JPS63195957A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPS63195957A
JPS63195957A JP2668087A JP2668087A JPS63195957A JP S63195957 A JPS63195957 A JP S63195957A JP 2668087 A JP2668087 A JP 2668087A JP 2668087 A JP2668087 A JP 2668087A JP S63195957 A JPS63195957 A JP S63195957A
Authority
JP
Japan
Prior art keywords
current collector
zinc
negative electrode
mercury
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2668087A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Ryoji Okazaki
良二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2668087A priority Critical patent/JPS63195957A/en
Publication of JPS63195957A publication Critical patent/JPS63195957A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To obtain an alkaline battery having long storage life even if low amalgamated zinc negative electrode is used by making exist cobalt or cobalt alloy on the surface, in contact with a negative active material, of a negative current collector. CONSTITUTION:Cobalt or cobalt alloy is made to exist on the surface, where is in contact with a negative active material, of a negative current collector. The part, in contact with the negative active material, of the negative current collector is made of copper or brass, and the mercury on the surface of the negative current collector diffuses inward during storage and the mercury concen tration on the surface of the current collector is lowered. The evolution of hydrogen gas caused by a local cell produced between the current collector and the negative zinc, and the evolution of hydrogen gas caused by the lack of the mercury content on the surface of the negative zinc, which is produced by the transfer of mercury from the zinc to the current collector, and the dissolu tion of the zinc into an alkaline electrolyte are prevented. Thereby, an alkaline battery having long storage life and capable of using low amalgamated zinc can be obtained.

Description

【発明の詳細な説明】 a楽土の利用分野 本発明は負極活物質として亜鉛または亜鉛合金、正極活
物質として二酸化マンガン、酸化銀、酸化水銀、水酸化
ニッケル、酸素等の各種の減極剤。
Detailed Description of the Invention a Field of Application of Rakudo The present invention uses zinc or zinc alloy as a negative electrode active material, and various depolarizers such as manganese dioxide, silver oxide, mercury oxide, nickel hydroxide, oxygen, etc. as a positive electrode active material.

電解液にアルカリ水溶液を用いる各種のアルカリ電池の
改良に関するものである。
This invention relates to improvements in various alkaline batteries that use aqueous alkaline solutions as electrolytes.

従来の技術 アルカリ電池の共通的な課題として、負極果礒体の負極
活物質の接する面を構成している銅あるいは真鍮と負極
活物質亜鉛との間に生ずる局部電池による水素ガス発生
と亜鉛の自己消耗があり、腐食により発生した水素ガス
は電池内のガス圧を上昇させ、電解液の漏液や極端な場
合は破裂等を引き起こす危険性を有し、また負極亜鉛の
自己消耗による電池容蓋の低下が大きかったつこのため
、従来、負極集電体の銅あるいは真鍮をアルカリ水溶液
存在下で金4水銀による氷化する方法が試みられた。水
銀は水素過電圧も高く、銅あるいは真鍮と接すると、そ
の表面に速やかに拡散し、また均一な拡散層を形成する
ため氷化直後には亜鉛負極との局部電池を形成せず水素
ガス発生を防止できる。しかしながら氷化後保存ととも
に負極集電体を覆っていた水銀は、銅あるいは真鍮の内
深部に徐々に拡散してゆき、負極集電体表面の水銀tが
減少し、保存期間が長くなるに従って上記と同様に局部
電池を形成し、水素ガス発生が増加する欠点を有してい
た。しかしながら負極活物質の亜鉛、又は亜鉛合金は表
面を水化したものを使用するため、負極表面の水銀の一
部が負極集電体へ移行し、上記のあらかじめ氷化処理し
た負極集電体表面の水銀tの減少を若干は補う効果があ
り、従来使用していた氷化率γ〜10%の亜鉛負極を使
用した場合は、36°C保存で半年〜1年間は水素ガス
発生は抑制されていた。しかしながら、近年低公害化の
ため、電池内の含有水銀量を低減させることが社会的ニ
ーズとして高まり、負極活物質の亜鉛または亜鉛合金の
表面を水化′している水銀量の低減が計られ、水化率3
.0〜2.0チの亜鉛負極がすでに実用化されているが
、このような低水化率の亜鉛負極では負極表面から負極
集電体表面への水銀の移行が少量で充分に集電体の保存
後の水銀層の減少を補えず、また負極表面の亜鉛のアル
カリ電解液への溶解が起こり、この腐食にともなう水素
ガス発生と集電体と負極亜鉛の間の局部電池の生成によ
る水素ガス発生のため罠、36°C保存で約半年経過す
ると電池の7クレが起こり、放電性能が低下する欠点を
有していた。
A common problem with conventional alkaline batteries is hydrogen gas generation due to local batteries that occur between the copper or brass that makes up the contact surface of the negative electrode active material of the negative electrode body and the negative electrode active material zinc. Hydrogen gas generated by corrosion increases the gas pressure inside the battery, which poses the risk of electrolyte leakage and, in extreme cases, rupture.Also, the negative electrode zinc self-depletes, causing the battery capacity to increase. Because of the large drop in the lid, conventional methods have been attempted in which the copper or brass of the negative electrode current collector is frozen with gold (4) mercury in the presence of an alkaline aqueous solution. Mercury has a high hydrogen overvoltage, and when it comes into contact with copper or brass, it quickly diffuses to the surface and forms a uniform diffusion layer, so immediately after freezing, it does not form a local battery with the zinc negative electrode and hydrogen gas is generated. It can be prevented. However, during storage after freezing, the mercury that covered the negative electrode current collector gradually diffuses deep into the copper or brass, and as the mercury t on the surface of the negative electrode current collector decreases and the storage period becomes longer, the above Similarly, it formed a local battery and had the disadvantage of increasing hydrogen gas generation. However, since the negative electrode active material zinc or zinc alloy is used with a hydrated surface, some of the mercury on the negative electrode surface migrates to the negative electrode current collector, causing the above-mentioned ice-treated negative electrode current collector surface to This has the effect of slightly compensating for the decrease in mercury t, and when the conventionally used zinc negative electrode with a freezing rate of ~10% is used, hydrogen gas generation is suppressed for six months to one year when stored at 36°C. was. However, in recent years, in order to reduce pollution, there has been an increasing social need to reduce the amount of mercury contained in batteries, and efforts have been made to reduce the amount of mercury that hydrates the surface of the zinc or zinc alloy of the negative electrode active material. , hydration rate 3
.. Zinc negative electrodes with a density of 0 to 2.0 cm have already been put into practical use, but with zinc negative electrodes with such a low hydration rate, only a small amount of mercury transfers from the negative electrode surface to the negative electrode current collector surface, and the current collector is sufficiently absorbed. The decrease in the mercury layer after storage cannot be compensated for, and the zinc on the negative electrode surface dissolves in the alkaline electrolyte, resulting in hydrogen gas generation due to this corrosion and the formation of local batteries between the current collector and the negative electrode zinc. Due to the generation of gas, the battery deteriorated after about half a year when stored at 36°C, resulting in a decrease in discharge performance.

発明が解決しようとする問題点 上記のように、従来の方法では長期保存において、負極
集電体と負極亜鉛との間に生ずる局″S電池による水素
ガス発生とアルカIJ 電解液への負極亜鉛の溶解によ
る水素ガス発生のため、′電池の変形や、容量低下など
が著しく、貯蔵後の信頼性や電池性能に問題があった。
Problems to be Solved by the Invention As mentioned above, in the conventional method, during long-term storage, hydrogen gas is generated between the negative electrode current collector and negative electrode zinc by the local S battery, and negative electrode zinc is added to the alkaline IJ electrolyte. Due to the generation of hydrogen gas due to the dissolution of the battery, the battery was significantly deformed and its capacity decreased, resulting in problems with reliability and battery performance after storage.

本発明は、負極集′成体をコバル)(Go)あるいはコ
バルト合金で処理することにより、集電体内部への水銀
の拡散を防止し、前述の問題を解決することにより、低
汞化率の亜鉛負極を適用しても長期信頼性と、貯蔵性に
問題がなく、放電性能の優れたアルカリ電池を提供する
ことを目的とするものである。
The present invention solves the above-mentioned problem by treating the negative electrode assembly with cobalt (Go) or a cobalt alloy to prevent mercury from diffusing into the current collector. The purpose of this invention is to provide an alkaline battery that has long-term reliability, no problems in storage, and has excellent discharge performance even when a zinc negative electrode is used.

問題点を解決するための手段 この問題点を解決するため、本発明は、負極活物質に亜
鉛または亜鉛合金、電解液にか性カリ。
Means for Solving the Problems In order to solve this problem, the present invention uses zinc or a zinc alloy for the negative electrode active material and caustic potash for the electrolyte.

か性ソーダなどを主成分とするアルカリ水溶液、正極活
物質に二酸化マンガン、酸化銀、酸化水銀。
Alkaline aqueous solution containing caustic soda as the main ingredient, manganese dioxide, silver oxide, and mercury oxide as positive electrode active materials.

水酸化ニッケル、酸素等を用いるいわゆるアルカリ電池
の負極集電体の少なくとも負極活物質と接する表面にG
oあるいはコバルト合金を存在させたことを特徴とする
ものである。
G
It is characterized by the presence of cobalt alloy or cobalt alloy.

作用 本発明は、負極集電体の負極活物質と接触する部分の材
料が、銅あるいは真鍮で構成されているため、長期保存
中に負極集電体表面の水銀が集電体の内部まで拡散し、
集電体表面の水銀濃度が低下し、銅あるいは真鍮の集電
体と負極亜鉛との間に生ずる局部電池による水素ガスの
発生と、負極亜鉛表面の水銀の集電体表面への移行から
負極亜鉛表面の水銀量が不足し、亜鉛のアルカリ電解液
中への溶解による水素ガス発生とをあらかじめ集電体を
Goあるいはコバルト合金で被覆することにより解決し
、長期保存後も貯蔵性の優れた、低水化率の亜鉛負極が
使用できるアルカリ電池を実現したものである。
Function In the present invention, since the material of the part of the negative electrode current collector that comes into contact with the negative electrode active material is made of copper or brass, mercury on the surface of the negative electrode current collector will diffuse into the inside of the current collector during long-term storage. death,
The mercury concentration on the current collector surface decreases, and hydrogen gas is generated by a local battery between the copper or brass current collector and the negative electrode zinc, and the mercury on the negative electrode zinc surface migrates to the current collector surface. The lack of mercury on the zinc surface and the generation of hydrogen gas due to the dissolution of zinc in the alkaline electrolyte were solved by coating the current collector with Go or cobalt alloy in advance, resulting in excellent storage properties even after long-term storage. This resulted in an alkaline battery that can use a zinc negative electrode with a low hydration rate.

負極集電体を構成する銅あるいは銅合金である真鍮の表
面に水銀を存在させると保存とともに徐々に水銀は集電
体の内部に拡散する。しかしながらcoあるいはIn、
 Pb、 C(1,Tl、 Sn、 Ga、 Bi。
When mercury is present on the surface of the copper or copper alloy brass that constitutes the negative electrode current collector, the mercury gradually diffuses into the current collector as it is stored. However, co or In,
Pb, C(1, Tl, Sn, Ga, Bi.

N1.ムgより選ばれた一種または二種以上を含有する
コバルト合金をあらかじめ集電体表面に存在させるとC
oあるいは前記コバルト合金が水銀との親和性が大きい
ために、GOあるいは前記コバルト合金の上から存在さ
せる水銀がCOあるいはコバルト合金層に保持され、集
電体の内部までほとんど拡散してゆかず、常に集電体の
表面に均一な水銀層が保持され、集電体と負極巨船の間
に生ずる局部電池の生成はなく、局部電池による水素ガ
ス発生が抑制される。
N1. By pre-existing a cobalt alloy containing one or more selected from Mug on the surface of the current collector, C
o or because the cobalt alloy has a high affinity for mercury, the mercury present on the GO or the cobalt alloy is retained in the CO or cobalt alloy layer and hardly diffuses into the interior of the current collector; A uniform mercury layer is always maintained on the surface of the current collector, no local batteries are formed between the current collector and the negative electrode giant, and hydrogen gas generation by the local batteries is suppressed.

さらに、常に集電体表面に高濃度の水銀が保持されてい
るため、負極活物質の水化亜鉛または氷化亜鉛合金の表
面から集電体への水銀の移行がなく、負極活物質の水化
率が3チ以下であっても亜鉛のアルカリ電解液への溶解
による腐食も抑制される。
Furthermore, since a high concentration of mercury is always retained on the surface of the current collector, there is no migration of mercury from the surface of the negative electrode active material zinc hydrate or glazed zinc alloy to the current collector, and the negative electrode active material water Corrosion caused by dissolution of zinc in the alkaline electrolyte is also suppressed even if the conversion rate is 3 or less.

以上のように、本発明は負極49体の表面にCOあるい
はコバルト合金を存在させ、水銀の集電体内部への拡散
を防止することにより、長期保存における局部電池の発
生を防止し、低水化率でも貯蔵性の優れたアルカリ′1
池を実現したものである。
As described above, the present invention prevents the occurrence of local batteries during long-term storage by making CO or a cobalt alloy exist on the surface of the negative electrode 49 and preventing the diffusion of mercury into the current collector. Alkali'1 with excellent storability in terms of conversion rate
This is the realization of a pond.

実施例 次に本発明の実施例を図面とともに説明する。Example Next, embodiments of the present invention will be described with reference to the drawings.

か性カリの10i11tチの水溶液に硫酸コバルトある
いは硫酸コバルトと硫酸インジウム等のIn。
Indium such as cobalt sulfate or cobalt sulfate and indium sulfate is added to a 10i11t aqueous solution of caustic potassium.

Pb、 C(1,Tl、 an、 G&、 Bi、 )
ii、五gのいずれかの硫酸塩を溶解し、これを後述の
負極集電体の銅面に滴下して6分後に水洗乾燥し、後記
の表に示す0.3μの厚みのCoあるいは各種のコバル
ト合金!−を形成した。この集電体の内面に、再びか性
カリの10重量%の水溶液を滴下し、この後金属水銀を
負極集電体の銅の表面積11あたり0.2yagとなる
量を楢下し、これを水洗し、アセトンで置換した後乾燥
して、Coあるいはコバルト合金層を氷化した負極集電
体を作成した。さらに従来例として、上記の方法におい
てGoあるいはコバルト合金層のない水銀のみの処理の
集電体も作成した。
Pb, C(1, Tl, an, G&, Bi, )
ii. Dissolve 5 g of any of the sulfates, drop it onto the copper surface of the negative electrode current collector described below, wash with water after 6 minutes, dry it, and prepare a 0.3μ thick Co or various types of Co as shown in the table below. cobalt alloy! − was formed. A 10% by weight aqueous solution of caustic potash is again dropped on the inner surface of this current collector, and then metallic mercury is poured in an amount of 0.2 yag per 11 copper surface areas of the negative electrode current collector, and this is washed with water. Then, the mixture was replaced with acetone and then dried to create a negative electrode current collector in which the Co or cobalt alloy layer was frozen. Furthermore, as a conventional example, a current collector treated with only mercury without a Go or cobalt alloy layer was also created using the above method.

これらの負極集′祇体を用い、図面に示すボタン聾アル
カリマンガン電池を裏作した。図において、1は負極端
子を兼ねた負極集′I体で、ステンレス鋼と鋼を合板に
したクラツド材からなり、銅を内側にしたものでその銅
面は上記方法によりあらかじめ氷化等の処理が施しであ
る。、2は正負極を絶縁するとともに開口部を封口する
ポリアミド樹脂の封口ガスケットである。3は有底筒状
の金144ケースで、全面にニッケルメッキを施した鉄
より構成され、その内底部にはあらかじめ二酸化マンガ
ンと黒鉛の混合粉末をタブレット状に成型した合剤4が
鉄にニッケルメッキを施した正極リング5とともに加圧
圧着でれている。6はポリプロピレンの微多孔膜よりな
るセパレータである。了はビニロンの不織布よりなる電
解液含浸材である。8は負極であり、か性カリの40重
量%水溶液に酸化亜鉛を飽和させた電解液をポリアクリ
ル酸ソーダによりゲル化し、このゲル中にInを0.0
6重量%、p’bを0.02重j1%含有する亜鉛合金
粉末を2重量%の氷化率で氷化した氷化亜鉛合金粉末を
分散したものである。試作した電池は直径11.6目、
高さ5,411EIであり、負極集電体の銅面ヘコノく
ルト合金を付着させる場合は前記コバルト合金を構成す
るGoを除く各金属の量が付着量の40重8t%になる
ようにした。
Using these negative electrode assemblies, a button-deaf alkaline manganese battery as shown in the drawing was fabricated. In the figure, 1 is a negative electrode assembly that also serves as a negative electrode terminal, and is made of stainless steel and steel plywood clad material, with copper on the inside. is alms. , 2 is a sealing gasket made of polyamide resin that insulates the positive and negative electrodes and seals the opening. 3 is a cylindrical gold 144 case with a bottom, which is made of iron plated with nickel on the entire surface, and at the inner bottom of the case is mixed powder 4 of manganese dioxide and graphite formed into a tablet shape, which is coated with iron and nickel. It is press-fitted together with the plated positive electrode ring 5. 6 is a separator made of a microporous polypropylene membrane. Ryo is an electrolyte-impregnated material made of vinylon nonwoven fabric. 8 is a negative electrode, in which an electrolytic solution in which a 40% by weight aqueous solution of caustic potash is saturated with zinc oxide is gelled with sodium polyacrylate, and 0.0% In is added to the gel.
The frozen zinc alloy powder is obtained by freezing zinc alloy powder containing 6% by weight and 0.02% by weight of p'b at a freezing rate of 2% by weight. The prototype battery has a diameter of 11.6 meshes,
The height was 5,411EI, and when depositing the heconalt alloy on the copper surface of the negative electrode current collector, the amount of each metal other than Go constituting the cobalt alloy was 40% by weight and 8t% of the deposited amount. .

試作した電池の36゛C保存で6ケ月と12ケ月後の放
電性能と初度に対する電池総高の変化を次表に示す。放
電性能は、20°Cにおいて510Ωで0.9vを終止
電圧として放電したときの放電持続時間で表わした。
The following table shows the discharge performance of the prototype battery after 6 and 12 months of storage at 36°C and the change in total battery height compared to the initial state. The discharge performance was expressed as the discharge duration when discharging at 510Ω at 20°C with a final voltage of 0.9V.

(以下余白) この表に見られるように、従来例(No、 1)では3
6°C保存6ケ月でも電池総高が若干変化し、膨張して
おり、放電時間も実施例と比較して若干低い。さらに3
6°C保存12ケ月後では、目視判定でも容易にフクレ
が判断できるほど大きく電池総高が変化し、放電時間も
大きく劣化している。しかしながら負極集電体の表面に
Coあるいはコバルト合金を存在させた(No、2〜N
0.16)は35°C保存12ケ月後でも電池総高の変
化はなく、また放電性能も安定している。
(Left below) As seen in this table, in the conventional example (No. 1), 3
Even after 6 months of storage at 6°C, the total height of the battery slightly changed and expanded, and the discharge time was also slightly shorter than in the example. 3 more
After 12 months of storage at 6°C, the total height of the battery had changed so much that blisters could be easily detected by visual inspection, and the discharge time had also significantly deteriorated. However, Co or cobalt alloy was present on the surface of the negative electrode current collector (No, 2 to N
0.16), there is no change in the total battery height even after 12 months of storage at 35°C, and the discharge performance is also stable.

以上のように本発明は負極集電体の表面を水銀合金で処
理することにより、長期保存後における水素ガス発生を
防止し、低汞化率の亜鉛負極でも実用性能の優れたアル
カリ電池を実現したものである。
As described above, the present invention prevents the generation of hydrogen gas after long-term storage by treating the surface of the negative electrode current collector with a mercury alloy, thereby realizing an alkaline battery with excellent practical performance even with a zinc negative electrode with a low rate of flux. This is what I did.

なお、実施例においては負極集電体へ付着させたGoあ
るいはコバルト合金の厚みは0.3μとしたが0.06
μ以上であれば効果があり、0.1μ以上で実施例とほ
ぼ同等の効果があることを確認している。しかしながら
Coあるいはコバルト合金の厚みが2μを越えると付着
層が剥離する場合があり、0.1μ〜1.0μの厚みと
することが望ましい。また負極集電体の銅面へコバルト
合金を付着させる場合、実施例では別記コバルト合金を
構成するCoを除く金属の祉が付着1霞の40重11t
′チとなるよう統一したが、50重i%までは実施例と
同等の効果がある。またCOあるいはコバルト合金を存
在させ、水洗、乾燥後水銀層を付与したが水洗、乾燥を
行なわないでそのま\水化してもよい。また実施例では
負極集電体の材質は鋼を用いたが、真鍮の場合でも同様
の効果がある。なお実施例においては、ボタン型アルカ
リ電池で説明したが、酸化銀電池、水銀゛電池等の負極
集電体に銅あるいは真鍮を用い負極活物・電として亜鉛
または亜鉛合金を用いる他のアルカリ電池でも同様の効
果がある。
In addition, in the example, the thickness of Go or cobalt alloy attached to the negative electrode current collector was 0.3 μm, but it was 0.06 μm.
It has been confirmed that if it is 0.1 μ or more, it is effective, and if it is 0.1 μ or more, it has almost the same effect as the example. However, if the thickness of Co or cobalt alloy exceeds 2μ, the adhesive layer may peel off, so it is desirable that the thickness be 0.1μ to 1.0μ. In addition, when attaching a cobalt alloy to the copper surface of the negative electrode current collector, in the example, the weight of the metals other than Co constituting the cobalt alloy described separately is 40 weights and 11 tons of adhesion 1 haze.
Although it was unified so that it was 50 weight i%, it has the same effect as the example. Further, although CO or a cobalt alloy is present and a mercury layer is applied after washing with water and drying, it is also possible to hydrate the film as it is without washing with water or drying. Furthermore, although steel was used as the material for the negative electrode current collector in the examples, the same effect can be obtained using brass. In the examples, button-type alkaline batteries were explained, but other alkaline batteries such as silver oxide batteries and mercury batteries in which copper or brass is used as the negative electrode current collector and zinc or zinc alloy is used as the negative electrode active material/electrode are also applicable. But it has the same effect.

発明の効果 以上のように本発明によれば、低汞化率の亜鉛負極を使
用する場合でも、長期貯蔵性に優れたアルカリ電池を提
供できるという効果を得ることができる。
Effects of the Invention As described above, according to the present invention, an alkaline battery with excellent long-term storage performance can be provided even when a zinc negative electrode with a low rate of reduction is used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例のボタン型アルカリマンガン戒
池の要部を断面にした側面図である。 4・・・・・・正極、6・・・・・・セパレータ、7・
・・・・・含液材、8・・・・・・負極。
The drawing is a sectional side view of a main part of a button-type alkaline manganese pond according to an embodiment of the present invention. 4...Positive electrode, 6...Separator, 7.
...Liquid-containing material, 8...Negative electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)負極活物質として、汞化率が3%以下の亜鉛また
は亜鉛合金、電解液としてアルカリ水溶液を用い、負極
集電体の少なくとも負極活物質と接する表面にあらかじ
め、コバルトあるいはコバルト合金を存在させたことを
特徴とするアルカリ電池。
(1) As the negative electrode active material, use zinc or a zinc alloy with an aqueous conversion rate of 3% or less, use an alkaline aqueous solution as the electrolyte, and pre-exist cobalt or a cobalt alloy on at least the surface of the negative electrode current collector that is in contact with the negative electrode active material. An alkaline battery characterized by:
(2)コバルト合金がCoを主成分とし、インジウム、
鉛、カドミウム、タリウム、スズ、ガリウム、ビスマス
、ニッケル、銀の群より選ばれた一種または二種以上を
含有するものであることを特徴とする特許請求の範囲第
1項記載のアルカリ電池。
(2) Cobalt alloy has Co as its main component, indium,
The alkaline battery according to claim 1, characterized in that it contains one or more selected from the group of lead, cadmium, thallium, tin, gallium, bismuth, nickel, and silver.
JP2668087A 1987-02-06 1987-02-06 Alkaline battery Pending JPS63195957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2668087A JPS63195957A (en) 1987-02-06 1987-02-06 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2668087A JPS63195957A (en) 1987-02-06 1987-02-06 Alkaline battery

Publications (1)

Publication Number Publication Date
JPS63195957A true JPS63195957A (en) 1988-08-15

Family

ID=12200110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2668087A Pending JPS63195957A (en) 1987-02-06 1987-02-06 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS63195957A (en)

Similar Documents

Publication Publication Date Title
US2463565A (en) Dry primary cell
JP2008305803A (en) Zinc/air cell
US2935547A (en) Air-depolarized deferred action cell
JPS60175368A (en) Zinc-alkaline primary cell
US20090220861A1 (en) Method for producing alkaline battery, and alkaline battery
JPS63195958A (en) Alkaline battery
JPS63195957A (en) Alkaline battery
JPH06338327A (en) Negative electrode collector and button-shaped alkaline battery using same
US3269869A (en) Inter-electrode separator
JPH11339865A (en) Air electrode and air cell
JPH0315156A (en) Zinc electrode plate for secondary battery
JP4717222B2 (en) Alkaline battery
JPS63195956A (en) Alkaline battery
JP4196226B2 (en) Mercury-free alkaline battery
JPH06163026A (en) Alkaline button battery
JP2001307739A (en) Alkaline battery
US3940284A (en) Nickel oxide electric current producing cell
JP2982521B2 (en) Sealed nickel-metal hydride battery
JP2737233B2 (en) Zinc alkaline battery
JPS6261279A (en) Button type air cell
JPS59205155A (en) Alkaline battery
KR810000418Y1 (en) High drain rate, primary alkaline cell having a divalent silver oxide/monovalent silver oxide depolarizer blend coated with a layer of silver
JPS58126670A (en) Silver oxide battery
JPS59205154A (en) Alkaline battery
JPS61133560A (en) Zinc alkaline battery