JPS6319608A - Optical coupling device - Google Patents

Optical coupling device

Info

Publication number
JPS6319608A
JPS6319608A JP16370986A JP16370986A JPS6319608A JP S6319608 A JPS6319608 A JP S6319608A JP 16370986 A JP16370986 A JP 16370986A JP 16370986 A JP16370986 A JP 16370986A JP S6319608 A JPS6319608 A JP S6319608A
Authority
JP
Japan
Prior art keywords
optical
memory alloy
shape memory
optical fiber
coupling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16370986A
Other languages
Japanese (ja)
Inventor
Mitsuru Sugawara
満 菅原
Shigeru Oshima
茂 大島
Masahiro Sakakibara
榊原 雅博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16370986A priority Critical patent/JPS6319608A/en
Publication of JPS6319608A publication Critical patent/JPS6319608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the position shift at the time of fixation by adjustment after the fixation and to make the adjustment without contacting by holding either of a photosemiconductor element and an optical element on a base through shape memory alloy and fixing it by soldering, etc., and then giving temperature variation to the shape memory alloy member. CONSTITUTION:A semiconductor laser element 1 is driven after the assembly of respective elements and the quantity of light coupled with an optical fiber is monitored on a power meter 12 connected to the other terminal of the optical fiber. One shape memory alloy member 7 is irradiated with laser light guided from an externally provided light source 13 through the other optical fiber 14 and the member restores itself to the shape memorized at high temperature when the temperature is raised up to martensite transformation point, so the semiconductor laser element moves. In this process, variation on the power meter is read and the irradiation of the laser light is stopped at the best position. When the laser element is moved in the opposite direction, the other shape memory alloy member 9 is only irradiated with the laser light. This operation is repeated to adjust the position relation between the semiconductor laser element 1 and optical fiber 4 without contacting.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、光フアイバ通信に使用される光学結合装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an optical coupling device used in optical fiber communications.

(従来の技術) 光フアイバ通信においては、伝送路である光ファイバと
半導体レーザ、発光ダイオード、フォトダイオード、レ
ンズ等の光学素子とを高効率かっ安定に光学結合させる
必要がある。ところが、通信用光ファイバはコア径が単
一モードファイバで約10−1多モードフアイバでは約
50−というように極めて細いため、光学素子を光ファ
イバと結合して設置する場合に、組立時の位置ずれによ
って結合効率が低下するという問題があった。従来、こ
のような問題を解決するため、第8,9図1こ示すよう
な方法がとられている。すなわち半導体レーザ素子(1
1または光ファイバ(4)の4部のいずれか一方を塑性
変形部で支えられた基台の上に保持し、光学素子や光フ
アイバ端末部を半田等で固定した後、塑性変形部を変形
させて光学素子と光フアイバ端末部との位置関係を調整
することにより高い結合効率を得ようとするものである
(Prior Art) In optical fiber communication, it is necessary to optically couple optical fibers serving as transmission paths with optical elements such as semiconductor lasers, light emitting diodes, photodiodes, and lenses in a highly efficient and stable manner. However, communication optical fibers have a core diameter of approximately 10-1 for single-mode fibers, and approximately 50- for multi-mode fibers. There was a problem in that the coupling efficiency decreased due to the positional shift. Conventionally, in order to solve such problems, methods as shown in FIGS. 8 and 9 have been used. That is, a semiconductor laser element (1
1 or the 4 parts of the optical fiber (4) is held on a base supported by the plastically deformable part, and after fixing the optical element and the optical fiber terminal part with solder etc., the plastically deformable part is deformed. The objective is to obtain high coupling efficiency by adjusting the positional relationship between the optical element and the optical fiber terminal.

(発明が解決しようとする問題点) この方法によると、塑性変形部を有する基台に接触し、
調整方向に加圧できる礒構が外部に必要であり、また塑
性変形を行うために外力を加える接触子をさし入れる空
間を要し、装置が小型な場合や複雑な構造をもつ場合に
はD4整が困難になるという欠点があった。
(Problems to be Solved by the Invention) According to this method, contacting a base having a plastically deformed portion,
An external pressure structure that can apply pressure in the adjustment direction is required, and a space is required to insert a contactor that applies external force to perform plastic deformation. There was a drawback that D4 adjustment became difficult.

本発明は上述した問題点を解消したもので、固定時の位
置ずれを固定後の調整によって解消でき調整は非接触で
も行うことのできる機構を内蔵する構成をもつ光学結合
装置を提供することにある。
The present invention solves the above-mentioned problems, and aims to provide an optical coupling device having a built-in mechanism that allows positional deviation during fixation to be eliminated by adjustment after fixation, and adjustment can be made without contact. be.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、光半導体素子または光学素子のいずれか一方
を形状記憶合金を界して基台に保持し、半田付等の固定
後、形状記憶合金部材にm間質化を与え、形状の変化に
よって光半導体素子と光学素子の最適な位置関係を得る
ものである。
(Means for Solving the Problems) The present invention holds either an optical semiconductor element or an optical element on a base across a shape memory alloy, and after fixing by soldering etc., the shape memory alloy member is attached to a shape memory alloy member. This provides m-interstitialization and obtains an optimal positional relationship between the optical semiconductor element and the optical element by changing the shape.

(作 用) 本発明によれば、光半導体素子と光学素子の位置関係を
調整機蓉を装置内部に有しているため、外部に位f変位
をおこさせる駆動機得が不必委である。また形状記憶合
金部材の!7!度上昇によって位置調整を行うため、加
熱または光ファイバ等iこ導かれた光エネルギの照射等
の非接触な方法で調整を行うことができる。したがって
、複雑な構成をもつ装置も対応ができ、小型化が可能に
なる。
(Function) According to the present invention, since the apparatus has a mechanism for adjusting the positional relationship between the optical semiconductor element and the optical element inside the apparatus, there is no need for a driving mechanism to cause a displacement to the outside. Also shape memory alloy parts! 7! Since the position is adjusted by increasing the temperature, the adjustment can be performed by a non-contact method such as heating or irradiation with light energy guided through an optical fiber or the like. Therefore, devices with complicated configurations can also be accommodated, and miniaturization becomes possible.

光半導体素子、光学素子を固定した後に調整を行なうの
で、高精度固定技術は必要ではなく組立が容易になる。
Since adjustments are made after the optical semiconductor element and optical element are fixed, high-precision fixing technology is not required and assembly becomes easy.

形状記憶効果は非可逆であるため、−旦調幣した後は長
期にわたって安定な結合状態を保つことができる。
Since the shape memory effect is irreversible, a stable bond can be maintained for a long period of time after the coin is minted.

(実施例) 第1図は本発明による光学結合装置の第1の実施例を示
す断面図、第2図は平面図である。半導体レーザ素子(
11はヒートシンク(2)を介して第1の基台(3)に
Au−Ge停の半田によ−て固定されている。
(Embodiment) FIG. 1 is a sectional view showing a first embodiment of an optical coupling device according to the present invention, and FIG. 2 is a plan view. Semiconductor laser element (
11 is fixed to the first base (3) via a heat sink (2) with Au-Ge solder.

第1の基台(3)は両側面で形状記憶合金部材!71 
、 +8+に半田11oによって固定され、形状記憶合
金部# [71は他の面で容器(6)に固定されている
。(4)は発光素子の出力光を入射する光ファイバであ
り、入射端を半導体レーザ素子に近接し、光フアイバ固
定台に半田付されている。棒状の形状記憶合金部材(7
)(8)は高温で熱処理された後に、マルテンサイト変
態温度以下で軸方向に圧縮変形したものを使用する。変
態温度は形状記憶合金と第1の基台で3)、容器(6)
の固定に使用する半田の溶融温度よりも高い材料を使用
する必要がある。
The first base (3) is made of shape memory alloy on both sides! 71
, +8+ by solder 11o, and the shape memory alloy part # [71 is fixed to the container (6) on the other side. (4) is an optical fiber through which the output light of the light emitting element is input, the input end of which is placed close to the semiconductor laser element, and is soldered to an optical fiber fixing base. Rod-shaped shape memory alloy member (7
) (8) is heat treated at a high temperature and then compressively deformed in the axial direction below the martensitic transformation temperature. The transformation temperature is 3) for the shape memory alloy and the first base, and the transformation temperature for the container (6)
It is necessary to use a material that has a higher melting temperature than the solder used for fixing.

第3図はIA整方法を説明する図である。各素子の組立
終了後、牛導体し−ザ≠子[11を駆動し、光ファイバ
に結合した光量を元ファイバの他端に接続したパワーメ
ータαのによってモニターする。−方の形状記憶合金部
材(7)lこ外部に設けられたレーザ光源α3から他の
光ファイバIによ−て4かれたレーザ光を照射し、温度
上昇によってマルテンサイト変態温度に到達すると高温
時で記1.αした形状が復元されるので、第3図矢印の
向きへ半導体レーザ素子は移動する。この過程における
パワーメータの変動を読み、最〕A位14においてレー
ザ光の照射を止める。逆方向へ#動するには、もう一方
の形状記憶合金部材(8)ヘレーザ光8照射すればよい
。以上の動作をくり返すことにより非接触で、半導体レ
ーザ素子+11 (!:光ファイバ(4)の位Ig関係
を調節することができる。このように、径が細く自由に
曲げることができる光ファイバを用いているので小さな
空1間があれば形状記憶合金部材+71 、 +8)へ
のレーザ光の照射が可能であり、複雑な構成をもつ光学
結合装置にも対応できる。また形状記憶合金部材(7)
、(8)は部分的に昇温されるため、半田固定部分の温
度は箱出の溶融6度をこえることはない。
FIG. 3 is a diagram explaining the IA adjustment method. After assembling each element, the conductor 11 is driven, and the amount of light coupled to the optical fiber is monitored by a power meter α connected to the other end of the original fiber. The shape memory alloy member (7) on the other side is irradiated with a laser beam emitted from a laser light source α3 provided externally through another optical fiber I, and when the temperature rises and reaches the martensitic transformation temperature, the temperature rises. Recorded in time 1. Since the α shape is restored, the semiconductor laser element moves in the direction of the arrow in FIG. The fluctuation of the power meter during this process is read, and the laser beam irradiation is stopped at the A position 14. To move in the opposite direction, the other shape memory alloy member (8) may be irradiated with laser light 8. By repeating the above operations, the Ig relationship of the semiconductor laser element +11 (!: optical fiber (4)) can be adjusted without contact. Since it uses a small space, it is possible to irradiate the shape memory alloy members +71, +8) with laser light, and it can also be used in optical coupling devices with complicated configurations. Also shape memory alloy member (7)
, (8) are partially heated, so the temperature of the solder-fixed part does not exceed the boxed melting temperature of 6 degrees.

第4図は本発明による第2実施例を示す側面図、第5図
は同じく平面図である。第1の実施例に、さらに1対の
形状記憶合金部材a9 tαeを、形状記憶合金製部材
+71 、 (8)と直交する方向へ半導体レーザ素子
(1)を保持する基台(3ンと容器(6)の間に半田付
したものである。これにより光半導体レーザ素子(1)
と光ファイバ(4)との間の距離を調整することができ
る。またさらに1対の形状記憶合金調整部材を上述の2
対の形状記憶合金部材に直交する方向に設けることで3
軸方向の14整が可能になる。
FIG. 4 is a side view showing a second embodiment of the present invention, and FIG. 5 is a plan view thereof. In addition to the first embodiment, a pair of shape memory alloy members a9tαe are attached to the base (3 and the container) for holding the semiconductor laser element (1) in the direction orthogonal to the shape memory alloy member +71, (8). (6) is soldered.This makes the optical semiconductor laser element (1)
and the optical fiber (4) can be adjusted. Furthermore, a pair of shape memory alloy adjustment members are added to the above-mentioned 2.
3 by providing in the direction perpendicular to the pair of shape memory alloy members.
14 alignments in the axial direction are possible.

第6図は第3の実施例を示す断面図である。+IIは形
状合金製スリーブで両端において光導体レーザ(1)を
保持する基台(lIと光ファイバを保持容器■に半田付
才たは圧入によって固定されている。形状記憶合金スリ
ーブαlは高温で熱処理された後、低温で軸方向に圧縮
もしくはひっばり変形されたものを使用する。したがっ
て、外部レーザ光源から導かれたレーザ光をスリーブa
3に部分的に照射することにより熱弾性型マルテンサイ
ト逆変態温度に到達するとスリーブの一部は高温時に記
憶した形状に復元しようとし、結果的に曲がりを生じる
。これより光ファイバ(4)の光軸からの半導体レーザ
(1)の軸ずれを補正することが可能となる。
FIG. 6 is a sectional view showing the third embodiment. +II is a shape-memory alloy sleeve with both ends holding the optical fiber (lI) and the optical fiber fixed to the holding container (■) by soldering or press-fitting.The shape-memory alloy sleeve αl is After being heat-treated, it is compressed or flattened in the axial direction at a low temperature.Therefore, the laser beam guided from the external laser light source is passed through the sleeve a.
When the thermoelastic martensite reverse transformation temperature is reached by partial irradiation of the sleeve, a portion of the sleeve attempts to restore the shape it memorized at high temperature, resulting in bending. This makes it possible to correct the axis deviation of the semiconductor laser (1) from the optical axis of the optical fiber (4).

第7図は、本発明による第4の実施例を示す断面図であ
る。図において■は半導体レーザ索子を保持する基台、
12υは光ファイバを保持する容器、@は半導体レーザ
素子からの出力光を光ファイバ(4)端面に収束させる
ための球レンズ(23)が圧入されている形状記憶合金
製スリーブである。図のような構成にすることにより、
球レンズを中心としてスリーブの半導体レーザ側に外部
レーザ光源から導かれたレーザ光を照射して半導体レー
ザ素子と球レンズ、スリーブの光フアイバ側にレーザ光
を照射して光ファイバと球レンズの光軸ずれを調整する
ことが可能である。
FIG. 7 is a sectional view showing a fourth embodiment of the present invention. In the figure, ■ is the base that holds the semiconductor laser probe;
12υ is a container that holds the optical fiber, and @ is a shape memory alloy sleeve into which a ball lens (23) for converging the output light from the semiconductor laser element onto the end face of the optical fiber (4) is press-fitted. By configuring as shown in the figure,
Laser light guided from an external laser light source is irradiated on the semiconductor laser side of the sleeve centering on the ball lens, and the laser light is irradiated on the semiconductor laser element and the ball lens, and the optical fiber side of the sleeve to generate light from the optical fiber and the ball lens. It is possible to adjust the axis misalignment.

第6,7図においては、半導体レーザ(1)に通電する
ためのリード線およびボンディングワイヤーは省略した
In FIGS. 6 and 7, lead wires and bonding wires for supplying current to the semiconductor laser (1) are omitted.

第8図は本発明によるM5の実施例を示した図である。FIG. 8 is a diagram showing an embodiment of M5 according to the present invention.

これは2波双方向波長多重通信用送受信器であり、図に
おいて(29)は酵電体多層膜(7)を貼り付けたプリ
ズム、(31)は半導体受光素子を保持する基台、(3
2)は半導体レーザ素子を保持する基台、  (33)
は球レンズおよび光ファイバ14を保持する共通ポート
、(34) 、 (35)は第4の実施例で示した球レ
ンズが圧入されている形状記憶合金製スリーブである。
This is a transmitter/receiver for two-wave bidirectional wavelength multiplexing communication, and in the figure (29) is a prism to which a enzyme multilayer film (7) is pasted, (31) is a base holding a semiconductor photodetector, and (3
2) is a base that holds a semiconductor laser element, (33)
Reference numerals denote a common port for holding the ball lens and the optical fiber 14, and (34) and (35) designate sleeves made of shape memory alloy into which the ball lenses shown in the fourth embodiment are press-fitted.

この構造によれば、光軸合わせはプリズム(29) 、
共通ボー) (33) 、 (3t) 、 (32)を
とりつけた形状記憶合金スリーブ(34) 、 (35
)を基台に固定した後、形状記憶合金スリーブへのレー
ザ光照射によって可能であるので、組立の際には高精度
な固定法を必要としない利点がある。
According to this structure, optical axis alignment is performed using a prism (29),
Shape memory alloy sleeve (34), (35) attached with common bow) (33), (3t), (32)
) is fixed to the base and then the shape memory alloy sleeve is irradiated with laser light, so there is an advantage that a highly precise fixing method is not required during assembly.

形状記憶合金の温度を上昇させる手段として、光ファイ
バで導かれたレーザ光を例にとったが、レンズ、ミラー
等を使用してレーザ光を照射してもよい。レーザ源は高
出力発振の可能なCO,レーザ、YAGレーザ、Arレ
ーザ等を用いることが望ましい。また、赤外線ランプを
用いて加熱することも可能である。半田ごて等の熱源を
接触させ温度を上昇させてもよい。
Although a laser beam guided through an optical fiber has been taken as an example of a means for increasing the temperature of the shape memory alloy, a lens, a mirror, etc. may be used to irradiate the laser beam. As the laser source, it is desirable to use a CO laser, a YAG laser, an Ar laser, or the like capable of high-output oscillation. It is also possible to heat using an infrared lamp. The temperature may be raised by bringing a heat source such as a soldering iron into contact with it.

なお、実施例では光半導体素子として半導体レーザ素子
(1)、光学素子として光ファイバ、球レンズを用いた
が、これに限らず光半導体素子として発光ダイオード、
フォトダイオード等の光検出器等を、光学素子として集
束性光伝導体、光スイ。
In addition, in the example, a semiconductor laser element (1) was used as an optical semiconductor element, an optical fiber, and a ball lens were used as an optical element, but the optical semiconductor element is not limited to this, but a light emitting diode, a light emitting diode,
Photodetectors such as photodiodes are used as optical elements such as focusing photoconductors and optical switches.

チ、光合分波器、平面型尋波路等を使用することができ
る。
Optical multiplexer/demultiplexer, planar waveguide, etc. can be used.

また容器(6)内には光半導体素子、光学素子の他に発
導体発光素子を駆動する電子回路や光検出器の出力を増
幅する電子回路、半導体発光素子の光出力をモニターす
るフォトダイオードを組み込んでもよい。
In addition to the optical semiconductor element and the optical element, the container (6) also contains an electronic circuit that drives the light emitting diode, an electronic circuit that amplifies the output of the photodetector, and a photodiode that monitors the light output of the semiconductor light emitting element. May be incorporated.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固定時の位置ずれを固定後の調整によ
って、解消できる光学結合装置を得ることができる。
According to the present invention, it is possible to obtain an optical coupling device in which positional deviation during fixation can be eliminated by adjustment after fixation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す側面図、第2図は
同じく平面図、第3図は第1の実施例において調節方法
を説明するための図、第4図は第2の実施例を示す側面
図、第5図は同じく平面図、第6図は第3の実施例を示
す断面図、第7図は第4の実施例を示す断面図、第8図
は第5の実施例を示す図、第9図は従来例を示す側面図
、第10図は同じく平面図である。 1・・・半導体レーザ素子、2・・・ヒートシンク、3
.18.21・・・半導体レーザ基台、4・・・光ファ
イバ、5・・・光フアイバ基台、6,9.20・・・容
器、7゜8.16,17.19,23,34.35・・
・形状記憶合金部材、10.11・・・半田、12・・
・パワーメータ、13・・・レーザ光源、14・・・光
ファイバ、15・・・半導体レーザ駆動用′1N!源、
22・・・球レンズ、24・・・ファイバ保持部、25
・・・容器固定部、26・・・塑性変形部、27・・・
リード線% 28・・・基台、29・・・プリズム、3
0・・・誘電体多層膜、33・・・共通ボート、第1図 fρ 第2図 第4図 第5図 第6図 第7図 第9図 第10図
FIG. 1 is a side view showing the first embodiment of the present invention, FIG. 2 is a plan view, FIG. 3 is a diagram for explaining the adjustment method in the first embodiment, and FIG. 5 is a plan view, FIG. 6 is a sectional view showing the third embodiment, FIG. 7 is a sectional view showing the fourth embodiment, and FIG. 8 is a sectional view showing the fifth embodiment. FIG. 9 is a side view showing a conventional example, and FIG. 10 is a plan view. 1... Semiconductor laser element, 2... Heat sink, 3
.. 18.21... Semiconductor laser base, 4... Optical fiber, 5... Optical fiber base, 6,9.20... Container, 7°8.16, 17.19, 23, 34 .35...
・Shape memory alloy member, 10.11...Solder, 12...
・Power meter, 13... Laser light source, 14... Optical fiber, 15... Semiconductor laser drive '1N! source,
22... Ball lens, 24... Fiber holding part, 25
... Container fixing part, 26... Plastic deformation part, 27...
Lead wire% 28...Base, 29...Prism, 3
0... Dielectric multilayer film, 33... Common boat, Fig. 1 fρ Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 9 Fig. 10

Claims (6)

【特許請求の範囲】[Claims] (1)光半導体素子と、この光半導体素子を保持する第
1の基台と、前記光半導体素子と光学的結合を行う光学
素子と、この光学素子を保持する第2の基台と、前記第
1の基台もしくは第2の基台の少なくとも一方に、温度
上昇により形状が変化し前記光半導体素子と前記光学素
子との光学的結合を調整する如く固定されている形状記
憶合金部材とを具備することを特徴とする光学結合装置
(1) an optical semiconductor element, a first base that holds this optical semiconductor element, an optical element that optically couples with the optical semiconductor element, a second base that holds this optical element, and the A shape memory alloy member is fixed to at least one of the first base and the second base so as to change its shape due to temperature rise and adjust the optical coupling between the optical semiconductor element and the optical element. An optical coupling device comprising:
(2)前記形状記憶合金部材は部分的な温度上昇により
、前記光半導体素子と、前記光学素子との位置関係を段
階的に調整されたものであることを特徴とする特許請求
の範囲第1項記載の光学結合装置。
(2) The shape memory alloy member has a positional relationship between the optical semiconductor element and the optical element adjusted in stages by a partial temperature increase. The optical coupling device described in Section 1.
(3)前記温度上昇は、CO_2レーザ、YAGレーザ
、Arレーザ、赤外線ランプの照射によることを特徴と
する特許請求の範囲第1項記載の光学結合装置。
(3) The optical coupling device according to claim 1, wherein the temperature increase is caused by irradiation with a CO_2 laser, a YAG laser, an Ar laser, or an infrared lamp.
(4)前記形状記憶合金部材は、熱源を接触または接近
させることにより温度することを特徴とする特許請求の
範囲第1項記載の光学結合装置。
(4) The optical coupling device according to claim 1, wherein the shape memory alloy member is heated by contacting or bringing a heat source close to it.
(5)前記光半導体素子と前記光学素子の位置関係は、
前記光半導体素子と前記光学素子のいずれか一方からの
出力をモニターしながら調整されることを特徴とする特
許請求の範囲第1項記載の光学結合装置。
(5) The positional relationship between the optical semiconductor element and the optical element is
The optical coupling device according to claim 1, wherein the optical coupling device is adjusted while monitoring the output from either the optical semiconductor element or the optical element.
(6)前記形状記憶合金部材は、70〜80重量%のC
uと20〜30%のAlとの合金であることを特徴とす
る特許請求の範囲第1項記載の光学結合装置。
(6) The shape memory alloy member contains 70 to 80% by weight of C.
The optical coupling device according to claim 1, wherein the optical coupling device is an alloy of U and 20 to 30% Al.
JP16370986A 1986-07-14 1986-07-14 Optical coupling device Pending JPS6319608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16370986A JPS6319608A (en) 1986-07-14 1986-07-14 Optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16370986A JPS6319608A (en) 1986-07-14 1986-07-14 Optical coupling device

Publications (1)

Publication Number Publication Date
JPS6319608A true JPS6319608A (en) 1988-01-27

Family

ID=15779143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16370986A Pending JPS6319608A (en) 1986-07-14 1986-07-14 Optical coupling device

Country Status (1)

Country Link
JP (1) JPS6319608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717393A1 (en) * 1994-12-16 1996-06-19 Sharp Kabushiki Kaisha Method of adjusting position of a member using shape memory materials
JP2003005103A (en) * 2000-09-07 2003-01-08 Teruki Nobuyoshi Optoelectronic integrated device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717393A1 (en) * 1994-12-16 1996-06-19 Sharp Kabushiki Kaisha Method of adjusting position of a member using shape memory materials
US5728240A (en) * 1994-12-16 1998-03-17 Sharp Kabushiki Kaisha Positionally adjustable member and applications therefor
JP2003005103A (en) * 2000-09-07 2003-01-08 Teruki Nobuyoshi Optoelectronic integrated device
JP4620301B2 (en) * 2000-09-07 2011-01-26 輝己 信吉 Optical circuit, optical switch, optical crossbar, optical filter, and optical integrated device

Similar Documents

Publication Publication Date Title
US10054748B2 (en) Micromechanically aligned optical assembly
US6014483A (en) Method of fabricating a collective optical coupling device and device obtained by such a method
JP2000111816A (en) Active matching photonics assembly body
US20080025677A1 (en) Optical device and manufacturing method thereof
MXPA06007898A (en) Lensed tip optical fiber and method of making the same.
JP3518491B2 (en) Optical coupling device
JP2008098316A (en) Semiconductor laser module
JPS61238006A (en) Positioning of optical coupling member
EP1936414A2 (en) Small optical package having multiple optically aligned soldered elements therein
JPS60261186A (en) Manufacture of optical module
JPS6319608A (en) Optical coupling device
Paquet et al. Edge coupling integrated optics packaging concept using liquid crystal element
JPH07199002A (en) Semiconductor laser array module
van Zantvoort et al. Fiber array-to-photonic-chip fixation and fine tuning using laser support adjustment
JP2954678B2 (en) Semiconductor laser light source device with optical fiber and method of manufacturing the same
JPH1168243A (en) Optical module and optical axis adjustment method
Heikkinen et al. Packaging considerations of fiber-optic laser sources
US20230019700A1 (en) Optical fibers fusion-splicing to waveguides
JP2005214776A (en) Optical axis deviation detection method, optical axis adjusting method, manufacturing method of optical module, and optical axis adjusting device
JP4446614B2 (en) Optical device and optical module
JPH05210025A (en) Connecting structure and connecting method for optical waveguide element and optical fiber
KR100595888B1 (en) Method for soldering using softbeam
JPS6059309A (en) Optical element coupling module
JPH11271575A (en) Optical semiconductor module
JPH0843690A (en) Semiconductor optical module