JPS63195631A - Method for focusing image system - Google Patents

Method for focusing image system

Info

Publication number
JPS63195631A
JPS63195631A JP2736487A JP2736487A JPS63195631A JP S63195631 A JPS63195631 A JP S63195631A JP 2736487 A JP2736487 A JP 2736487A JP 2736487 A JP2736487 A JP 2736487A JP S63195631 A JPS63195631 A JP S63195631A
Authority
JP
Japan
Prior art keywords
lens barrel
camera
receiving surface
light receiving
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2736487A
Other languages
Japanese (ja)
Inventor
Yuji Sugiyama
雄二 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2736487A priority Critical patent/JPS63195631A/en
Publication of JPS63195631A publication Critical patent/JPS63195631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To facilitate the focusing of an objective and to make its magnifica tion constant by allowing a lens barrel to move in two axial directions parallel to the light receiving surface of a camera with the degree of freedom while holding its optical distance constant. CONSTITUTION:The lens barrel 3 is supported movably in the area of the light receiving surface of the camera 2 in parallel to the light receiving surface and the lens barrel 3 is bent by 90 deg. at a proper position and a reflecting mirror 6 is provided at the bend at 45 deg. to the optical axis of the objective 5. Then the lens barrel 3 is moved in parallel to form an image on the light receiving surface of the camera 2. Consequently, while fixing the camera 2, the image can be focused on an observing object point and the handling is facilitated. Further, the optical distance between the objective lens 5 and the light receiving surface can be held constant, so the magnification is made constant at all times.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は画像システムの合焦方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for focusing an imaging system.

(従来の技術) カメラと、該カメラに装着される鏡筒と、該鏡筒に装着
されて前記カメラの受光面に結像させる対物レンズとを
備える画像システムとしては、第4図に示すようにカメ
ラ20と、鏡筒21と、対物レンズ22を一体的に組み
込み、観察すべき物点A又はBに焦点を合わせる場合に
はこれらを一体的に移動させるようにした一体型のもの
、或いは第5図に示すようにカメラ20と鏡筒21とを
固定され、対物レンズ22を光軸に沿って移動可能とし
、観察すべき物点A又はBに焦点を合わせる場合には対
物レンズ22のみを移動させるようにしたレンズ駆動型
のものがある。
(Prior Art) An image system including a camera, a lens barrel attached to the camera, and an objective lens attached to the lens barrel to form an image on the light-receiving surface of the camera is as shown in FIG. An integrated type in which a camera 20, a lens barrel 21, and an objective lens 22 are integrated into the camera, and these are moved together when focusing on the object point A or B to be observed, or As shown in FIG. 5, the camera 20 and lens barrel 21 are fixed, and the objective lens 22 is movable along the optical axis. When focusing on object point A or B to be observed, only the objective lens 22 is used. There is a lens-driven type that moves the

(発明が解決しようとする問題点) しかしながら、前者においては観察すべき物点に焦点を
合わせる場合に画像システム全体を移動させることを必
要とするために大規模な架台(ステージ)を必要とし、
カメラの移動に手間が掛かるかりでなく、架台に精密機
構を必要とし、強度的に借問性が低く、また、精密且つ
高精度の機械装置向きではなく、更に輸送の点において
も不利である等の問題がある。
(Problems to be Solved by the Invention) However, in the former case, it is necessary to move the entire image system when focusing on the object point to be observed, so a large-scale mount (stage) is required.
It takes time and effort to move the camera, requires a precision mechanism for the mount, has low strength, is not suitable for precise and high-precision machinery, and is disadvantageous in terms of transportation. There is a problem.

また、後者においては強度的、輸送の点においては有利
であり信頼性も高いが、観察すべき物点に焦点を合わせ
る際に対物レンズの位置を移動させると当該レンズから
受光面までの距離(以下光学距離という)が変化し、こ
の結果、カメラに結像される像の倍率に影響を与えるた
めに高精度の形状測定、画像処理等には不向きであると
いう問題がある。
The latter is advantageous in terms of strength and transportation, and is highly reliable, but if you move the position of the objective lens when focusing on the object point to be observed, the distance from the lens to the light receiving surface ( There is a problem in that the optical distance (hereinafter referred to as optical distance) changes, and as a result, it affects the magnification of the image formed on the camera, making it unsuitable for high-precision shape measurement, image processing, etc.

本発明は上述の問題点を解決するためになされたもので
、高精度且つ耐久性に優れ、しかも取り扱いが容易な画
像システムの合焦方法を捷供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a focusing method for an image system that is highly accurate, has excellent durability, and is easy to handle.

(問題点を解決するための手段) 上記目的を達成するために本発明によれば、カメラと、
該カメラに装着される鏡筒と、該鏡筒に装着されて前記
カメラの受光面に結像させる対物レンズとを備える画像
システムの合焦方法において、前記鏡筒を前記カメラの
受光面に対して且つ当該受光面の領域内で平行移動可能
に支持すると共に、当該鏡筒を適宜の位置で直角に折曲
してその角に前記対物レンズの光軸に対して45°の角
度で反射鏡を設け、前記鏡筒を平行移動させて合焦し、
前記カメラの受光面に結像させるようにしたものである
(Means for Solving the Problems) In order to achieve the above object, according to the present invention, a camera;
In a focusing method for an image system comprising a lens barrel attached to the camera and an objective lens attached to the lens barrel to form an image on the light receiving surface of the camera, the lens barrel is placed relative to the light receiving surface of the camera. The lens barrel is bent at a right angle at an appropriate position, and a reflecting mirror is placed at the corner at an angle of 45° with respect to the optical axis of the objective lens. is provided, and the lens barrel is moved in parallel to focus,
The image is formed on the light receiving surface of the camera.

(作用) 鏡筒の対物レンズから当該受光面までの光学距離は当該
鏡筒をカメラの受光面と平行に移動させても変化せず常
に一定である。即ち、鏡筒はその光学距離を一定に保持
したままカメラの受光面に平行な2軸方向に自由度を有
して移動可能とされる。これにより、画像システムは対
物レンズの合焦を容易とされ、且つ受光面に結像される
像の大きさ即ち、倍率を一定とされる。
(Function) The optical distance from the objective lens of the lens barrel to the light-receiving surface remains constant and does not change even when the lens barrel is moved parallel to the light-receiving surface of the camera. That is, the lens barrel can be moved with degrees of freedom in two axial directions parallel to the light-receiving surface of the camera while keeping its optical distance constant. As a result, the imaging system can easily focus the objective lens, and the size of the image formed on the light-receiving surface, that is, the magnification, can be kept constant.

(実施例) 以下本発明の一実施例を添付図面に基づいて詳述する。(Example) An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明を適用した画像システムの概略構成を示
し、画像システムlはカメラ本体2と鏡筒3とにより構
成され、カメラ本体2の受光部には結像される被写体を
各部の明暗に比例した電気信号に変換する光電変換素子
例えば、撮像管4を配設されている。即ち、当該カメラ
2の受光面は撮像管4により構成されている。
FIG. 1 shows a schematic configuration of an image system to which the present invention is applied. The image system 1 is composed of a camera body 2 and a lens barrel 3, and the light receiving section of the camera body 2 displays the brightness and darkness of each part of the subject to be imaged. A photoelectric conversion element, for example, an image pickup tube 4, which converts into an electrical signal proportional to , is provided. That is, the light receiving surface of the camera 2 is constituted by the image pickup tube 4.

鏡筒3はその略中央位置を直角に折曲され、−側の鏡筒
3aの先端には対物レンズ5を装着されており、折曲部
の角には反射鏡6を配置されている。対物レンズ5は光
軸を鏡筒3aの軸芯と一敗して配置されている。また、
反射鏡6は対物レンズ5の光軸上に、且つ反射面6aを
当該対物レンズ5の光軸に対して45″の角度をなして
配置されており、対物レンズ5の光軸を90°曲げて他
側の鏡筒3b内に導く、この鏡筒3b内においても対物
レンズ5の前記光軸は当該鏡筒3bの軸芯と一致される
The lens barrel 3 is bent at a right angle approximately at the center thereof, an objective lens 5 is attached to the tip of the lens barrel 3a on the minus side, and a reflecting mirror 6 is arranged at the corner of the bent portion. The objective lens 5 is arranged so that its optical axis is aligned with the axis of the lens barrel 3a. Also,
The reflecting mirror 6 is arranged on the optical axis of the objective lens 5, with the reflecting surface 6a forming an angle of 45'' with respect to the optical axis of the objective lens 5, and bends the optical axis of the objective lens 5 by 90 degrees. Also within this lens barrel 3b, which is guided into the lens barrel 3b on the other side, the optical axis of the objective lens 5 coincides with the axis of the lens barrel 3b.

鏡筒3は他方の鏡筒3bの開口端3Cを撮像管4の受光
面4aに対向して平行に配置され、且つ図示しない支持
機構により撮像管4の受光面4aの受光可能な領域内に
おいて平行移動可能に支持される。即ち、鏡筒3bは撮
像管4の受光面4aに平行なX軸、Y軸(紙面に垂直方
向)方向の2軸方向に移動可能とされる。これにより、
対物レンズ5は鏡筒3と共に前記X、Y軸方向即ち、X
−Y平面内で移動可能とされる。そして、鏡筒3のX軸
方向への移動により対物レンズ5による被写体の焦点合
わせを可能とされる。鏡筒3の長さは一定であり、従っ
て、前記焦点合わせによる光学距離に変化はなく、撮像
管4の受光面4aに結像される被写体の大きさ、即ち、
倍率は常に一定となる。尚、対物レンズ5の合焦時にお
ける移動距離は僅少であり、従って、前記鏡筒3のX軸
方向への移動量は少である。また、当該鏡筒3のY軸方
向の移動量も僅少である。
The lens barrel 3 is arranged in parallel with the open end 3C of the other lens barrel 3b facing the light-receiving surface 4a of the image pickup tube 4, and is positioned within the light-receivable area of the light-receiving surface 4a of the image pickup tube 4 by a support mechanism (not shown). Supported for translational movement. That is, the lens barrel 3b is movable in two axes: an X-axis parallel to the light-receiving surface 4a of the image pickup tube 4, and a Y-axis (direction perpendicular to the plane of the drawing). This results in
The objective lens 5 is arranged along with the lens barrel 3 in the X and Y axis directions, that is, in the
- It is movable within the Y plane. By moving the lens barrel 3 in the X-axis direction, it is possible to focus the object using the objective lens 5. The length of the lens barrel 3 is constant, so there is no change in the optical distance due to the focusing, and the size of the object imaged on the light receiving surface 4a of the image pickup tube 4, that is,
The magnification is always constant. Note that the moving distance of the objective lens 5 during focusing is small, and therefore the amount of movement of the lens barrel 3 in the X-axis direction is small. Furthermore, the amount of movement of the lens barrel 3 in the Y-axis direction is also small.

以下に作用を説明する。The action will be explained below.

先ず、対物レンズ5の光軸上の物点Aを観察する場合に
は、鏡筒3をX軸方向に沿って図中下方に移動させ物点
Aに焦点を合わせる。これにより対物レンズ5は物点A
を撮像管4の受光面4aに結像する0次に、物点Aと同
軸上に当該物点Aから距離ΔXだけ対物レンズ5から離
れた位置にある物点Bを観察する場合には、鏡筒3をX
軸方向に沿って2点鎖NlX3°で示す位置まで移動さ
せて当該物点Bに焦点を合わせる。これにより対物レン
ズ5は当該物点Bを前記撮像管4の受光面4aに結像す
る。従って、物点A及び物点Bの合焦を容易に行うこと
ができる。この時、対物レンズ5から受光面4aまでの
距離即ち、光学距離は一定であるために受光面4aに結
像される各物点A、Bの倍率は同一となる。
First, when observing the object point A on the optical axis of the objective lens 5, the lens barrel 3 is moved downward in the figure along the X-axis direction to focus on the object point A. As a result, the objective lens 5 moves to the object point A.
is imaged on the light-receiving surface 4a of the image pickup tube 4. Next, when observing an object point B located coaxially with the object point A and separated from the objective lens 5 by a distance ΔX from the object point A, Rotate lens barrel 3 to
The object point B is focused by moving along the axial direction to the position indicated by the two-point chain NlX3°. Thereby, the objective lens 5 forms an image of the object point B on the light receiving surface 4a of the image pickup tube 4. Therefore, object point A and object point B can be easily focused. At this time, since the distance from the objective lens 5 to the light-receiving surface 4a, that is, the optical distance, is constant, the magnifications of the object points A and B imaged on the light-receiving surface 4a are the same.

かかる画像システムlは例えば、光ファイバを融着接続
するコア直視融着機の融着時の画像処理装置に利用する
ことができる。即ち、第2図に示すように光ファイバの
コアIOの接続部10aの一側に当該接続部10aから
僅かに離隔させて反射鏡例えば、平面鏡11を配置し、
該平面鏡11の反対側且つコア10の接続部tOaの斜
め上方所定位置に画像システムlを配置する。そして、
この画像システムlはコアlOの長手方向(Z軸方向)
に対して対物レンズ5の移動可能なX−Y平面を垂直に
、且つ当該対物レンズ5の光軸をコア10の接続部10
aに交差するように配置される。
Such an image system 1 can be used, for example, as an image processing device during fusion splicing in a core direct-view fusion splicer that fusion splices optical fibers. That is, as shown in FIG. 2, a reflecting mirror, for example, a plane mirror 11, is placed on one side of the connecting portion 10a of the optical fiber core IO at a slight distance from the connecting portion 10a.
An imaging system 1 is placed at a predetermined position on the opposite side of the plane mirror 11 and diagonally above the connecting portion tOa of the core 10. and,
This imaging system l is in the longitudinal direction (Z-axis direction) of the core lO.
The movable X-Y plane of the objective lens 5 is perpendicular to the object lens 5, and the optical axis of the objective lens 5 is
It is placed so as to intersect with a.

この画像システム1により前記コア10の接続部tOa
を観察する場合、先ず、鏡筒3をX軸方向に沿って移動
させて接続部10aに対物レンズ5の焦点を合わせ、当
該接続部10aを観察する。
This image system 1 allows the connecting portion tOa of the core 10 to be
When observing, first, the lens barrel 3 is moved along the X-axis direction, the objective lens 5 is focused on the connecting portion 10a, and the connecting portion 10a is observed.

次に、鏡筒3を2点鎖線で示すようにY軸方向、X軸方
向に移動させて接続部10aの平面鏡11による虚像即
ち、当該接続部10aからY軸方向に距離Δy、x軸方
向に距離ΔXだけ離れた位置にある虚物点10a°に対
物レンズ5の焦点を合わせて当該虚物点10a°を観察
する。これにより画像システム1はコアIOの接続部1
0aをX軸、Y軸方向に沿う2方向から観察することが
でき、当該接続部10aの接続状態を高精度に観察する
ことができる。
Next, the lens barrel 3 is moved in the Y-axis direction and the X-axis direction as shown by the two-dot chain line to create a virtual image of the connecting portion 10a by the plane mirror 11, that is, at a distance Δy in the Y-axis direction from the connecting portion 10a, in the x-axis direction. The objective lens 5 is focused on a virtual object point 10a° located a distance ΔX away from , and the virtual object point 10a° is observed. This allows the image system 1 to connect to the core IO connection 1.
0a can be observed from two directions along the X-axis and Y-axis directions, and the connection state of the connection portion 10a can be observed with high precision.

尚、上記実施例においては、カメラ2の撮像管4の受光
面4aに対して鏡筒3全体を平行移動させて対物レンズ
5の焦点を合わせる構成について記述したが、これに限
るものではなく、対物レンズ5の移動量が僅少である場
合には例えば、第3図に示すように鏡筒8を、直角をな
し対物レンズ5と反射鏡(図示せず)とを備えた鏡筒8
aと、置部をなす鏡筒8bとの2つに分割し、鏡筒8b
の後端をカメラ2に固定し、8aを憑像管(図示せず)
の受光面に対して前述と同様にX−Y平面に沿って平行
移動可能に、且つ当該鏡筒8aの後端を前記鏡筒8bの
前端と対向可能に配置し、鏡筒8aの平行移動操作のみ
により対物レンズ5の焦点を合わせるような構成として
もよい。
In the above embodiment, a configuration was described in which the entire lens barrel 3 is moved parallel to the light receiving surface 4a of the image pickup tube 4 of the camera 2 to focus the objective lens 5, but the present invention is not limited to this. If the amount of movement of the objective lens 5 is small, for example, as shown in FIG.
The lens barrel 8b is divided into two parts:
Fix the rear end to camera 2, and attach 8a to the image tube (not shown)
The lens barrel 8a is arranged parallel to the light receiving surface along the X-Y plane in the same manner as described above, and the rear end of the lens barrel 8a is arranged to face the front end of the lens barrel 8b. A configuration may be adopted in which the focus of the objective lens 5 is adjusted only by operation.

(発明の効果)                  
4以上説明したように本発明によれば、カメラと、該カ
メラに装着される鏡筒と、#ti鏡筒に装着されて前記
カメラの受光面に結像させる対物レンズとを備える画像
システムの合焦方法において、前記鏡筒を前記カメラの
受光面に対して且つ当該受光面の領域内で平行移動可能
に支持すると共に、当該鏡筒を適宜の位置で直角に折曲
してその角に前記対物レンズの光軸に対して456の角
度で反射鏡を設け、前記鏡筒を平行移動させて合焦し、
前記カメラの受光面に結像させるようにしたので、前記
カメラを固定したままの状態で観察すべき物点に合焦す
ることが可能となり、取り扱いが容易となり、しかも、
前記対物レンズと前記受光面との間の光学距離を一定に
保持することができるために倍率を常に一定とすること
ができ、高精度の形状測定、画像処理等を行うことが可
能となる。
(Effect of the invention)
4. As explained above, according to the present invention, there is provided an image system including a camera, a lens barrel attached to the camera, and an objective lens attached to the #ti lens barrel to form an image on the light receiving surface of the camera. In the focusing method, the lens barrel is supported so as to be movable in parallel to the light receiving surface of the camera and within the area of the light receiving surface, and the lens barrel is bent at a right angle at an appropriate position and bent at a right angle to the corner. A reflecting mirror is provided at an angle of 456 with respect to the optical axis of the objective lens, and the lens barrel is moved in parallel to focus,
Since the image is formed on the light-receiving surface of the camera, it is possible to focus on the object point to be observed while the camera remains fixed, and handling is easy.
Since the optical distance between the objective lens and the light-receiving surface can be kept constant, the magnification can always be kept constant, making it possible to perform highly accurate shape measurement, image processing, etc.

また、画像システムを堅牢に構成することができ、信幀
性の向上向上が図られると共に輸送等にも有利である等
の利点がある。
In addition, the image system can be constructed to be robust, reliability is improved, and transportation is also advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る画像システムの合焦方法を適用し
た画像システムの一実施例を示す構成図、第2図は第1
図の画像システムを光フアイバコアの融着時の観察に使
用した画像処理装置の構成図、第3図は第1図に示す画
像システムの合焦方法の他の実施例を示す斜視図、第4
図及び第5図は従来の画像システムを示す斜視図である
。 1・・・画像システム、2・・・カメラ、3.8・・・
鏡筒、4・・・撮像管、5・・・対物レンズ、6.11
・・・反射鏡、10・・・光ファイバのコア、10a・
・・接続部。 第1図 第4図
FIG. 1 is a configuration diagram showing an embodiment of an image system to which the focusing method of an image system according to the present invention is applied, and FIG.
FIG. 3 is a perspective view showing another embodiment of the focusing method of the image system shown in FIG. 1; FIG.
FIG. 5 is a perspective view showing a conventional imaging system. 1...Image system, 2...Camera, 3.8...
Lens barrel, 4... Image pickup tube, 5... Objective lens, 6.11
... Reflector, 10... Optical fiber core, 10a.
...Connection part. Figure 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] カメラと、該カメラに装着される鏡筒と、該鏡筒に装着
されて前記カメラの受光面に結像させる対物レンズとを
備える画像システムの合焦方法において、前記鏡筒を前
記カメラの受光面に対して且つ当該受光面の領域内で平
行移動可能に支持すると共に、当該鏡筒を適宜の位置で
直角に折曲してその角に前記対物レンズの光軸に対して
45°の角度で反射鏡を設け、前記鏡筒を平行移動させ
て合焦し、前記カメラの受光面に結像させることを特徴
とする画像システムの合焦方法。
In a focusing method for an image system including a camera, a lens barrel attached to the camera, and an objective lens attached to the lens barrel to form an image on a light receiving surface of the camera, the lens barrel is connected to the light receiving surface of the camera. The lens barrel is supported so as to be movable parallel to the surface and within the area of the light-receiving surface, and the lens barrel is bent at a right angle at an appropriate position, and an angle of 45° is formed at the corner with respect to the optical axis of the objective lens. A focusing method for an image system, characterized in that a reflecting mirror is provided, the lens barrel is moved in parallel to focus, and an image is formed on a light-receiving surface of the camera.
JP2736487A 1987-02-10 1987-02-10 Method for focusing image system Pending JPS63195631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2736487A JPS63195631A (en) 1987-02-10 1987-02-10 Method for focusing image system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2736487A JPS63195631A (en) 1987-02-10 1987-02-10 Method for focusing image system

Publications (1)

Publication Number Publication Date
JPS63195631A true JPS63195631A (en) 1988-08-12

Family

ID=12218995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2736487A Pending JPS63195631A (en) 1987-02-10 1987-02-10 Method for focusing image system

Country Status (1)

Country Link
JP (1) JPS63195631A (en)

Similar Documents

Publication Publication Date Title
EP0406413B1 (en) Scanning type tunnel microscope
JP3500850B2 (en) Method and apparatus for observing butted portion of ribbon-type optical fiber
US4963728A (en) Coordinate measuring apparatus having an optical sensing head
EP3534199B1 (en) Mirror image microscopic imaging device, and microneedle attitude calibration system and method
JPH04309907A (en) Manufacture of photosemiconductor element module
JP5484598B2 (en) Fusion splicing device and splicing splicing method
JPS63195631A (en) Method for focusing image system
JP2581257B2 (en) Method for manufacturing optical semiconductor device module
JPS6070407A (en) Method and mechanism for observing optical fiber core
JP3366728B2 (en) Optical fiber observation equipment
JPH0942920A (en) Device for automatically checking polished surface of optical connector and method of checking polished surface of optical connector
JP3418296B2 (en) Detecting the amount of misalignment of optical fibers of different diameters
CN216526405U (en) Micro-lens coupling optical path system and micro-lens coupling device
JP2000098237A (en) Depression angle varying lens barrel for microscope
CN210465755U (en) Imaging structure of optical fiber end melting machine and optical fiber end melting machine
JP4336056B2 (en) Optical fiber observation device and optical fiber fusion splicer
JPS5916903Y2 (en) fiber optic connector
JP2529526Y2 (en) Alignment device for optical components
Chen et al. Micromanipulation robot for automatic fiber alignment
JP2810775B2 (en) Adjusting the focus position of the scanning optical system
JP3642849B2 (en) Fusion splicing method of optical fiber
JPH03240007A (en) Production of optical semiconductor element module
JPH01196187A (en) Optical apparatus and its manufacture
CN114019626A (en) Micro-lens coupling optical path system, micro-lens coupling device and micro-lens coupling method
JPH1054834A (en) Measuring method of scan probe microscope