応器■に仕込み、激しく
撹拌しなから110°Cまで加熱した。その後34.3
χ青化ソーダ水溶液359.8g(NaCN純分2.5
2モル)を約90分かけて滴下した。更に110″Cで
1時間撹拌しながら反応させた。常温まで冷却した後、
水70gを加えて食塩を溶解した。分液漏斗に移して静
置することにより上層と下層に分離し、上層液138.
3g、下層液435.7gを得た。上層液を分析したと
ころ、1.6−ジクロルヘキサン濃度0.07χ、反応
率99.9χ、モノニトリル濃度0.20χ、収率0.
2χ、スベロニトリル濃度92.0χ、収率93.6χ
であった。下層液中の資化ソーダ濃度は17.8χであ
った。
144.2 g of the upper layer liquid obtained in the first-stage reactor I was charged into a reactor II equipped with a reflux condenser, a stirrer, and a thermometer, and heated to 110°C while stirring vigorously. Then 34.3
χ Sodium cyanide aqueous solution 359.8g (NaCN purity 2.5
2 mol) was added dropwise over about 90 minutes. The reaction was further stirred at 110"C for 1 hour. After cooling to room temperature,
70 g of water was added to dissolve the salt. Transfer to a separatory funnel and leave to stand to separate into upper and lower layers, upper layer liquid 138.
3 g and 435.7 g of lower layer liquid were obtained. Analysis of the upper layer liquid revealed that the 1,6-dichlorohexane concentration was 0.07χ, the reaction rate was 99.9χ, the mononitrile concentration was 0.20χ, and the yield was 0.
2χ, suberonitrile concentration 92.0χ, yield 93.6χ
Met. The concentration of sodium assimilate in the lower layer liquid was 17.8χ.

z隻斑主 」 実施例1の1段において、背比ソーダ水溶液の代わ
りに■段で得た下層液435.7g(資化ソーダ濃度1
7.8! 、純分1.58モル)を用いた外は全く同じ
操作で反応を行い上層液146.8g、下層液637g
を得た。上層液を分析したところ、1.6−ジクロルヘ
キサン濃度6.95χ、反応率93.4χ、モノニトリ
ル濃度31.3χ、収率31.6χ、スベロニトリル濃
度52.9χ、収率57.1χであった。下層液中の資
化ソーダ濃度は0.16χであった。
In the 1st stage of Example 1, 435.7 g of the lower layer liquid obtained in the
7.8! , purity 1.58 mol) was used, but the reaction was carried out in exactly the same manner, and the upper layer liquid was 146.8 g, and the lower layer liquid was 637 g.
I got it. Analysis of the upper layer liquid revealed that 1,6-dichlorohexane concentration was 6.95χ, reaction rate was 93.4χ, mononitrile concentration was 31.3χ, yield was 31.6χ, suberonitrile concentration was 52.9χ, and yield was 57.1χ. there were. The concentration of sodium assimilate in the lower layer liquid was 0.16χ.

11段で得た上層液!46.8.を用いて実施例1の■
段と全く同じ操作で反応を行い、上層液140.1g、
下層液435gを得た。上層液を分析したところ、1.
6−ジクロルヘキサン濃度0.29χ、反応率99.7
χ、モノニトリル濃度0.20! 、収率0.20χ、
スベロニトリル濃度92.3χ、収率95.1χであっ
た。
The upper layer liquid obtained in the 11th stage! 46.8. ■ of Example 1 using
The reaction was carried out in exactly the same manner as in step 1, and 140.1 g of the upper layer liquid was obtained.
435 g of lower layer liquid was obtained. When the upper layer liquid was analyzed, 1.
6-dichlorohexane concentration 0.29χ, reaction rate 99.7
χ, mononitrile concentration 0.20! , yield 0.20χ,
The suberonitrile concentration was 92.3χ and the yield was 95.1χ.

下層液中の資化ソーダ濃度は17.5χであった。The concentration of sodium assimilate in the lower layer liquid was 17.5χ.

ル較班1 1.6−ジクロルヘキサン155.0g(1,0モル)
、50χテトラブチルアンモニウムプロミド水溶液6.
6g(純分0.0rモル)を還流冷却器、撹拌機、温度
計の付いた反応器に仕込み、激しく撹拌しなから110
°Cまで加熱した。その後34.5χ青化ソーダ水溶液
284.7g(NaCN純分2.0モル)を2時間30
分かけて滴下し、その後110°Cで4時間撹拌しなが
ら反応させた。常温まで冷却した後、水465gを加え
て食塩を溶解した。分液漏斗に移して静置することによ
り上層と下層に分離し、上層液138g、下層液770
gを得た。上層液を分析したところ、1.6−ジクロル
ヘキサン濃度0.62χ、反応率99.4X 、モノニ
トリル濃度9.11χ、収率8.6χ、スベロニトリル
濃度84.0χ、収率85.2χであった。下層液中の
資化ソーダ濃度は0.11χであった。
Comparison group 1 1,6-dichlorohexane 155.0g (1.0 mol)
, 50χ tetrabutylammonium bromide aqueous solution 6.
Charge 6 g (0.0 r mol of pure content) into a reactor equipped with a reflux condenser, stirrer, and thermometer, and stir vigorously until 110
Heated to °C. After that, 284.7 g of 34.5χ aqueous sodium cyanide solution (2.0 mol of NaCN purity) was added for 2 hours and 30 minutes.
The mixture was added dropwise over a period of minutes, and then the mixture was reacted at 110°C for 4 hours with stirring. After cooling to room temperature, 465 g of water was added to dissolve the salt. Transfer to a separatory funnel and let stand to separate into upper and lower layers, 138 g of upper layer liquid and 770 g of lower layer liquid.
I got g. Analysis of the upper layer liquid revealed that the 1,6-dichlorohexane concentration was 0.62χ, the reaction rate was 99.4X, the mononitrile concentration was 9.11χ, the yield was 8.6χ, the suberonitrile concentration was 84.0χ, and the yield was 85.2χ. there were. The concentration of sodium assimilate in the lower layer liquid was 0.11χ.

ル較員1 1.6−ジクロルヘキサン155.0g(1,0モル)
、50χテトラブチルアンモニウムプロミド水溶液3.
3g(純分0.01モル)、34.5χ青化ソーダ水溶
液568.1g(NaCN純分4.0モル)を還流冷却
器、撹拌機、温度針の付いた反応器に仕込み、激しく撹
拌しながら110℃まで加熱した。引続き110″Cで
2時間撹拌しながら反応させた。常温まで冷却した後、
水460gを加えて食塩を溶解した0分液漏斗に移して
静置することにより上層と下層に分離し、上層液136
、7g、下層液1048.7gを得た。上層液の分析結
果より、1.6−ジクロルヘキサン濃度0.1χ、反応
率99.9X 、−1:/ ニドIJ 7L/濃度1.
11% 、収率i、ox、スベロニトリル濃度91.2
χ、収率91.7χであり、下層液中の資化ソーダ濃度
は6.572であった。
1 1,6-dichlorohexane 155.0 g (1.0 mol)
, 50χ tetrabutylammonium bromide aqueous solution 3.
3g (purity 0.01 mol) and 568.1g (NaCN purity 4.0 mol) of a 34.5χ aqueous sodium cyanide solution were charged into a reactor equipped with a reflux condenser, a stirrer, and a temperature needle, and stirred vigorously. while heating to 110°C. The reaction was continued with stirring at 110"C for 2 hours. After cooling to room temperature,
Add 460 g of water and dissolve salt in a 0-separation funnel and leave to stand to separate into an upper layer and a lower layer.
, 7 g, and 1048.7 g of lower layer liquid were obtained. From the analysis results of the upper layer liquid, the 1.6-dichlorohexane concentration was 0.1χ, the reaction rate was 99.9X, -1:/ Nido IJ 7L/concentration 1.
11%, yield i, ox, suberonitrile concentration 91.2
The yield was 91.7χ, and the sodium assimilate concentration in the lower layer liquid was 6.572.

これらの実施例および比較例から、本発明の方法により
二段反応器で反応させた場合は、1.6−ジクロルヘキ
サン反応率99.7χで、スベロニトリル収率95.l
χであり、排液中の、資化ソーダ濃度が0゜16χに低
下する(実施例2)のに対し、通常の一段で反応を行う
場合は、1.6−ジクロルヘキサン反応率99.4χで
、スベロニトリル収率85.2χであり、スベロニトリ
ル生成液中に濃度9.11χのモノニトリルが生成する
(比較例1)ため高性能の蒸留塔が必要である。
From these Examples and Comparative Examples, when the reaction was carried out in a two-stage reactor according to the method of the present invention, the 1,6-dichlorohexane reaction rate was 99.7χ and the suberonitrile yield was 95. l
χ, and the sodium assimilate concentration in the waste liquid decreases to 0°16χ (Example 2), whereas when the reaction is carried out in a normal one stage, the 1,6-dichlorohexane reaction rate is 99. 4χ, the suberonitrile yield is 85.2χ, and mononitrile with a concentration of 9.11χ is produced in the suberonitrile production liquid (Comparative Example 1), so a high-performance distillation column is required.

スベロニトリルの収率を上げるため、資化ソーダを倍量
とすれば、スベロニトリルの収率が91.7χに上昇す
るが、排液中の資化ソーダが6.57χに増加しく比較
例2)、排液処理の費用が大きくなる。
In order to increase the yield of suberonitrile, if the amount of sodium assimilate is doubled, the yield of suberonitrile increases to 91.7χ, but the amount of sodium assimilate in the waste liquid increases to 6.57χ. Comparative Example 2) The cost of wastewater treatment increases.

本発明の方法によれば、高いスベロニトリル収率が得ら
れると共に、排液中の資化ソーダ濃度が著しく低下する
から、実装置での利点が大きい。
According to the method of the present invention, a high yield of suberonitrile can be obtained, and the concentration of sodium assimilate in the waste liquid is significantly reduced, so it has great advantages in actual equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により、二個の反応器を直列に配置した
場合の説明図である。
FIG. 1 is an explanatory diagram of two reactors arranged in series according to the present invention.

Claims (1)

【特許請求の範囲】 一般式が〔▲数式、化学式、表等があります▼〕(R_
1〜R_4は炭素数3〜10のアルキル基を示し、これ
らは互いに同一でも異なっていても良い)で表される相
間移動触媒の存在下、1,6−ジクロルヘキサンと青化
ソーダ水溶液を反応させてスベロニトリルを製造するに
際し、1,6−ジクロルヘキサンと触媒を直列に配置さ
れた複数個の反応器の最前段に導き、後段の反応器の反
応液を反応終了後油層と水層に分離し、未反応の青化ソ
ーダを含有する水溶液を前段に導入し反応させることを
特徴とするスベロニトリルの製造法
[Claims] The general formula is [▲There are mathematical formulas, chemical formulas, tables, etc.▼] (R_
1 to R_4 represent an alkyl group having 3 to 10 carbon atoms, and these may be the same or different from each other), 1,6-dichlorohexane and an aqueous sodium cyanide solution are When reacting to produce suberonitrile, 1,6-dichlorohexane and a catalyst are introduced into the first stage of multiple reactors arranged in series, and the reaction liquid in the latter reactor is separated into an oil layer and an aqueous layer after the reaction is completed. A method for producing suberonitrile, which is characterized in that an aqueous solution containing unreacted soda cyanide is introduced into the first stage and reacted.
JP62028191A 1987-01-22 1987-02-12 Suberonitrile manufacturing method Expired - Lifetime JPH0832669B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62028191A JPH0832669B2 (en) 1987-02-12 1987-02-12 Suberonitrile manufacturing method
AU17837/88A AU1783788A (en) 1987-01-22 1988-05-24 Powder mixing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028191A JPH0832669B2 (en) 1987-02-12 1987-02-12 Suberonitrile manufacturing method

Publications (2)

Publication Number Publication Date
JPS63196548A true JPS63196548A (en) 1988-08-15
JPH0832669B2 JPH0832669B2 (en) 1996-03-29

Family

ID=12241795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028191A Expired - Lifetime JPH0832669B2 (en) 1987-01-22 1987-02-12 Suberonitrile manufacturing method

Country Status (1)

Country Link
JP (1) JPH0832669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138074A (en) * 2000-10-27 2002-05-14 Japan Hydrazine Co Inc Method for producing 1,6-dicyanohexane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138074A (en) * 2000-10-27 2002-05-14 Japan Hydrazine Co Inc Method for producing 1,6-dicyanohexane
JP4571740B2 (en) * 2000-10-27 2010-10-27 株式会社日本ファインケム Method for producing 1,6-dicyanohexane

Also Published As

Publication number Publication date
JPH0832669B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
CN1222147A (en) Process for prepn. of tetraazamacrocycles
JPS61275241A (en) Production of deuterated acrylic acid or methacrylic acid
CN101102996A (en) Process for the preparation of 1-amino-3,5-dimethyladamantane hydrochloride
US2714123A (en) Production of dichlorohydrin from allyl chloride
JPS63196548A (en) Production of suberonitrile
JPS63196549A (en) Process for production of suberonitrile
JPS63196547A (en) Production of suberonitrile
EP0307481A1 (en) Process for preparing 3-chloro-4-fluoronitrobenzene
JPH02115152A (en) Production of trisodium isoserine-n, n-acetate
CN111848695B (en) Catalyst and application thereof in synthesis of aromatic fluorine compound
CN109400464B (en) Preparation method of 5-bromolevulinic acid
JPH01139559A (en) Production of 4-chloro-3-hydroxybutyronitrile
Walling et al. Reactions of tert-butyl hypohalites with carbonions and alkoxides
US4704475A (en) Preparation of 3-hydroxy-3-phenylbutan-2-one
JP3850460B2 (en) Method for producing fluorine-containing aromatic amino compound
US2953435A (en) Method of preparing cyanogen
CN115894349A (en) Synthetic method of 2, 3-difluoro-5-chloropyridine
US3304322A (en) Alkali metal salts of perchlorofluoroacetone cyanohydrins
JPS63196550A (en) Production of high-purity suberonitrile
CA1055524A (en) Process for preparing cyanoformamide
CN117820139A (en) Preparation method of 2-tertiary butyl amino benzaldehyde derivative
JP3270571B2 (en) Method for producing allyl bromide
Vela et al. Observations concerning the reactivity of bicyclomycin and bicyclomycin derivatives with organophosphorus reagents
US6720456B2 (en) Process for the preparation of 2,3-pentanedione
JP4571740B2 (en) Method for producing 1,6-dicyanohexane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term