JPS63195172A - Ceramic mold and punch for forming dry battery fuel - Google Patents

Ceramic mold and punch for forming dry battery fuel

Info

Publication number
JPS63195172A
JPS63195172A JP62026055A JP2605587A JPS63195172A JP S63195172 A JPS63195172 A JP S63195172A JP 62026055 A JP62026055 A JP 62026055A JP 2605587 A JP2605587 A JP 2605587A JP S63195172 A JPS63195172 A JP S63195172A
Authority
JP
Japan
Prior art keywords
punch
fuel
dry battery
ceramic mold
phase forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62026055A
Other languages
Japanese (ja)
Other versions
JPH0793134B2 (en
Inventor
昭雄 西山
直久 伊藤
敬一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62026055A priority Critical patent/JPH0793134B2/en
Publication of JPS63195172A publication Critical patent/JPS63195172A/en
Publication of JPH0793134B2 publication Critical patent/JPH0793134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マンガン乾電池やアルカリ乾電池、さらに
水銀電池などの各種の乾電池の製造に際して、燃料のに
レット成形工程や、これの亜鉛筒への封入成形工程など
に用いられる金型およびパンチにかかり、特に燃料に対
してすぐれた耐食性と耐摩耗性を示すセラミックス製金
型およびパンチに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to the production of various dry batteries such as manganese dry batteries, alkaline dry batteries, and mercury batteries. The present invention relates to molds and punches used in encapsulation molding processes, etc., and particularly relates to ceramic molds and punches that exhibit excellent corrosion resistance and abrasion resistance against fuel.

〔従来の技術〕[Conventional technology]

従来、例えば燃料のベレット成形には、ステライトやス
テンレス鋼製の金型およびパンチが使用され、また燃料
の亜鉛筒への封入成形には%WC基超基台硬合金速度鋼
、さらにステンレス鋼製の金型およびパンチが主に使用
され、かつその材料も使用目的に応じて選定しているの
が現状である。
Conventionally, for example, molds and punches made of stellite or stainless steel have been used to form fuel pellets, and molds and punches made of stellite or stainless steel have been used to mold fuel into zinc cylinders, and %WC-based super-base hard alloy speed steel and stainless steel have been used to mold fuel into zinc cylinders. Currently, molds and punches are mainly used, and the materials used are selected depending on the purpose of use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように金型およびパンチを構成する材料が一定しな
いばかシでなく、これらの金型およびパンチは、燃料が
二酸化マンガンや電解液などの腐食性の強い成分を含有
するため、この燃料によって腐食され易く、シたがって
岸耗も著しく、比較的短時間で使用寿命に至るなどの問
題点をもつものである。
In this way, the materials that make up the molds and punches are not constant, and these molds and punches are corroded by the fuel, which contains highly corrosive components such as manganese dioxide and electrolyte. The problem is that it is easily damaged, is subject to significant wear, and reaches the end of its service life in a relatively short period of time.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、燃料の
はレット成形および亜鉛筒への封入成形などのすべての
燃料成形に用いることができ、しかもすぐれた耐食性と
耐摩耗性を示す金型およびパンチを開発すべく研究を行
なった結果、結合相形成成分として、Mgs Ysおよ
び希土類元素のうちの1穐以上と、 SiおよびAAの
うちの1種以上との複合金属酸窒化物=2〜20%、を
含有し、さらに必要に応じて、 周期律表の4a、5a、および6a族金属の炭化物およ
び酸化物、同4aおよび5a族金属の窒化物、並びにこ
れらの2穐以上の固溶体(以下、これらを総称して金属
の炭・窒・酸化物という)のうちの1穐以上二〇、5〜
40%。
Therefore, from the above-mentioned viewpoint, the present inventors developed a metal that can be used for all fuel forming processes such as fuel pellet forming and encapsulation into zinc cylinders, and that also exhibits excellent corrosion resistance and wear resistance. As a result of research to develop molds and punches, we found that a composite metal oxynitride consisting of one or more of Mgs Ys and rare earth elements, and one or more of Si and AA as binder phase forming components = 2 ~20%, and further, if necessary, carbides and oxides of metals from groups 4a, 5a, and 6a of the periodic table, nitrides of metals from groups 4a and 5a, and solid solutions of two or more of these metals. (Hereinafter, these are collectively referred to as metal carbon, nitride, and oxides) 1 or more 20, 5 ~
40%.

を含有し、残りが硬質相形成成分としての窒化けい素(
以下Si3N4で示す)およびサイアロン(一般に81
とMの酸窒化物をいう)のうちの1種以上と不可避不純
物からなる組成(以上容量チ、以下チはすべて容−mt
%を意味する)、並びに98%以上の理論密度比を有す
るセラミックスで構成され。
, and the rest is silicon nitride as a hard phase forming component (
(hereinafter referred to as Si3N4) and Sialon (generally 81
and M oxynitride) and unavoidable impurities.
%) and a ceramic having a theoretical density ratio of 98% or more.

かつ成形表面に2μm以上の空孔が存在せず、さらに成
形表面の表面粗さが1.38以上の金型およびパンチに
おいては、これをいずれの燃料成形に用いても、上記セ
ラミックスによってすぐれた耐食性と耐摩耗性が確保さ
れ、また上記成形表面性状によってすぐれた成形性が確
保されるようになシ、この結果著しく長期に亘ってすぐ
れた成形性能を発揮するようになるという知見を得たの
である。
In addition, in molds and punches in which there are no pores of 2 μm or more on the molding surface and the surface roughness of the molding surface is 1.38 or more, the above ceramics can be used for any fuel molding. It has been found that corrosion resistance and abrasion resistance are ensured, and the above-mentioned molding surface properties ensure excellent moldability, and as a result, excellent molding performance can be exhibited over an extremely long period of time. It is.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に、成分組成および成形表面性状を上記の通り
に限定した理由を説明する。
This invention has been made based on the above findings, and the reason why the component composition and molding surface properties are limited as described above will be explained below.

A、成分組成 (a)  複合金属酸窒化物 本願発明のセラミックスは、基本的には硬質相形成成分
としての5i5N4およびサイアロンによってすぐれた
耐食性と耐摩耗性を確保し、一方結合相形成成分として
の複合金属酸窒化物によって高密度と高強度を確保する
ものである。したがって複合金属酸窒化物の含有量が2
%未満では、所望の高強度および理論密度比:98%以
上の高密度を確保することができず、一方その含有量が
20チを越えると、耐摩耗性が低下するようになること
から、その含有量を2〜20%と定めた。
A. Component composition (a) Composite metal oxynitride The ceramic of the present invention basically ensures excellent corrosion resistance and wear resistance by 5i5N4 and sialon as hard phase forming components, while on the other hand, it has excellent corrosion resistance and wear resistance as a binder phase forming component. The composite metal oxynitride ensures high density and high strength. Therefore, the content of composite metal oxynitride is 2
If the content is less than 20%, it will not be possible to secure the desired high strength and high density of theoretical density ratio: 98% or more, while if the content exceeds 20%, the wear resistance will decrease. Its content was determined to be 2 to 20%.

(b)  金属の炭・窒・酸化物 これらの成分には、セラミックの強度を一屑向上させる
作用があるので、必要に応じて含有されるが、その含有
量が0.54未満では所望の強度向上効果が得られず、
一方その含有量が40%を越えると、かえって強度の低
下が著しくなることから、その含有量を0.5〜40%
と定めだ。
(b) Carbon, nitride, and oxides of metals These components have the effect of improving the strength of ceramics, so they are included as necessary, but if their content is less than 0.54, the desired strength cannot be achieved. No strength improvement effect was obtained,
On the other hand, if the content exceeds 40%, the strength will decrease significantly, so the content should be reduced to 0.5 to 40%.
It is determined that

B、理論密度比 所望のすぐれた耐摩耗性を確保すると共に、成形表面に
2μm以上の空孔が存在しないようにするには、理論密
度比で98%以上とする必要があるのであって、98%
未満の理論密度比では、セラミックスの硬さがビッカー
ス硬さで1600以下に低下し、かつ0.2μm以上の
空孔が成形表面に存在するようになるのである。
B. Theoretical density ratio In order to ensure the desired excellent wear resistance and to prevent the presence of pores of 2 μm or more on the molded surface, the theoretical density ratio needs to be 98% or more. 98%
If the theoretical density ratio is less than that, the hardness of the ceramic will decrease to 1600 or less in terms of Vickers hardness, and pores of 0.2 μm or more will exist on the molded surface.

また、よシ高密度のセラミックスを製造しようとする場
合には、 Hrp(熱間静水圧プレス)やホットプレス
の適用が効果的である。
Furthermore, when attempting to manufacture ceramics with a high density, HRP (hot isostatic pressing) or hot pressing is effective.

C1成形表面の空孔 成形表面に0.2μm以上の大きな空孔が存在すると1
例えばはレット成形に際して、ベレットに傷がつくよう
になるほか、この傷が原因で、はレットのプレス時に割
れが発生するようになるなど、成形性が損なわれるよう
になることから、成形表面には0.2μm以上の空孔が
存在しないようにした。
C1 voids on the molding surface If there are large pores of 0.2 μm or more on the molding surface, 1
For example, when forming pellets, the pellets become scratched, and these scratches can cause cracks to occur when pressing the pellets, impairing formability. It was made such that there were no pores of 0.2 μm or more.

D、成形表面の表面粗さ 成形表面が1.3S未満の粗面となると、プレス成形時
における燃料との摩擦が大きくなるほか。
D. Surface roughness of molding surface If the molding surface is rougher than 1.3S, friction with fuel during press molding will increase.

亜鉛筒への燃料の封入成形に際しては、スムースな装着
が困難になるなど、成形性が低下するようになることか
ら、その表面粗さを1.38以上の平滑面とした。
When molding the fuel into the zinc cylinder, smooth installation becomes difficult and formability deteriorates, so the surface roughness was set to be smooth with a surface roughness of 1.38 or more.

〔実施例〕〔Example〕

つぎに、この発明を実施例によシ具体的に説明する。 Next, the present invention will be specifically explained using examples.

原料粉末として、いずれも0.5〜3 、/j mの範
囲内の平均粒径を有する5i5N4粉末、 SiO2粉
末、AIN粉末、Al2O3粉末%MgO粉末、Y2O
,粉末、  La2O3粉末、 Ce2O3粉末、さら
に各種の周期律表の4a、5a、および6a族金属の炭
化物粉末および酸化物粉末、同4aおよび5a族金属の
窒化物粉末。
Raw material powders include 5i5N4 powder, SiO2 powder, AIN powder, Al2O3 powder% MgO powder, and Y2O powder, all of which have an average particle size within the range of 0.5 to 3,/j m.
, powder, La2O3 powder, Ce2O3 powder, as well as carbide powders and oxide powders of metals of groups 4a, 5a, and 6a of the periodic table, and nitride powders of metals of groups 4a and 5a of the periodic table.

さらにこれらの2種以上の固溶体である金属の炭窒化物
粉末、金属の炭酸化物粉末、金属の酸窒化物粉末、並び
に金属の炭窒酸化物粉末を用意し。
Furthermore, metal carbonitride powder, metal carbonate powder, metal oxynitride powder, and metal carbonitoxide powder, which are solid solutions of two or more of these types, are prepared.

これら原料粉末をそれぞれ第1表に示される配合組成に
配合し1通常の条件にしたがい、ボールミルにて72時
時間式混合し、乾燥した後、 1 ton/cIn2の
圧力にて圧粉体にプレス成形し、ついでこの圧粉体を、
1気圧の窒素雰囲気中、温度:1750℃に2時間保持
の条件で普通焼結するか、あるいは窒素雰囲気中、16
50℃の温度でホットプレスすることによって、それぞ
れ第1表に示される成分組成をもった本発明金型および
パンチ1〜16を製造(本発明金型・パンチ7〜9をホ
ットプレスによシ製造し、それ以外のものは普通焼結に
ょシ製造)した。また比較の目的で同じく第1表に示さ
れる成分組成をもった従来金型およびパンチ1〜3を用
意した。なお、前記金型は、外径=37朋×内径:12
.3MX高さ:45朋の寸法をもったリング状のもので
あり、かつ前記パンチは外径:23.3LI+の寸法を
もつものであった。
These raw material powders were blended into the composition shown in Table 1, mixed for 72 hours in a ball mill under normal conditions, dried, and then pressed into a green compact at a pressure of 1 ton/cIn2. After molding, this green compact is
Normally sintered at 1,750°C in a nitrogen atmosphere of 1 atm for 2 hours, or sintered in a nitrogen atmosphere at 16
By hot pressing at a temperature of 50°C, the molds and punches 1 to 16 of the present invention having the component compositions shown in Table 1 were produced (the molds and punches 7 to 9 of the present invention were hot pressed). The other products were manufactured by ordinary sintering. For comparison purposes, conventional molds and punches 1 to 3 having the same compositions shown in Table 1 were prepared. Note that the mold has an outer diameter of 37 mm x inner diameter of 12 mm.
.. The punch had a ring shape with dimensions of 3MX height: 45 mm, and the punch had an outer diameter of 23.3 LI+.

ついで、この結果得られた各種の金型およびパンチにつ
いて、理論密度比を測定すると共に、成形表面における
0、1μm以上の空孔の有無、並びに成形表面の表面粗
さを測定し、さらにこれを単3乾電池用の外径:12.
3」X高さ二19藺の寸法をもった燃料はレットの成形
に用い、この種の金型およびパンチの使用寿命の目安と
される摩耗量が50μmに至るまでのショツト数を測定
した。
Next, for the various molds and punches obtained as a result, the theoretical density ratio was measured, as well as the presence or absence of pores of 0 or 1 μm or more on the molding surface, and the surface roughness of the molding surface. Outer diameter for AA batteries: 12.
A fuel having dimensions of 3" x height of 219" was used for molding the pellets, and the number of shots until the amount of wear reached 50 μm, which is a guideline for the service life of this type of mold and punch, was measured.

これらの結果を第2表に示した。These results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第2味に示される結果から、本発明金型およびパンチ1
〜16は、いずれも従来金型およびパンチ1〜3に比し
て、一段とすぐれた使用寿命な示すことが明らかである
From the results shown in the second test, the mold and punch 1 of the present invention
It is clear that all of the molds and punches 1 to 16 have a much better service life than the conventional molds and punches 1 to 3.

上述のように、この発明のセラミックス製金型およびパ
ンチは、すぐれた耐食性と耐摩耗性を具備しているので
、これを乾電池の燃料成形用に用いた場合に、すぐれた
性能を発揮し、長期に亘る使用を可能とするものである
As mentioned above, the ceramic mold and punch of the present invention have excellent corrosion resistance and abrasion resistance, so when used for forming fuel for dry batteries, they exhibit excellent performance. This allows for long-term use.

Claims (2)

【特許請求の範囲】[Claims] (1)結合相形成成分として、Mg、Y、および希土類
元素のうちの1種以上と、SiおよびMのうちの1種以
上との複合金属酸窒化物:2〜20%、を含有し、残り
が硬質相形成成分としての窒化けい素およびサイアロン
のうちの1種以上と不可避不純物からなる組成(以上容
量%)、並びに98%以上の理論密度比を有するセラミ
ックスで構成され、かつ成形表面に2μm以上の空孔が
存在せず、さらに成形表面の表面粗さが1.3S以上で
あることを特徴とする乾電池の燃料成形用セラミックス
製金型およびパンチ。
(1) Contains 2 to 20% of a composite metal oxynitride of one or more of Mg, Y, and rare earth elements and one or more of Si and M as a bonding phase forming component, The remainder is composed of a composition (volume %) consisting of one or more of silicon nitride and sialon as hard phase forming components and unavoidable impurities, and a ceramic having a theoretical density ratio of 98% or more, and A ceramic mold and punch for forming a fuel for a dry battery, characterized in that there are no pores of 2 μm or more and the molding surface has a surface roughness of 1.3S or more.
(2)結合相形成成分として、Mg、Y、および希土類
元素のうちの1種以上と、SiおよびMのうちの1種以
上との複合金属酸窒化物:2〜20%、を含有し、さら
に、 周期律表の4a、5a、および6a族金属の炭化物およ
び酸化物、同4aおよび5a族金属の窒化物、並びにこ
れらの2種以上の固溶体のうちの1種以上:0.5〜4
0%、 を含有し、残りが硬質相形成成分としての窒化けい素お
よびサイアロンのうちの1種以上と不可避不純物からな
る組成(以上容量%)、並びに98%以上の理論密度比
を有するセラミックスで構成され、かつ成形表面に2μ
m以上の空孔が存在せず、さらに成形表面の表面粗さが
1.3S以上であることを特徴とする乾電池の燃料成形
用セラミックス製金型およびパンチ。
(2) Contains 2 to 20% of a composite metal oxynitride of one or more of Mg, Y, and rare earth elements and one or more of Si and M as a bonding phase forming component, Furthermore, carbides and oxides of metals from groups 4a, 5a, and 6a of the periodic table, nitrides of metals from groups 4a and 5a, and one or more solid solutions of two or more of these: 0.5 to 4
0%, with the remainder consisting of one or more of silicon nitride and sialon as hard phase forming components and unavoidable impurities (volume %), and a theoretical density ratio of 98% or more. 2μ on the molded surface
A ceramic mold and punch for forming a fuel for a dry battery, characterized in that there are no pores of m or more in size, and the molding surface has a surface roughness of 1.3S or more.
JP62026055A 1987-02-06 1987-02-06 Ceramic molds and punches for dry cell fuel molding Expired - Lifetime JPH0793134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62026055A JPH0793134B2 (en) 1987-02-06 1987-02-06 Ceramic molds and punches for dry cell fuel molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62026055A JPH0793134B2 (en) 1987-02-06 1987-02-06 Ceramic molds and punches for dry cell fuel molding

Publications (2)

Publication Number Publication Date
JPS63195172A true JPS63195172A (en) 1988-08-12
JPH0793134B2 JPH0793134B2 (en) 1995-10-09

Family

ID=12182999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62026055A Expired - Lifetime JPH0793134B2 (en) 1987-02-06 1987-02-06 Ceramic molds and punches for dry cell fuel molding

Country Status (1)

Country Link
JP (1) JPH0793134B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286768A (en) * 1992-03-18 1994-02-15 Eastman Kodak Company Aqueous coatings composition contianing cellulose mixed ester and amine neutralized acrylic resin and the process for the preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286768A (en) * 1992-03-18 1994-02-15 Eastman Kodak Company Aqueous coatings composition contianing cellulose mixed ester and amine neutralized acrylic resin and the process for the preparation thereof

Also Published As

Publication number Publication date
JPH0793134B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JPH0244787B2 (en)
US4628039A (en) Sintered silicon nitride body
CN110483023B (en) Microporous corundum brick and preparation method thereof
KR101896642B1 (en) Castable refractory and casting nozzle and sliding nozzle plate using same
CN101551012A (en) A carbonaceous silicon carbide sealed ring and preparation method thereof
JPS63195172A (en) Ceramic mold and punch for forming dry battery fuel
US4435514A (en) Chromia magnesia refractory
JPS6015587B2 (en) Refractories for molten metal
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JPH04132659A (en) Chromium oxide-based compound sintered compact
JPH07165472A (en) Radiating base
JPS59232971A (en) Abrasion resistant sialon base ceramics
JPH06321641A (en) Composite ceramics
JP3031192B2 (en) Sliding nozzle plate refractories
JPS6317262A (en) Aluminum nitride sintered body
JPH04342468A (en) Refractory for continuous casting and its production
KR100278013B1 (en) Manufacturing method of high strength silicon nitride bonded silicon carbide refractory material
JPS59146980A (en) Manufacture of silicon nitride sintered body
JPS60145962A (en) Brick for embedding low heat conductivity blast furnace stave
JP2000327401A (en) Plate for slide gate
JPH04231370A (en) Aluminum oxide-based sintered body
JPH06206771A (en) Production of silicon carbide-carbon-based composite material
JPH07187807A (en) Source material for press forming of sic sintered body and press forming method
JPH0568428B2 (en)