JPS6319603B2 - - Google Patents
Info
- Publication number
- JPS6319603B2 JPS6319603B2 JP15122980A JP15122980A JPS6319603B2 JP S6319603 B2 JPS6319603 B2 JP S6319603B2 JP 15122980 A JP15122980 A JP 15122980A JP 15122980 A JP15122980 A JP 15122980A JP S6319603 B2 JPS6319603 B2 JP S6319603B2
- Authority
- JP
- Japan
- Prior art keywords
- melt
- copolyamide
- spinning
- stretching
- spun
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- 150000008430 aromatic amides Chemical group 0.000 claims description 7
- 239000000835 fiber Substances 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000009987 spinning Methods 0.000 description 16
- 229920002302 Nylon 6,6 Polymers 0.000 description 10
- 238000002074 melt spinning Methods 0.000 description 7
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- 239000004953 Aliphatic polyamide Substances 0.000 description 5
- 229920003231 aliphatic polyamide Polymers 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- WRDNCFQZLUCIRH-UHFFFAOYSA-N 4-(7-azabicyclo[2.2.1]hepta-1,3,5-triene-7-carbonyl)benzamide Chemical compound C1=CC(C(=O)N)=CC=C1C(=O)N1C2=CC=C1C=C2 WRDNCFQZLUCIRH-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
Description
本発明は高剛性で高強力の芳香族アミド単位を
有するコポリアミド繊維を効率的に製造する方法
に関するものである。
ナイロン6、ナイロン66に代表される脂肪族ポ
リアミドやポリ―p―フエニレンテレフタルアミ
ドに代表される全芳香族ポリアミドは工業的に生
産されているきわめて有用なポリアミドである。
前者は一般に溶融重合、溶融紡糸が可能という、
取扱いの容易性及び汎用性という点で確固たる地
位を築いている優れたポリアミドであるがナイロ
ン66に例をとれば、高強力を利用してタイヤコー
ド繊維として多く使用されているが、寸法安定性
に欠点を有し、より剛性の高い性質への改質が嘱
望されている。他方、ポリ―p―フエニレンテレ
フタルアミド等の全芳香族ポリアミドは、剛直構
造の芳香環を有していることから、きわめて良好
な剛性等をもつ優れた機械的性質を有するポリマ
ーであるが、溶融重合、溶融紡糸ができないとい
う、製造上の煩雑さにより著しいコスト高は避け
られず、汎用性という点では前述の脂肪族ポリア
ミドより大きく劣つていることは否定できない。
このような問題を解決するために溶融重合、溶
融紡糸可能な脂肪族―芳香族コポリアミドも提案
されているが、かかるコポリアミドを従来の脂肪
族ポリアミドに適用されている条件で溶融紡糸、
延伸しても高強力糸を操業性よく製造することは
困難である。
本発明は高剛性のコポリアミドから高強力糸を
効率的に製造する方法を提供するもので、芳香族
アミド単位を1〜50モル%含有するコポリアミド
を溶融紡糸し、冷却固化後1000m/min以上の速
度で引き取り、次いで切断延伸倍率の92〜98%の
延伸倍率で、コポリアミドの融点より100〜20℃
低い温度で熱延伸することを特徴とするコポリア
ミド繊維の製造法を要旨とするものである。
従来、ナイロン66のような脂肪族ポリアミドか
ら高強力糸を製造する場合、高分子量のポリマー
を用い、200〜600m/min程度の低紡速で溶融紡
糸し、配向度及び結晶化度の低い未延伸糸を得、
これを熱延伸して高度に配向、結晶化させる方法
が採用されており、高紡速では高強力糸は得られ
なかつた。
しかるに本発明者らが芳香族アミド単位を有す
るコポリアミドについて検討したところ、かかる
コポリアミドは脂肪族ポリアミドに比べて溶融粘
度及び活性化エネルギーが高く、溶融紡糸時の配
向、結晶化の挙動を異にし、かかるコポリアミド
では低紡速では高強力糸が得られず、高紡速にす
ると高強力糸が得られることが判明したのであ
る。
第1図は紡速と延伸糸の強度との関係の一例を
示す図で、実線はナイロン66塩にパラフエニレン
ジアミンとテレフタル酸(モル比1/1の混合
物)を25モル%共重合したコポリアミド(芳香族
アミド単位6.25モル%)で、溶融粘度が290℃に
おいて2900ポイズ、活性化エネルギーが22kcal/
モルのもの、点線はナイロン66で、溶融粘度が
290℃において2000ポイズ、活性化エネルギーが
14kcal/モルのものについて示している。
以下本発明の方法について詳細に説明する。
本発明において、芳香族アミド単位とは芳香環
にはさまれたアミド結合を有する単位を意味し、
コポリアミドは溶融紡糸可能なもの(融点が200
〜350℃程度のもの)で高重合度のものが望まし
い。
本発明におけるコポリアミドの代表的なものと
しては、溶融重合によつて合成できるジアミンと
ジカルボン酸とからのコポリアミドであつて、下
記の芳香族アミド単位を1〜50モル%含有する溶
融紡糸可能なコポリアミドが挙げられる。
〔R1,R2は水素又は低級アルキル基、X,Y
は結合鎖が共に同軸方向又は平行軸方向に伸びて
いるフエニレン基、ナフチレン基、ビフエニレン
基又は―φ―Z―φ―{φはパラフエニレン基、
Zは―O―,―S―,―SO2―,―CO―,―NH
―,―CH2―,―(CH2)2―又は―C(CH3)2
―}〕
溶融紡糸に際しては、融点よりも20〜40℃程度
高い温度に保たれた溶融コポリアミドが紡糸口金
より紡出され、横型吹付け装置又は円筒型吹付け
装置により冷却固化され、オイリング等が施こさ
れた後、1000m/min以上、好ましくは2000m/
min以上の高速で引き取られる。この際、高紡速
による効果をよりよく発揮させるためには、紡糸
ドラフトを大きくすることが望ましく、ドラフト
75以上、特に100以上が好ましい。又、単糸繊度
を小さくすることが望ましく、延伸後の単糸繊度
で2〜8d程度となるようにするのが好ましい。
溶融紡糸して得られた未延伸糸は残留伸度3〜
30%程度の延伸糸となるように延伸されるが、延
伸は一旦巻き取つた未延伸糸を延伸しても、紡糸
に直結して延伸を行う、いわゆるスピンドロー法
によつてもよい。
紡速が比較的低く、未延伸糸の伸度が200%以
上ある場合には2段延伸することもあるが、未延
伸糸伸度が200%以下となるような高紡速を採用
し、実質的に1段で延伸するのが工業的には有利
である。いずれにしても延伸は切断延伸倍率の92
〜98%の延伸倍率で、コポリアミドの融点より
100〜20℃低い温度(2段延伸のときは第2段目
の温度)で行う必要があり、これらの条件を満足
しないと十分な性能の糸条を操業性よく得ること
はできない。
延伸に引き続いて伸長率0.95〜1.10で熱処理を
施こし、より寸法安定性の良好な糸条とすること
もできる。
又、紡糸、延伸工程において、糸条の取扱いを
容易にするために交絡処理を施こすことも好まし
い。
又、紡糸に供するコポリアミドには耐熱剤、耐
光剤、着色剤、制電剤等の各種添加剤を含有させ
ることができる。
本発明によれば、強度8g/d以上、初期ヤン
グ率70g/d以上の産業資材用として適したコポ
リアミド繊維を操業性よく製造することができ
る。
以下実施例によつて本発明をさらに詳細に説明
する。
実施例中に示す相対粘度ηrは、ポリマー1gを
98%硫酸100mlに溶解した溶液について25℃で測
定した値である。溶融粘度μ(ポイズ)は0.5mmノ
ズルで、荷重4〜25Kg/cm2で、フローテスターで
測定された値のゼロ荷重での粘度の値であり、活
性化エネルギーE(Kcal/モル)は、μの温度依
存性から常法に従つて求めた値である。
なお、表1,2においてNo.に〇を付したものが
本発明の実施例で他は比較例である。
実施例 1
ナイロン66塩(75モル%)とパラフエニレンジ
アミン(P)/テレフタル酸(T)の等モル混合
物(25モル%)とから溶融重合法によつて、融点
263℃、ηr2.6のコポリアミドを製造した。
このコポリアミドのチツプをエクストルーダー
型溶融紡糸機を使用して、295℃で、孔径0.5mm、
孔数30の紡糸口金より紡出し、常法により冷却固
化、オイリング後表1に示す紡速で各単糸デニー
ルの未延伸糸を巻き取つた。これを延伸機に供給
し、フイードローラと第1延伸ローラ(80℃)と
の間で延伸倍率1.01で緊長引揃えを行つた後、第
1延伸ローラと第2延伸ローラ(140℃)との間
で長さ50cm、表1に示す延伸温度のヒータープレ
ートに接触させながら、表1に示す延伸倍率(切
断延伸倍率の95%)で熱延伸して巻き取つた。
比較のため、融点265℃、ηr2.8のナイロン66か
ら同様に紡糸、延伸して繊維を得た。
得られた延伸糸の強度及び初期ヤング率の値を
表1に示す。
The present invention relates to a method for efficiently producing copolyamide fibers having aromatic amide units with high stiffness and high strength. Aliphatic polyamides such as nylon 6 and nylon 66 and wholly aromatic polyamides such as poly-p-phenylene terephthalamide are industrially produced and extremely useful polyamides.
The former is generally said to be capable of melt polymerization and melt spinning.
Nylon 66 is an excellent polyamide that has established a solid position in terms of ease of handling and versatility. For example, nylon 66 is often used as tire cord fiber due to its high strength, but it has poor dimensional stability. However, there is a desire to improve the properties to make them more rigid. On the other hand, fully aromatic polyamides such as poly-p-phenylene terephthalamide have aromatic rings with a rigid structure, so they are polymers with excellent mechanical properties such as extremely good rigidity. It is unavoidable that a significant increase in cost is inevitable due to the complexity of production as it cannot be subjected to melt polymerization or melt spinning, and it cannot be denied that it is greatly inferior to the aforementioned aliphatic polyamide in terms of versatility. In order to solve these problems, aliphatic-aromatic copolyamides that can be melt-polymerized and melt-spun have also been proposed, but such copolyamides can be melt-spun and melt-spun under the conditions applied to conventional aliphatic polyamides.
Even with stretching, it is difficult to produce high-strength yarn with good operability. The present invention provides a method for efficiently producing high-strength yarn from a highly rigid copolyamide, in which a copolyamide containing 1 to 50 mol% of aromatic amide units is melt-spun, and after cooling and solidifying, the yarn is spun at 1000 m/min. Take it off at the above speed, then stretch at a stretching ratio of 92 to 98% of the cutting stretching ratio to 100 to 20°C below the melting point of the copolyamide.
The gist of this invention is a method for producing copolyamide fibers, which is characterized by hot drawing at a low temperature. Conventionally, when producing high-strength yarns from aliphatic polyamides such as nylon 66, high-molecular-weight polymers are used and melt-spun at low spinning speeds of about 200 to 600 m/min. Obtain a drawn yarn;
A method has been adopted in which this is highly oriented and crystallized by hot stretching, and high strength yarns cannot be obtained at high spinning speeds. However, when the present inventors investigated copolyamides having aromatic amide units, they found that such copolyamides have higher melt viscosity and activation energy than aliphatic polyamides, and exhibit different orientation and crystallization behavior during melt spinning. However, it was found that such copolyamides do not yield high tenacity yarns at low spinning speeds, but high tenacity yarns can be obtained at high spinning speeds. Figure 1 is a diagram showing an example of the relationship between spinning speed and strength of drawn yarn, where the solid line shows nylon 66 salt copolymerized with 25 mol% of paraphenylenediamine and terephthalic acid (mixture of 1/1 molar ratio). Copolyamide (6.25 mol% aromatic amide units), melt viscosity 2900 poise at 290℃, activation energy 22kcal/
The molar one, the dotted line is nylon 66, and the melt viscosity is
At 290℃, the activation energy is 2000 poise.
Shown is 14kcal/mol. The method of the present invention will be explained in detail below. In the present invention, the aromatic amide unit means a unit having an amide bond sandwiched between aromatic rings,
Copolyamides are those that can be melt-spun (melting point is 200
~350℃) and a high degree of polymerization are desirable. A typical example of the copolyamide used in the present invention is a copolyamide of diamine and dicarboxylic acid that can be synthesized by melt polymerization and that can be melt-spun and contains 1 to 50 mol% of the following aromatic amide units. copolyamides. [R 1 and R 2 are hydrogen or lower alkyl groups, X, Y
is a phenylene group, a naphthylene group, a biphenylene group in which the bonding chains both extend in the same or parallel axes, or -φ-Z-φ- {φ is a paraphenylene group,
Z is -O-, -S-, -SO 2 -, -CO-, -NH
--, --CH 2 --, --(CH 2 ) 2 --or --C(CH 3 ) 2
-}] During melt spinning, molten copolyamide kept at a temperature 20 to 40 degrees Celsius higher than its melting point is spun out from a spinneret, cooled and solidified using a horizontal or cylindrical spray device, and then oiled, etc. After the
It is picked up at a high speed higher than min. At this time, in order to better exhibit the effect of high spinning speed, it is desirable to increase the spinning draft.
It is preferably 75 or more, particularly 100 or more. Further, it is desirable to reduce the fineness of the single filaments, and it is preferable that the fineness of the single filaments after drawing is about 2 to 8 d. The undrawn yarn obtained by melt spinning has a residual elongation of 3~
Although the yarn is drawn to be about 30% drawn, the drawing may be done by drawing an undrawn yarn that has been wound once, or by a so-called spin-draw method in which drawing is performed directly after spinning. If the spinning speed is relatively low and the elongation of the undrawn yarn is 200% or more, two-stage drawing may be performed, but we adopt a high spinning speed so that the elongation of the undrawn yarn is 200% or less. It is industrially advantageous to carry out the stretching in substantially one stage. In any case, the stretching is 92, which is the cutting stretching ratio.
At a stretch ratio of ~98%, below the melting point of the copolyamide
It is necessary to carry out the stretching at a temperature 100 to 20°C lower (in the case of two-stage stretching, the temperature of the second stage), and unless these conditions are met, it will not be possible to obtain a yarn with sufficient performance and good operability. Following stretching, heat treatment can be performed at an elongation rate of 0.95 to 1.10 to obtain a yarn with better dimensional stability. Further, in the spinning and drawing steps, it is also preferable to perform an interlacing treatment to facilitate handling of the yarn. Further, the copolyamide used for spinning can contain various additives such as a heat-resistant agent, a light-resistant agent, a coloring agent, and an antistatic agent. According to the present invention, copolyamide fibers suitable for industrial materials having a strength of 8 g/d or more and an initial Young's modulus of 70 g/d or more can be produced with good operability. The present invention will be explained in more detail below using Examples. The relative viscosity ηr shown in the examples is
This is a value measured at 25°C for a solution dissolved in 100ml of 98% sulfuric acid. The melt viscosity μ (poise) is the viscosity value at zero load measured with a flow tester at a load of 4 to 25 Kg/cm 2 with a 0.5 mm nozzle, and the activation energy E (Kcal/mol) is: This is a value determined from the temperature dependence of μ according to a conventional method. In Tables 1 and 2, the numbers marked with a circle are examples of the present invention, and the others are comparative examples. Example 1 Melting point was determined by melt polymerization from nylon 66 salt (75 mol%) and an equimolar mixture (25 mol%) of paraphenylenediamine (P)/terephthalic acid (T).
A copolyamide was produced at 263°C and ηr2.6. Using an extruder-type melt spinning machine, the copolyamide chips were spun at 295°C with a pore size of 0.5 mm.
After spinning from a spinneret with 30 holes, cooling and solidifying in a conventional manner, and oiling, undrawn yarns of each single filament denier were wound at the spinning speeds shown in Table 1. This is supplied to a stretching machine and stretched and aligned between the feed roller and the first stretching roller (80℃) at a stretching ratio of 1.01, and then between the first stretching roller and the second stretching roller (140℃). The film was hot stretched at a stretching ratio (95% of the cutting stretching ratio) shown in Table 1 while in contact with a heater plate having a length of 50 cm between the ends and the stretching temperature shown in Table 1, and was wound up. For comparison, fibers were obtained by spinning and drawing in the same manner from nylon 66 with a melting point of 265°C and ηr2.8. Table 1 shows the strength and initial Young's modulus of the obtained drawn yarn.
【表】
実施例 2
ナイロン66塩、ナイロン6T塩、パラフエニレ
ンジアミン(P)/テレフタル酸(T)の実質等
モル混合物(PT)とから表2の組成で溶融重合
法によつて、表2に示す特性を持つナイロン66及
びコポリアミドを得た。表中の溶融粘度はそれぞ
れのポリマー融点+30℃での値である。これらの
ポリマーをエクストルーダー型溶融紡糸機を使用
し、表2に示す溶融温度で、孔径0.45mm、孔数30
の紡糸口金より押し出し、冷却固化、オイリング
後、3000m/minで第1ローラで引き取り、引き
続き、第1ローラと第2ローラ(100℃)との間
で延伸倍率1.03で緊張引揃えを行つた後第2ロー
ラと第3ローラとの間で切断延伸倍率の96%の延
伸倍率で延伸し巻き取つた。第2ローラと第3ロ
ーラとの間に長さ150cm、220℃のヒータープレー
トを使用した。得られた繊維の糸質性能を表2に
示す。[Table] Example 2 Table 1 was prepared from nylon 66 salt, nylon 6T salt, and a substantially equimolar mixture (PT) of paraphenylenediamine (P)/terephthalic acid (T) using the melt polymerization method with the composition shown in Table 2. Nylon 66 and copolyamide having the properties shown in 2 were obtained. The melt viscosity in the table is the value at the melting point of each polymer +30°C. These polymers were processed using an extruder-type melt spinning machine at the melting temperature shown in Table 2, with a pore diameter of 0.45 mm and a pore number of 30.
After being extruded from a spinneret, cooled and solidified, and oiled, it was taken up by the first roller at 3000 m/min, and then tensioned and aligned between the first and second rollers (100°C) at a draw ratio of 1.03. The film was stretched between the second roller and the third roller at a stretching ratio of 96% of the cutting stretching ratio and then wound up. A heater plate with a length of 150 cm and a temperature of 220° C. was used between the second roller and the third roller. Table 2 shows the yarn properties of the obtained fibers.
第1図は紡速と延伸糸の強度との関係の一例を
示す図で、実線はコポリアミド、点線はナイロン
66の例を示す。
Figure 1 is a diagram showing an example of the relationship between spinning speed and strength of drawn yarn, where the solid line is for copolyamide and the dotted line is for nylon.
66 examples are shown.
Claims (1)
ポリアミドを溶融紡糸し、冷却固化後1000m/
min以上の速度で引き取り、次いで切断延伸倍率
の92〜98%の延伸倍率で、コポリアミドの融点よ
り100〜20℃低い温度で熱延伸することを特徴と
するコポリアミド繊維の製造法。1 A copolyamide containing 1 to 50 mol% of aromatic amide units is melt-spun, and after cooling and solidifying, it is spun for 1000 m/s.
1. A method for producing copolyamide fibers, which comprises drawing at a speed of min. min or more, and then hot stretching at a draw ratio of 92 to 98% of the cutting draw ratio at a temperature 100 to 20°C lower than the melting point of the copolyamide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15122980A JPS5777316A (en) | 1980-10-27 | 1980-10-27 | Production of copolyamide fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15122980A JPS5777316A (en) | 1980-10-27 | 1980-10-27 | Production of copolyamide fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5777316A JPS5777316A (en) | 1982-05-14 |
JPS6319603B2 true JPS6319603B2 (en) | 1988-04-23 |
Family
ID=15514061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15122980A Granted JPS5777316A (en) | 1980-10-27 | 1980-10-27 | Production of copolyamide fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5777316A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0921188A (en) * | 1995-07-07 | 1997-01-21 | Susumu Hashizume | Reinforcing structure of building member and building reinforcing member employed for this structure |
-
1980
- 1980-10-27 JP JP15122980A patent/JPS5777316A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0921188A (en) * | 1995-07-07 | 1997-01-21 | Susumu Hashizume | Reinforcing structure of building member and building reinforcing member employed for this structure |
Also Published As
Publication number | Publication date |
---|---|
JPS5777316A (en) | 1982-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6340375B2 (en) | Polyamide multifilament fiber and tire cord including the fiber | |
RU2285761C1 (en) | Method of manufacturing high-strength heat-resistant threads from aromatic copolyamide having heterocycles in the chain | |
JP2010163506A (en) | Process for producing aromatic copolyamide | |
CN113906172B (en) | Filament and fishing line | |
US12037715B2 (en) | Semi-aromatic polyamide fiber and method for producing same | |
JP7460390B2 (en) | Semi-aromatic polyamide fiber | |
JP5087949B2 (en) | Polyamide fiber | |
JPS6319603B2 (en) | ||
JP2801025B2 (en) | Method for producing ultra-high strength polyhexamethylene adipamide multifilament | |
KR100230899B1 (en) | High elongation(p-phenylene terephthalamide)fiber | |
US3655630A (en) | High strength crystalline oriented filaments | |
JPS6119652B2 (en) | ||
US3869419A (en) | Anisotropic dopes of polyamides from fumaric and/or mesaconic acid | |
JPS6363565B2 (en) | ||
US3432476A (en) | Synthetic linear copolyterephthalamides and shaped articles made therefrom | |
WO2022039033A1 (en) | Polyamide multifilament, and method for manufacturing same | |
JPS6363644B2 (en) | ||
RU2111978C1 (en) | Anisotropic solution based on aromatic copolyamides and formed articles from this solution | |
JPS61132619A (en) | Copolyamide fiber | |
JPS6116774B2 (en) | ||
RU2058443C1 (en) | Anisotropic solution for molding aromatic polyamide filaments | |
JP6514010B2 (en) | Process for producing para-type wholly aromatic copolyamide drawn fiber | |
JPS6328128B2 (en) | ||
JP2000034618A (en) | Production of fiber for clothes and improved in yarn strength | |
JPH0274610A (en) | Conjugate fiber having high tenacity and excellent durability |