JPS60145962A - Brick for embedding low heat conductivity blast furnace stave - Google Patents

Brick for embedding low heat conductivity blast furnace stave

Info

Publication number
JPS60145962A
JPS60145962A JP58248105A JP24810583A JPS60145962A JP S60145962 A JPS60145962 A JP S60145962A JP 58248105 A JP58248105 A JP 58248105A JP 24810583 A JP24810583 A JP 24810583A JP S60145962 A JPS60145962 A JP S60145962A
Authority
JP
Japan
Prior art keywords
brick
blast furnace
thermal conductivity
embedding
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58248105A
Other languages
Japanese (ja)
Other versions
JPS6221749B2 (en
Inventor
和輝 青山
鹿野 弘
加治 信彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP58248105A priority Critical patent/JPS60145962A/en
Publication of JPS60145962A publication Critical patent/JPS60145962A/en
Publication of JPS6221749B2 publication Critical patent/JPS6221749B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高炉ステーブ埋め込み用れんがの改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in bricks for embedding blast furnace staves.

〔発明の技術的背景〕[Technical background of the invention]

高炉ステーブ埋め込み用れんがは、通常の高炉炉壁れん
がと同様の耐アルカリ性、耐水茶気酸化性、耐摩耗性が
要求されるが、特に高炉ステーブの冷却能力によりさ・
ハ伝導率が制限されるとともに、ステーブ鋳込み時の熱
衝撃に対する耐スポーリング性及び凝固時のメタルの収
縮に対する圧縮強度が高いことが要求される。
Bricks for embedding blast furnace staves are required to have the same alkali resistance, water resistance, oxidation resistance, and abrasion resistance as ordinary blast furnace wall bricks.
In addition to having limited conductivity, it is also required to have high spalling resistance against thermal shock during stave casting and high compressive strength against shrinkage of the metal during solidification.

従来から高炉炉壁用としてSiCに金属シリコンを加え
て還元焼成したβ−5iC結合炭珪れんがと、窒化焼成
した窒珪ボンド炭珪れんがとが使用されているが、熱伝
導率が20〜10Kca I / mh ’Cと高くス
テーブ埋め込め用れんがとしては適さない。
Conventionally, β-5iC bonded silicon carbide bricks made by adding metal silicon to SiC and fired for reduction, and silicon nitride bonded silicon carbide bricks fired for nitriding have been used for blast furnace walls, but the thermal conductivity is 20 to 10 Kca. It has a high I/mh'C and is not suitable as a brick for embedding staves.

また、(α+β)アルミナ+スピネル+炭珪系のれんが
は、熱伝導率が7Kcal/ml+°C以下と低(熱伝
導率の点からは要求をみたしているが、1!′101N
アルカリ性、高耐摩耗性、高耐スポーリング性を付与す
ることは出来ない。
In addition, (α + β) alumina + spinel + carboxylic brick has a low thermal conductivity of 7 Kcal/ml + °C (although it meets the requirements from a thermal conductivity point of view, 1!'101 N
It is not possible to impart alkalinity, high wear resistance, and high spalling resistance.

この様に従来の高炉用れんがではステーブ埋め込み用れ
んがとしていずれも不十分であり、その解決はステーブ
・クーリング方式の高炉の緊急な技術課題であった。
As described above, conventional blast furnace bricks are insufficient as bricks for stave embedding, and solving this problem has been an urgent technical issue for stave cooling type blast furnaces.

〔発明の目的〕[Purpose of the invention]

本発明は、ステーブ・クーリング方式の高炉のステーブ
埋め込み用れんがとして十分な高耐アルカリ性1高耐摩
耗性、高耐スポーリング性とともに、低熱伝導率を具備
したれんがを提供することを目的とする。
An object of the present invention is to provide a brick that has high alkali resistance, high abrasion resistance, high spalling resistance, and low thermal conductivity sufficient for use as a brick for embedding a stave in a stave cooling type blast furnace.

〔発明の構成〕[Structure of the invention]

本発明に係るステーブ埋め込み用れんがは、Si3N4
粉を基体とする配合物を混練、成形したのち窒化焼成し
てなるもので、熱伝導率が7Kcal/mh°C以下の
低熱伝導性を有する。
The stave embedding brick according to the present invention is Si3N4
It is made by kneading and molding a powder-based compound, then nitriding and firing, and has a low thermal conductivity of 7 Kcal/mh°C or less.

Si3 N+は最近注目されているファイン・セラミッ
クスの高強度材料のひとつであり、気孔のほとんどない
緻密な焼結体から数十%の多孔質なものまで各種のもの
が報告されている。本発明に用いるSIB N÷原料は
最終製品の強度と熱伝導率とのバランスから開口気孔率
が25〜45%の原料でなければならない。25%未満
であれば製品の熱伝導率が高くなり、45%を超えると
製品強度が得られない。
Si3N+ is one of the high-strength materials for fine ceramics that has recently attracted attention, and various types have been reported, ranging from dense sintered bodies with almost no pores to those with several tens of percent porosity. The SIB N/raw material used in the present invention must have an open porosity of 25 to 45% in view of the balance between strength and thermal conductivity of the final product. If it is less than 25%, the thermal conductivity of the product will be high, and if it exceeds 45%, the product will not have sufficient strength.

次にSiB N÷の添加量についていえば、製品れんが
の熱伝導率を7 Kca l / mh ’C以下にす
る為には30重量%以上が必要であり、熱伝導率、コス
トそれに強度から見て35〜60重量%が望ましい。
Next, regarding the amount of SiB N÷ added, in order to reduce the thermal conductivity of the product brick to 7 Kcal/mh'C or less, 30% by weight or more is required. 35 to 60% by weight is desirable.

また、本発明においては、耐スポーリング性。Also, in the present invention, spalling resistance.

耐アルカリ性、耐摩耗性付与の目的のためにSiCを添
加する。その添加量は、40重量%を超えると熱伝導率
が7kca’l/mh″C以下にはならないので40重
電値以下である必要がある。
SiC is added for the purpose of imparting alkali resistance and wear resistance. The amount added needs to be 40% by weight or less because if it exceeds 40% by weight, the thermal conductivity will not be less than 7 kca'l/mh''C.

金属シリコン、又は、フェロシリコン、又は両者の混合
物を強度発現のために添加する。その添加量は5重量%
未満では熱伝導率が7 Kca l / mh ’C以
下にはならず、また強度の発現が不十分で耐貯耗性が低
下する。また30重量%を超えると窒化が完全には達成
されずフリーのシリコンが残り、水蒸気に対する耐酸化
性が低下し問題となる。
Metallic silicon, ferrosilicon, or a mixture of both is added to develop strength. The amount added is 5% by weight
If it is less than 7 Kcal/mh'C, the thermal conductivity will not be lower than 7 Kcal/mh'C, and the strength will not be sufficiently developed and the wear resistance will decrease. Moreover, if it exceeds 30% by weight, nitriding will not be completed completely and free silicon will remain, causing a problem in that the oxidation resistance against water vapor will decrease.

配合物に添加するバインダとしては、フェノールレジン
、糖みつ等の炭化収率の高いバインダも使用可能である
が、窒化焼成するに当たっての脱炭処理が困難になり、
脱炭処理なしで窒化焼成するとSi+C−βSiCの反
応が3 Si + 2 N 2−5i3N÷の反応より
低い温度で始まる為β−3iCが生成された後にSi3
 N÷の生成が起きる。β−5iCが生成すると熱伝導
率を7 Kca I / mh ’C以下にすることが
困難になり、熱伝導率を7’Kcal/mh’c以下に
するためにばSiB N+の添加量を増加させる必要が
あり、Sla +44の添加の効果が低下することにな
る。又β−3iCが生成すると5iBN4のボンドが少
くなる為強度が低下し耐摩耗性も低下傾向となる。従っ
て、β−3iCの生成反応を少くしてSi3 N今の添
加の効果を上げるためには、バインダとしては、炭化収
率が30%以下、望ましくは10%以下の、例えばPV
A (ポリビニールアルコール)、酢酸ビニール等の炭
化収率の低いバインダを使用することが望ましい。かか
る炭化収率の低いバインダを使用した場合には、脱炭処
理することな(そのまま窒化焼成することができる。こ
れによって製造の1工程を省略できることとなり、省エ
ネルギー、装置の簡略化とともに、中間製品の破損が防
止できる等の9)果がある。
As the binder added to the compound, binders with high carbonization yield such as phenol resin and molasses can be used, but decarburization during nitriding and firing becomes difficult.
When nitriding is performed without decarburization, the reaction of Si+C-βSiC starts at a lower temperature than the reaction of 3Si + 2N 2-5i3N÷, so after β-3iC is generated, Si3
The generation of N÷ occurs. When β-5iC is generated, it becomes difficult to reduce the thermal conductivity to 7 Kcal/mh'C or less, and in order to reduce the thermal conductivity to 7'Kcal/mh'C or less, the amount of SiB N+ added must be increased. This would reduce the effectiveness of the addition of Sla +44. Furthermore, when β-3iC is generated, the number of 5iBN4 bonds decreases, resulting in a decrease in strength and a tendency for wear resistance to decrease. Therefore, in order to reduce the production reaction of β-3iC and increase the effect of the addition of Si3N, a binder with a carbonization yield of 30% or less, preferably 10% or less, such as PV
It is desirable to use a binder with a low carbonization yield, such as A (polyvinyl alcohol) or vinyl acetate. When such a binder with a low carbonization yield is used, it is possible to nitride and sinter it without decarburizing it (it can be nitrided and fired as is).This allows one manufacturing step to be omitted, saving energy and simplifying equipment, as well as reducing the cost of intermediate products. 9) Benefits include preventing damage to the product.

〔実施例〕〔Example〕

以下実施例によって、本発明のれんかによるりJ果を示
す。
The following examples show the benefits of the present invention.

別表に示す配合物にバインダを添加混練したのち、高炉
ステーブ埋め込み用れんがの形状にプレス成形し、焼成
して本発明の範囲内にあるれんが(実施例1〜11)と
比較のためのれんが(比較例1〜11)を作成した。
After adding a binder to the mixture shown in the attached table and kneading it, it was press-molded into the shape of a brick for embedding a blast furnace stave and fired to produce bricks within the scope of the present invention (Examples 1 to 11) and comparative bricks ( Comparative Examples 1 to 11) were created.

同表に示す焼成条件において、窒化焼成はとくに脱炭処
理を施さずに、常温よりN2ガスを流してN2雰囲気と
して1450°Cで焼成したものであり、また還元焼成
はコークス・ブリーズ中にれんがを埋め込んで1450
℃で焼成したものである。
Under the firing conditions shown in the same table, nitriding firing was performed at 1450°C in an N2 atmosphere by flowing N2 gas from room temperature without any decarburization treatment, and reduction firing was performed by firing bricks in a coke breeze. embed 1450
It was fired at ℃.

製造した各れんがの性質を別表の中段に示す。The properties of each manufactured brick are shown in the middle row of the attached table.

各れんがを100111i1使用してステーブクーラー
を製造し、これに1550℃の溶銑を鋳込んで亀裂の発
生を調べた。亀裂の発生のなかった各実施例と比較例1
と6(比較例2と5は実炉に供さす)を同一高炉に埋め
込み設置した。比較例においては、使用1年後にスポー
リングが生し、取り出して観察したところ、損耗が大き
かった。これに対し、本発明の各実施例のもは2年後に
同様にしてれんがを観察したが何等異常は認められなか
った。
A stave cooler was manufactured using 100111i1 of each brick, and hot metal at 1550°C was poured into it to examine the occurrence of cracks. Examples and Comparative Example 1 where no cracks occurred
and 6 (Comparative Examples 2 and 5 were used in an actual furnace) were embedded in the same blast furnace. In the comparative example, spalling occurred after one year of use, and when it was taken out and observed, it was found that there was significant wear and tear. On the other hand, when the bricks of each example of the present invention were similarly observed after two years, no abnormalities were observed.

上記の実施例から、本発明の窒化焼成した窒珪−炭珪れ
んが、特にバインダに低炭化収率のものを使用したれん
がは、高炉ステーブ埋め込み用れんがとして最適な性質
を有し、実炉に使用され良好な実績を示していることが
判る。
From the above examples, it can be seen that the nitrided silicon-carbon silicon brick of the present invention, especially the brick using a binder with a low carbonization yield, has optimal properties as a brick for embedding a blast furnace stave, and can be used in an actual furnace. It can be seen that it has been used and has shown good results.

Claims (1)

【特許請求の範囲】 1、 開口気孔率が25〜45%であるSi3 N4粉
30〜95重量%と、sic!9JO〜40重量%と、
金属シリコン粉又はフェロシリコン粉又は両者の混合粉
5〜30重量%とからなる配合物に、バインダを添加、
混練、成形しその後窒化焼成してなり、かつ200°C
における熱伝導率が7 Kca l / ml+ ’c
以下であることを特徴とする低熱伝導性高炉ステーブ埋
め込の用れんが。 2、配合物のバインダとしてポリビニールアルコール、
酢酸ビニール等の低炭化収率のバインダを使用すること
を特徴とする特許請求の範囲第1項記載の低熱伝導性高
炉ステーブ埋め込み用れんが。
[Claims] 1. 30 to 95% by weight of Si3N4 powder with an open porosity of 25 to 45%, and sic! 9JO~40% by weight,
Adding a binder to a composition consisting of 5 to 30% by weight of metal silicon powder, ferrosilicon powder, or a mixed powder of both;
Kneaded, molded, then nitrided and fired at 200°C
The thermal conductivity at 7 Kcal/ml+'c
A brick for use in embedding a blast furnace stave with low thermal conductivity, characterized by: 2. Polyvinyl alcohol as a binder for the formulation;
The low thermal conductivity brick for embedding in a blast furnace stave according to claim 1, characterized in that a binder with a low carbonization yield such as vinyl acetate is used.
JP58248105A 1983-12-29 1983-12-29 Brick for embedding low heat conductivity blast furnace stave Granted JPS60145962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58248105A JPS60145962A (en) 1983-12-29 1983-12-29 Brick for embedding low heat conductivity blast furnace stave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58248105A JPS60145962A (en) 1983-12-29 1983-12-29 Brick for embedding low heat conductivity blast furnace stave

Publications (2)

Publication Number Publication Date
JPS60145962A true JPS60145962A (en) 1985-08-01
JPS6221749B2 JPS6221749B2 (en) 1987-05-14

Family

ID=17173294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58248105A Granted JPS60145962A (en) 1983-12-29 1983-12-29 Brick for embedding low heat conductivity blast furnace stave

Country Status (1)

Country Link
JP (1) JPS60145962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208223A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Holding furnace for molten iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414412A (en) * 1977-07-05 1979-02-02 Kurosaki Refractories Co Method of making brick for embedding blast furnace stave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414412A (en) * 1977-07-05 1979-02-02 Kurosaki Refractories Co Method of making brick for embedding blast furnace stave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208223A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Holding furnace for molten iron

Also Published As

Publication number Publication date
JPS6221749B2 (en) 1987-05-14

Similar Documents

Publication Publication Date Title
US2752258A (en) Silicon nitride-bonded silicon carbide refractories
JP4704111B2 (en) Oxide bonded silicon carbide material
CN114988879B (en) Large-scale complex-phase reaction sintered silicon carbide product and preparation method thereof
JPS5913470B2 (en) Silica brick manufacturing method
CN101747069B (en) High-alumina product for steel-smelting electric furnace top
CN113979761B (en) Ternary composite self-repairing baking-free sliding plate brick and preparation method thereof
CN115215638A (en) Corundum dry-type ramming mass for medium-frequency induction furnace and preparation method thereof
JPS60145962A (en) Brick for embedding low heat conductivity blast furnace stave
JP6266968B2 (en) Blast furnace hearth lining structure
JP3661958B2 (en) Refractory for casting
JPH0232228B2 (en)
JPH01305849A (en) Magnesia-carbon brick
JPH01242465A (en) Production of silicon carbide sintered body and sliding member thereof
KR100308922B1 (en) Method of Manufacturing Silicon Nitride Bonded Silicon Carbide Composites by Silicon Nitriding Reaction
JPH02285014A (en) Mud material for tap hole of blast furnace
JPS6247834B2 (en)
JP3031192B2 (en) Sliding nozzle plate refractories
JP2706302B2 (en) Method for producing high-density silicon nitride sintered body
KR100278013B1 (en) Manufacturing method of high strength silicon nitride bonded silicon carbide refractory material
JPH02283656A (en) Carbon-containing refractory
JPH11240747A (en) Plate brick
JPH03205362A (en) Graphite-silicon carbide refractory brick and production thereof
JPH04280858A (en) Production of unburned magnesia-carbon brick
JP3368035B2 (en) Setter
JP2783433B2 (en) Low thermal conductivity blast furnace refractories